
SINUMERIK

SINUMERIK 840D sl / 828D
Job Planning

Programming Manual

Valid for

Control
SINUMERIK 840D sl / 840DE sl / 828D

CNC software version 4.8 SP3

08/2018
6FC5398-2BP40-6BA2

Preface
Fundamental safety
instructions 1
Flexible NC programming 2
File and Program
Management 3
Protection zones 4
Special motion commands 5
Coordinate transformations
(frames) 6
Transformations 7
Kinematic chains 8
Collision avoidance with
kinematic chains 9
Transformation with
kinematic chains 10
Tool offsets 11
Path traversing behavior 12
Axis couplings 13
Synchronized actions 14
Oscillation 15
Punching and nibbling 16
Grinding 17
Additional functions 18
User stock removal programs 19
Programming cycles
externally 20
Tables 21
Appendix A

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in
this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG
Division Digital Factory
Postfach 48 48
90026 NÜRNBERG
GERMANY

Document order number: 6FC5398-2BP40-6BA2
Ⓟ 08/2018 Subject to change

Copyright © Siemens AG 1995 - 2018.
All rights reserved

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized into the following categories:

● General documentation/catalogs

● User documentation

● Manufacturer/service documentation

Additional information
You can find information on the following topics at the following address (https://
support.industry.siemens.com/cs/de/en/view/108464614):

● Ordering documentation/overview of documentation

● Additional links to download documents

● Using documentation online (find and search in manuals/information)

If you have any questions regarding the technical documentation (e.g. suggestions,
corrections), please send an e-mail to the following address
(mailto:docu.motioncontrol@siemens.com).

mySupport/Documentation
At the following address (https://support.industry.siemens.com/My/ww/en/documentation),
you can find information on how to create your own individual documentation based on
Siemens' content, and adapt it for your own machine documentation.

Training
At the following address (http://www.siemens.com/sitrain), you can find information about
SITRAIN (Siemens training on products, systems and solutions for automation and drives).

FAQs
You can find Frequently Asked Questions in the Service&Support pages under Product
Support (https://support.industry.siemens.com/cs/de/en/ps/faq).

SINUMERIK
You can find information about SINUMERIK at the following address (http://www.siemens.com/
sinumerik).

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 3

https://support.industry.siemens.com/cs/de/en/view/108464614
https://support.industry.siemens.com/cs/de/en/view/108464614
mailto:docu.motioncontrol@siemens.com
https://support.industry.siemens.com/My/ww/en/documentation
http://www.siemens.com/sitrain
https://support.industry.siemens.com/cs/de/en/ps/faq
http://www.siemens.com/sinumerik
http://www.siemens.com/sinumerik

Target group
This publication is intended for:

● Programmers

● Project engineers

Benefits
With the programming manual, the target group can develop, write, test, and debug programs
and software user interfaces.

Standard scope
This Programming Manual describes the functionality of the standard scope. Extensions or
changes made by the machine tool manufacturer are documented by the machine tool
manufacturer.

Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or when
servicing.

Furthermore, for the sake of clarity, this documentation does not contain all detailed information
about all product types and cannot cover every conceivable case of installation, operation or
maintenance.

Technical Support
Country-specific telephone numbers for technical support are provided in the Internet at the
following address (https://support.industry.siemens.com/sc/ww/en/sc/2090) in the "Contact"
area.

Information on structure and contents

Programming Manual, Fundamentals/Job Planning
The description of the NC programming is divided into two manuals:

1. Fundamentals
This "Fundamentals" Programming Manual is intended for use by skilled machine operators
with the appropriate expertise in drilling, milling and turning operations. Simple
programming examples are used to explain the commands and statements which are also
defined according to DIN 66025.

2. Job planning
The Programming Manual "Advanced" is intended for use by technicians with in-depth,
comprehensive programming knowledge. By virtue of a special programming language,
the SINUMERIK control enables the user to program complex workpiece programs (e.g.
for free-form surfaces, channel coordination, ...) and makes programming of complicated
operations easy for technologists.

Preface

Job Planning
4 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

https://support.industry.siemens.com/sc/ww/en/sc/2090

Availability of the described NC language elements
All NC language elements described in the manual are available for the SINUMERIK 840D sl.
The availability regarding SINUMERIK 828D should be taken from Table "Operations:
Availability for SINUMERIK 828D (Page 860)".

Preface

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 5

Preface

Job Planning
6 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Table of contents

Preface...3

1 Fundamental safety instructions...17

1.1 General safety instructions...17

1.2 Warranty and liability for application examples..18

1.3 Industrial security...19

2 Flexible NC programming...21

2.1 Variables..21
2.1.1 System data...21
2.1.2 Predefined user variables: Arithmetic parameters...24
2.1.2.1 Channel-specific arithmetic parameters (R)...24
2.1.2.2 Global arithmetic parameters (RG)..25
2.1.3 Predefined user variables: Link variables..27
2.1.4 Definition of user variables (DEF)..29
2.1.5 Redefinition of system data, user data, and NC commands (REDEF)..................................35
2.1.6 Attribute: Initialization value...38
2.1.7 Attribute: Limit values (LLI, ULI)...41
2.1.8 Attribute: Physical unit (PHU)...43
2.1.9 Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB).....................................45
2.1.10 Attribute: Data class (DCM, DCI, DCU) - only SINUMERIK 828D...49
2.1.11 Overview of definable and redefinable attributes...50
2.1.12 Definition and initialization of array variables (DEF, SET, REP)..52
2.1.13 Definition and initialization of array variables (DEF, SET, REP): Further Information....56
2.1.14 Data types..58
2.1.15 Check availability of a variable (ISVAR)...59
2.1.16 Reading attribute values / data type (GETVARPHU, GETVARAP, GETVARLIM,

GETVARDIM, GETVARDFT, GETVARTYP)...60

2.2 Indirect programming...66
2.2.1 Indirectly programming addresses...66
2.2.2 Indirectly programming G commands..68
2.2.3 Indirectly programming position attributes (GP)...69
2.2.4 Indirectly programming part program lines (EXECSTRING)..72

2.3 Arithmetic functions..73

2.4 Comparison and logic operations...76

2.5 Precision correction on comparison errors (TRUNC)...78

2.6 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND).........................80

2.7 Priority of the operations..82

2.8 Possible type conversions..83

2.9 String operations..84
2.9.1 Type conversion to STRING (AXSTRING)..84

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 7

2.9.2 Type conversion from STRING (NUMBER, ISNUMBER, AXNAME).....................................85
2.9.3 Concatenation of strings (<<)...86
2.9.4 Conversion to lower/upper case letters (TOLOWER, TOUPPER)...87
2.9.5 Determine length of string (STRLEN)..88
2.9.6 Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH)....................89
2.9.7 Selection of a substring (SUBSTR)..90
2.9.8 Reading and writing of individual characters..91
2.9.9 Formatting a string (SPRINT)...92

2.10 Program jumps and branches..101
2.10.1 Return jump to the start of the program (GOTOS)...101
2.10.2 Program jumps to jump markers (GOTOB, GOTOF, GOTO, GOTOC)...............................102
2.10.3 Program branch (CASE ... OF ... DEFAULT ...)...105

2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)...107

2.12 Check structures..113
2.12.1 Conditional statement and branch (IF, ELSE, ENDIF)...114
2.12.2 Continuous program loop (LOOP, ENDLOOP)..116
2.12.3 Count loop (FOR ... TO ..., ENDFOR)..116
2.12.4 Program loop with condition at start of loop (WHILE, ENDWHILE).....................................118
2.12.5 Program loop with condition at the end of the loop (REPEAT, UNTIL)................................118
2.12.6 Program example with nested check structures..119

2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM).120

2.14 Interrupt routine (ASUB)...125
2.14.1 Function of an interrupt routine..125
2.14.2 Creating an interrupt routine..126
2.14.3 Assign and start interrupt routine (SETINT, PRIO, BLSYNC)..127
2.14.4 Deactivating/reactivating the assignment of an interrupt routine (DISABLE, ENABLE).......129
2.14.5 Delete assignment of interrupt routine (CLRINT)...129
2.14.6 Fast retraction from the contour (SETINT LIFTFAST, ALF)...130
2.14.7 Traversing direction for fast retraction from the contour ...132
2.14.8 Motion sequence for interrupt routines...135

2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)......................................137

2.16 Transfer axis to another channel (AXTOCHAN)..142

2.17 Activate machine data (NEWCONF)..144

2.18 Write file (WRITE)..145

2.19 Delete file (DELETE)..149

2.20 Read lines in the file (READ)...150

2.21 Check for presence of file (ISFILE)..152

2.22 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO).........153

2.23 Roundup (ROUNDUP)...155

2.24 Subprogram technique...156
2.24.1 General information..156
2.24.1.1 Subprogram...156
2.24.1.2 Subprogram names..157
2.24.1.3 Nesting of subprograms...158
2.24.1.4 Search path..159

Table of contents

Job Planning
8 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.24.1.5 Formal and actual parameters...159
2.24.1.6 Parameter transfer...160
2.24.2 Definition of a subprogram...162
2.24.2.1 Subprogram without parameter transfer..162
2.24.2.2 Subprogram with call-by-value parameter transfer (PROC)..162
2.24.2.3 Subprogram with call-by-reference parameter transfer (PROC, VAR)................................164
2.24.2.4 Save modal G functions (SAVE)..166
2.24.2.5 Suppress single block execution (SBLOF, SBLON)..167
2.24.2.6 Suppress current block display (DISPLOF, DISPLON, ACTBLOCNO)...............................173
2.24.2.7 Identifying subprograms with preparation (PREPRO)..176
2.24.2.8 Subprogram return M17...176
2.24.2.9 RET subprogram return...177
2.24.2.10 Parameterizable subprogram return jump (RET ...)...178
2.24.2.11 Parameterizable subprogram return jump (RETB ...)...185
2.24.3 Subprogram call...189
2.24.3.1 Subprogram call without parameter transfer..189
2.24.3.2 Subprogram call with parameter transfer (EXTERN)...191
2.24.3.3 Number of program repetitions (P)...193
2.24.3.4 Modal subprogram call (MCALL)...194
2.24.3.5 Indirect subprogram call (CALL)..196
2.24.3.6 Indirect subprogram call with specification of the calling program part (CALL BLOCK ...

TO ...)...197
2.24.3.7 Indirect call of a program programmed in ISO language (ISOCALL)...................................198
2.24.3.8 Call subprogram with path specification and parameters (PCALL)......................................199
2.24.3.9 Extend search path for subprogram calls (CALLPATH)...200
2.24.3.10 Execute external subprogram (840D sl) (EXTCALL)...201
2.24.3.11 Execute external subprogram (828D) (EXTCALL)...204

2.25 Macro technique (DEFINE ... AS)..209

3 File and Program Management..213

3.1 Program memory...213
3.1.1 NC program memory..213
3.1.2 External program memory..215
3.1.3 Addressing program memory files...217
3.1.4 Search path for subprogram call..221
3.1.5 Interrogating the path and file name..222

3.2 Working memory (CHANDATA, COMPLETE, INITIAL)...224

4 Protection zones...227

4.1 Defining protection zones (CPROTDEF, NPROTDEF)..227

4.2 Activating/deactivating protection zones (CPROT, NPROT)...231

4.3 Checking for protection zone violation, working area limitation and software limit
switches (CALCPOSI)..235

5 Special motion commands...245

5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)..245

5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO,
ENAT, ETAN, PW, SD, PL)..246

5.3 Spline group (SPLINEPATH)...257

Table of contents

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 9

5.4 Activating/deactivating NC block compression (COMPON, COMPCURV, COMPCAD,
COMPSURF, COMPOF)..259

5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)...260

5.6 Settable path reference (SPATH, UPATH)..266

5.7 Measuring with touch-trigger probe (MEAS, MEAW)...268

5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)...271

5.9 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1, OEMIPO2, G810 ... G829)....282

5.10 Feedrate reduction with corner deceleration (FENDNORM, G62, G621)283

5.11 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA,
ADISPOSA)..284

6 Coordinate transformations (frames)..287

6.1 Coordinate transformation via frame variables..287
6.1.1 Predefined frame variable ($P_CHBFRAME, $P_IFRAME, $P_PFRAME,

$P_ACTFRAME)..289

6.2 Value assignments to frames...293
6.2.1 Assigning direct values (axis value, angle, scale)..293
6.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)...295
6.2.3 Calculating with frames..296
6.2.4 Definition of frame variables (DEF FRAME)..297

6.3 Coarse and fine offsets (CTRANS, CFINE)...299

6.4 External zero offset ($AA_ETRANS)..301

6.5 Set actual value with loss of the referencing status (PRESETON)......................................303

6.6 Set actual value without loss of the referencing status (PRESETONS)...............................305

6.7 Frame calculation from three measuring points in space (MEAFRAME).............................307

6.8 NCU global frames..311
6.8.1 Channel-specific frames ($P_CHBFR, $P_UBFR)...311
6.8.2 Frames active in the channel...312

7 Transformations..317

7.1 General programming of transformation types...317
7.1.1 Orientation movements for transformations...319
7.1.2 Overview of orientation transformation TRAORI..323

7.2 Three, four and five axis transformation (TRAORI)..325
7.2.1 General relationships of universal tool head..325
7.2.2 Three, four and five axis transformation (TRAORI)..328
7.2.3 Variants of orientation programming and initial setting (ORIRESET)..................................329
7.2.4 Programming the tool orientation (A..., B..., C..., LEAD, TILT)..331
7.2.5 Face milling (A4, B4, C4, A5, B5, C5)..337
7.2.6 Reference of the orientation axes (ORIWKS, ORIMKS):...338
7.2.7 Programming orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY, ORIRPY2,

ORIVIRT1, ORIVIRT2)...340
7.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE,

ORICONCW, ORICONCCW, ORICONTO, ORICONIO)...342

Table of contents

Job Planning
10 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=, PO[YH]=,
PO[ZH]=)..345

7.3 Orientation polynomials (PO[angle], PO[coordinate])..348

7.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)....350

7.5 Orientations relative to the path...353
7.5.1 Orientation types relative to the path...353
7.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle of

rotation)..354
7.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)...........................355
7.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)..................................357

7.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF).......359

7.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)..........................362

7.8 Kinematic transformation...364
7.8.1 Activate face end transformation (TRANSMIT)..364
7.8.2 Activate cylinder surface transformation (TRACYL)...364
7.8.3 Activating an oblique angle transformation with programmable angle (TRAANG)..............367
7.8.4 Oblique plunge-cutting on grinding machines (G5, G7)...368

7.9 Activate concatenated transformation (TRACON)...370

7.10 Cartesian PTP travel..372
7.10.1 Activating/deactivating Cartesian PTP travel (PTP, PTPG0, PTPWOC, CP)......................372
7.10.2 Specify the position of the joints (STAT)..373
7.10.3 Specify the sign of the axis angle (TU)..377
7.10.4 Example 1: PTP travel of a 6-axis robot with ROBX transformation....................................380
7.10.5 Example 2: PTP travel for generic 5-axis transformation...381
7.10.6 Example 3: PTPG0 and TRANSMIT..381

7.11 Constraints when selecting a transformation...383

7.12 Deselecting a transformation (TRAFOOF)...384

8 Kinematic chains..385

8.1 Deletion of components (DELOBJ)..385

8.2 Index determination by means of names (NAMETOINT)...388

9 Collision avoidance with kinematic chains..389

9.1 Check for collision pair (COLLPAIR)..390

9.2 Request recalculation of the machine model of the collision avoidance (PROTA)..............391

9.3 Setting the protection zone status (PROTS)..392

9.4 Determining the clearance of two protection zones (PROTD)...393

10 Transformation with kinematic chains..395

10.1 Activating a transformation (TRAFOON)..395

10.2 Modifying the orientation transformation after the machine measurement
(CORRTRAFO)..396

11 Tool offsets...405

11.1 Offset memory..405

Table of contents

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 11

11.2 Additive offsets...408
11.2.1 Selecting additive offsets (DL)...408
11.2.2 Specify wear and setup values ($TC_SCPxy[t,d], $TC_ECPxy[t,d])....................................409
11.2.3 Delete additive offsets (DELDL)...410

11.3 Special handling of tool offsets..412
11.3.1 Mirroring of tool lengths..413
11.3.2 Wear sign evaluation..414
11.3.3 Coordinate system of the active machining operation (TOWSTD, TOWMCS, TOWWCS,

TOWBCS, TOWTCS, TOWKCS)...415
11.3.4 Tool length and plane change..417

11.4 Online tool offset..419
11.4.1 Defining a polynomial function (FCTDEF)..419
11.4.2 Write online tool offset continuously (PUTFTOCF)..420
11.4.3 Write online tool offset, discrete (PUTFTOC)...421
11.4.4 Activate/deactivate online tool offset (FTOCON/FTOCOF)...422

11.5 3D tool radius compensation..423
11.5.1 Selecting 3D tool radius compensation for 3D circumferential milling (CUT3DC,

CUT3DCD, ISD)...423
11.5.2 Selecting 3D tool radius compensation for the 3D face milling (CUT3DF, CUT3DFS,

CUT3DFF, CUT3DFD)...427
11.5.3 3D circumferential milling taking into account a limitation surface (CUT3DCC,

CUT3DCCD)..432

11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)...................438

11.7 Free assignment of D numbers, cutting edge numbers...444
11.7.1 Free assignment of D numbers, cutting edge numbers (CE address).................................444
11.7.2 Free assignment of D numbers: Checking D numbers (CHKDNO).....................................444
11.7.3 Free assignment of D numbers: Rename D numbers (GETDNO, SETDNO)......................445
11.7.4 Free assignment of D numbers: Determine T number to the specified D number

(GETACTTD)...446
11.7.5 Free assignment of D numbers: Invalidate D numbers (DZERO)..446

11.8 Toolholder kinematics..447

11.9 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR,
TCOFRX, TCOFRY, TCOFRZ)..452

11.10 Online tool length compensation (TOFFON, TOFFOF)...455

11.11 Modification of the offset data for rotatable tools...458
11.11.1 Calculating orientations (ORISOLH)..458
11.11.2 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)....466

11.12 Working with tool environments...473
11.12.1 Save tool environment (TOOLENV)...473
11.12.2 Delete tool environment (DELTOOLENV)..476
11.12.3 Read T, D and DL number (GETTENV)...477
11.12.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)....478
11.12.5 Read tool lengths and/or tool length components (GETTCOR)...478
11.12.6 Change tool components (SETTCOR)...484

11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)497

Table of contents

Job Planning
12 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12 Path traversing behavior...501

12.1 Tangential control...501
12.1.1 Defining coupling (TANG)..501
12.1.2 Activating intermediate block generation (TLIFT)..502
12.1.3 Activating the coupling (TANGON)..503
12.1.4 Deactivating the coupling (TANGOF)...505
12.1.5 Deleting a coupling (TANGDEL)..505

12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)...507

12.3 Acceleration behavior...512
12.3.1 Acceleration mode (BRISK, BRISKA, SOFT, SOFTA, DRIVE, DRIVEA)............................512
12.3.2 Influence of acceleration on following axes (VELOLIMA, ACCLIMA, JERKLIMA)...............514
12.3.3 Activation of technology-specific dynamic values (DYNNORM, DYNPOS, DYNROUGH,

DYNSEMIFIN, DYNFINISH)..516

12.4 Traversing with feedforward control (FFWON, FFWOF)..518

12.5 Programmable contour accuracy (CPRECON, CPRECOF)..519

12.6 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL,
STOPRE) ..521

12.7 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)..524

12.8 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)..............................527

12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH,
REPOSHA, DISR, DISPR, RMIBL, RMBBL, RMEBL, RMNBL) ...529

12.10 Influencing the motion control..538
12.10.1 Percentage jerk correction (JERKLIM)...538
12.10.2 Percentage velocity correction (VELOLIM)..539
12.10.3 Program example for JERKLIM and VELOLIM..541

12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL).....................................542

12.12 Block change behavior with active coupling (CPBC)...546

13 Axis couplings...547

13.1 Coupled motion (TRAILON, TRAILOF)..547

13.2 Curve tables (CTAB)..552
13.2.1 Define curve tables (CTABDEF, CATBEND)...552
13.2.2 Check for presence of curve table (CTABEXISTS)..558
13.2.3 Delete curve tables (CTABDEL)..559
13.2.4 Locking curve tables to prevent deletion and overwriting (CTABLOCK, CTABUNLOCK)....560
13.2.5 Curve tables: Determine table properties (CTABID, CTABISLOCK, CTABMEMTYP,

CTABPERIOD)...561
13.2.6 Read curve table values (CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABSSV,

CTABSEV, CTAB, CTABINV, CTABTMIN, CTABTMAX)..562
13.2.7 Curve tables: Check use of resources (CTABNO, CTABNOMEM, CTABFNO,

CTABSEGID, CTABSEG, CTABFSEG, CTABMSEG, CTABPOLID, CTABPOL,
CTABFPOL, CTABMPOL)...567

13.3 Axial master value coupling (LEADON, LEADOF)...569

13.4 Electronic gear (EG)...575

Table of contents

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 13

13.4.1 Defining an electronic gear (EGDEF)...575
13.4.2 Switch-in the electronic gearbox (EGON, EGONSYN, EGONSYNE)..................................576
13.4.3 Switching-in the electronic gearbox (EGOFS, EGOFC)...579
13.4.4 Deleting the definition of an electronic gear (EGDEL)...580
13.4.5 Rotational feedrate (G95) / electronic gear (FPR)...580

13.5 Synchronous spindle..581
13.5.1 Synchronous spindle: Programming (COUPDEF, COUPDEL, COUPON, COUPONC,

COUPOF, COUPOFS, COUPRES, WAITC)...581

13.6 Generic coupling (CP...)...592

13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)..............599

14 Synchronized actions...603

14.1 Definition of a synchronized action..603

15 Oscillation...605

15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE,
OSB)..605

15.2 Oscillation controlled by synchronized actions (OSCILL)..610

16 Punching and nibbling..617

16.1 Activation/deactivation...617
16.1.1 Activate/deactivate punching and nibbling (SPOF, SON, PON, SONS, PONS,

PDELAYON, PDELAYOF, PUNCHACC)...617

16.2 Automatic path segmentation...622
16.2.1 Path segmentation for path axes...624
16.2.2 Path segmentation for single axes...626

17 Grinding..629

17.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF).................................629

18 Additional functions..631

18.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)............631

18.2 Replaceable geometry axes (GEOAX)..634

18.3 Axis container (AXCTSWE, AXCTSWED, AXCTSWEC)...639

18.4 Wait for valid axis position (WAITENC)..641

18.5 Programmable parameter set changeover (SCPARA)..643

18.6 Check scope of NC language present (STRINGIS)...645

18.7 Interactively call the window from the part program (MMC)...649

18.8 Program runtime/part counter..654
18.8.1 Program runtime..654
18.8.2 Workpiece counter...657

18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE,
EXTCLOSE):..659

18.10 Alarms (SETAL)...664

18.11 Extended stop and retract (ESR)...665

Table of contents

Job Planning
14 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.11.1 NC-controlled ESR...666
18.11.1.1 NC-controlled retraction (POLF, POLFA, POLFMASK, POLFMLIN)...................................666
18.11.1.2 NC-controlled stopping...669
18.11.2 Drive-integrated ESR...670
18.11.2.1 Configuring drive-integrated stopping (ESRS)...670
18.11.2.2 Configuring drive-integrated retraction (ESRS)..671

18.12 Define blank (WORKPIECE)..673

18.13 Switch language mode (G290, G291)..677

19 User stock removal programs...679

19.1 Supporting functions for stock removal..679

19.2 Generate contour table (CONTPRON)..680

19.3 Generate coded contour table (CONTDCON)...686

19.4 Determine point of intersection between two contour elements (INTERSEC).....................690

19.5 Execute the contour elements of a table block-by-block (EXECTAB)..................................692

19.6 Calculate circle data (CALCDAT)...693

19.7 Deactivate contour preparation (EXECUTE)..695

20 Programming cycles externally...697

20.1 Technology cycles..697
20.1.1 Introduction..697
20.1.2 Technology-specific overview..698
20.1.3 HOLES1 - row of holes..700
20.1.4 HOLES2 - hole circle..700
20.1.5 POCKET3 - milling a rectangular pocket...702
20.1.6 POCKET4 - milling a circular pocket..705
20.1.7 SLOT1 - longitudinal slot..707
20.1.8 SLOT2 - circumferential slot...710
20.1.9 LONGHOLE - elongated hole..712
20.1.10 CYCLE60 - engraving cycle...714
20.1.11 CYCLE61 - Face milling...717
20.1.12 CYCLE62 - contour call..719
20.1.13 CYCLE63 - Milling contour pocket...720
20.1.14 CYCLE64 - Predrilling contour pocket...722
20.1.15 CYCLE70 - thread milling...723
20.1.16 CYCLE72 - Path milling...725
20.1.17 CYCLE76 - rectangular spigot milling..729
20.1.18 CYCLE77 - circular spigot milling...731
20.1.19 CYCLE78 - Drill thread milling...733
20.1.20 CYCLE79 - multi-edge...735
20.1.21 CYCLE81 - drilling, centering...737
20.1.22 CYCLE82 - drilling, counterboring..738
20.1.23 CYCLE83 - deep-hole drilling...741
20.1.24 CYCLE84 - tapping without compensating chuck..744
20.1.25 CYCLE85 - reaming...747
20.1.26 CYCLE86 - boring..748
20.1.27 CYCLE92 - cut-off..749
20.1.28 CYCLE95 - contour cutting..751

Table of contents

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 15

20.1.29 CYCLE98 - thread chain..753
20.1.30 CYCLE99 - thread turning..757
20.1.31 CYCLE435 - Set dresser coordinate system...762
20.1.32 CYCLE495 - form-truing...762
20.1.33 CYCLE800 - swiveling...764
20.1.34 CYCLE801 - grid or frame..767
20.1.35 CYCLE802 - arbitrary positions..769
20.1.36 CYCLE830 - deep-hole drilling 2..771
20.1.37 CYCLE832 - High-Speed Settings...777
20.1.38 CYCLE840 - tapping with compensating chuck...780
20.1.39 CYCLE899 - Milling open slot..783
20.1.40 CYCLE930 - groove...786
20.1.41 CYCLE940 - undercut forms..788
20.1.42 CYCLE951 - stock removal..791
20.1.43 CYCLE952 - contour grooving...794
20.1.44 CYCLE4071 - longitudinal grinding with infeed at the reversal point...................................800
20.1.45 CYCLE4072 - longitudinal grinding with infeed at the reversal point and cancel signal.801
20.1.46 CYCLE4073 - longitudinal grinding with continuous infeed...805
20.1.47 CYCLE4074 - longitudinal grinding with continuous infeed and cancel signal.....................806
20.1.48 CYCLE4075 - surface grinding with infeed at the reversal point..809
20.1.49 CYCLE4077 - surface grinding with infeed at the reversal point and cancel signal.............812
20.1.50 CYCLE4078 - surface grinding with continuous infeed..815
20.1.51 CYCLE4079 - surface grinding with intermittent infeed...817
20.1.52 GROUP_BEGIN - beginning of program block..819
20.1.53 GROUP_END - end of program block..820
20.1.54 GROUP_ADDEND - End of trial cut addition...820
20.1.55 Supplementary conditions..820
20.1.55.1 Technology scaling in cycle screen forms..820

20.2 Measuring cycles...822

21 Tables...823

21.1 Operations..823

21.2 Operations: Availability for SINUMERIK 828D ..860
21.2.1 Control version milling / turning..860
21.2.2 Control versions grinding...887

21.3 Currently set language in the HMI..914

A Appendix...915

A.1 List of abbreviations...915

A.2 Documentation overview..924

Glossary...925

Index...947

Table of contents

Job Planning
16 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Fundamental safety instructions 1
1.1 General safety instructions

WARNING

Danger to life if the safety instructions and residual risks are not observed

If the safety instructions and residual risks in the associated hardware documentation are not
observed, accidents involving severe injuries or death can occur.
● Observe the safety instructions given in the hardware documentation.
● Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings

As a result of incorrect or changed parameterization, machines can malfunction, which in turn
can lead to injuries or death.
● Protect the parameterization (parameter assignments) against unauthorized access.
● Handle possible malfunctions by taking suitable measures, e.g. emergency stop or

emergency off.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 17

1.2 Warranty and liability for application examples
Application examples are not binding and do not claim to be complete regarding configuration,
equipment or any eventuality which may arise. Application examples do not represent specific
customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated
correctly. Application examples do not relieve you of your responsibility for safe handling when
using, installing, operating and maintaining the equipment.

Fundamental safety instructions
1.2 Warranty and liability for application examples

Job Planning
18 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

1.3 Industrial security

Note
Industrial security

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the Internet if and to the extent such a connection is necessary
and only when appropriate security measures (e.g. firewalls and/or network segmentation) are
in place.

For additional information on industrial security measures that may be implemented, please
visit:

Industrial security (http://www.siemens.com/industrialsecurity)

Siemens’ products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer
supported, and failure to apply the latest updates may increase customer’s exposure to cyber
threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed at:

Industrial security (http://www.siemens.com/industrialsecurity)

Further information is provided on the Internet:

Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/
view/108862708)

Fundamental safety instructions
1.3 Industrial security

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 19

http://www.siemens.com/industrialsecurity
http://www.siemens.com/industrialsecurity
https://support.industry.siemens.com/cs/ww/en/view/108862708
https://support.industry.siemens.com/cs/ww/en/view/108862708

WARNING

Unsafe operating states resulting from software manipulation

Software manipulations (e.g. viruses, trojans, malware or worms) can cause unsafe operating
states in your system that may lead to death, serious injury, and property damage.
● Keep the software up to date.
● Incorporate the automation and drive components into a holistic, state-of-the-art industrial

security concept for the installation or machine.
● Make sure that you include all installed products into the holistic industrial security concept.
● Protect files stored on exchangeable storage media from malicious software by with

suitable protection measures, e.g. virus scanners.
● Protect the drive against unauthorized changes by activating the "know-how protection"

drive function.

Fundamental safety instructions
1.3 Industrial security

Job Planning
20 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Flexible NC programming 2
2.1 Variables

The use of variables from the areas system data and user data, especially in conjunction with
arithmetic functions and check structures, enables highly flexible NC programs and cycles to
be written.

● System data
The system data contains the variables predefined in the system. These variables have a
defined meaning. They are primarily used by the system software. The user can read and
write these variables in NC programs and cycles. Example: Machine data, setting data,
system variables.
Although the meaning of a system data item is fixed, the user can modify its properties
within certain limits by redefinition.
See "Redefinition of system data, user data, and NC commands (REDEF) (Page 35)"

● User data
The user data contains those variables defined by the user whose meaning is exclusively
defined by the user. It is not evaluated by the system.
The user data is divided into:

– Predefined user variables
Predefined user variables are variables that have already been defined in the system
and whose number is parameterized in the machine data. The user can make changes
to the properties of these variables.
See "Redefinition of system data, user data, and NC commands (REDEF) (Page 35)."

– User-defined variables
User-defined variables are variables that are defined by the user and are not created
by the system until runtime. Their number, data type, visibility, and all other properties
are defined exclusively by the user.
See "Definition of user variables (DEF) (Page 29)"

2.1.1 System data
The system data contain the variables that are predefined in the system and enable access
to the current parameter settings of the control, as well as to machine, control, and process
states, in NC programs and cycles.

Preprocessing variables
Preprocessing variables are system data that are read and written during preprocessing, in
other words, at the instant at which the block containing the variable is interpreted.
Preprocessing variables do not trigger preprocessing stops.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 21

Main run variables
Main run variables are system data that are read and written during the main run, in other
words, at the instant at which the block containing the variable is executed. The following are
main run variables:

● Variables that can be programmed in synchronized actions (read/write)

● Variables that can be programmed in the NC program and trigger preprocessing stops (read/
write)

● Variables that can be programmed in the NC program and whose value is calculated during
preprocessing but not written until the main run (main run synchronized: write only)

Prefix system
To distinguish system data from other data, their names are usually preceded by a prefix
comprising the $ sign followed by one or two letters and an underscore.

$ + 1. Letter Meaning: Data type
Preprocessing data (system data that are read/written during preprocessing)
$M Machine data 1)

$S Setting data, protection areas 1)

$T Tool management data
$P Programmed values
$C Cycle variables of ISO envelope cycles
$O Option data
R R-parameters (arithmetic parameters) 2)

Main run data (system data that are read/written during the main run)
$$M Machine data 1)

$$S Setting data 1)

$A Current main run data
$V Position controller data
$R R-parameters (arithmetic parameters) 2)

1) Whether machine and setting data is treated as preprocessing or main run variables depends on
whether they are written with one or two $ characters. The notation is freely selectable for the specific
application.
2) When an R-parameter is used in the part program/cycle as a preprocessing variable, the prefix is
omitted, e.g. R10. When it is used in a synchronized action as a main run variable, a $ sign is written
as a prefix, e.g. $R10.

2nd letter Meaning: Visibility
N NC global variable (NC)
C Channel-specific variable (Channel)
A Axis-specific variable (Axis)

Flexible NC programming
2.1 Variables

Job Planning
22 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Supplementary conditions

Exceptions in the prefix system
The following system of variables deviate from the prefix system specified above:

● $TC_...: Here, the 2nd letter C does not refer to channel-specific system variables but to
toolholder-specific system variables (TC= tool carrier).

● $P_ ...: Channel-specific system variables

Use of machine and setting data in synchronized actions
When machine and setting data is used in synchronized actions, the prefix can be used to
define whether the machine or setting data will be read/written synchronous to the
preprocessing run or the main run.

If the data remains unchanged during machining, it can be read synchronous to the
preprocessing run. For this purpose, the machine or setting data prefix is written with a $ sign:

ID=1 WHENEVER $AA_IM[z] < $SA_OSCILL_REVERSE_POS2[Z]–6 DO $AA_OVR[X]=0

If the data changes during machining, it must be read/written synchronous to the main run.
For this purpose, the machine or setting data prefix is written with two $ signs:

ID=1 WHENEVER $AA_IM[z] < $$SA_OSCILL_REVERSE_POS2[Z]–6 DO $AA_OVR[X]=0

Note
Writing machine and setting data

When writing an item of machine or setting data, it is important to ensure that the access level
which is active when the part program/cycle is executed permits write access and that the data
is set to take "IMMEDIATE" effect.

References
A complete overview of all system variables appears in:

List Manual, System Variables

See also
Variables (Page 21)

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 23

2.1.2 Predefined user variables: Arithmetic parameters

2.1.2.1 Channel-specific arithmetic parameters (R)
Channel-specific arithmetic parameters or R parameters are predefined user variables with
the designation R, defined as an array of the REAL data type. For historical reasons, notation
both with array index, e.g. R[10], and without array index, e.g. R10, is permitted for R
parameters.

When using synchronized actions, the $ sign must be included as a prefix, e.g. $R10.

Syntax
When used as a preprocessing variable:
R<n>
R[<expression>]
When used as a main run variable:
$R<n>
$R[<expression>]

Meaning

R: Identifier when used as a preprocessing variable, e.g. in the part program
$R: Identifier when used as a main run variable, e.g. in synchronized actions
 Type: REAL

Range of values:

For a non-exponential notation:
± (0.000 0001 ... 9999 9999)
Note:
A maximum of 8 decimal places are permitted
For an exponential notation:
± (1*10-300 ... 1*10+300)
Note:
● Notation: <mantissa>EX<exponent> e.g. 8.2EX-3
● A maximum of 10 characters are permitted including sign

and decimal point.
<n>: Number of the R parameter

Type: INT
Range of values: 0 - MAX_INDEX

Note
MAX_INDEX is calculated from the parameterized number of
R-parameters:
MAX_INDEX = (MD28050 $MN_MM_NUM_R_PARAM) - 1

<expression>: Array index
Any expression can be used as an array index, as long as the result of the expres‐
sion can be converted to the INT data type (INT, REAL, BOOL, CHAR).

Flexible NC programming
2.1 Variables

Job Planning
24 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
Assignments to R-parameters and use of R-parameters in mathematical functions:

Program code Comment
R0=3.5678 ; Assignment in preprocessing
R[1]=-37.3 ; Assignment in preprocessing
R3=-7 ; Assignment in preprocessing
$R4=-0.1EX-5 ; Assignment in the main program run: R4 = -0.1 * 10^-5
$R[6]=1.874EX8 ; Assignment in the main program run: R6 = 1.874 * 10^8
R7=SIN(25.3) ; Assignment in preprocessing

R[R2]=R10 ; Indirect addressing using R-parameter
R[(R1+R2)*R3]=5 ; Indirect addressing using math. expression

X=(R1+R2) ; Traverse axis X to the position resulting from the sum

of R1 and R2
Z=SQRT(R1*R1+R2*R2) ; Traverse axis Z to the square root position (R1^2 + R2^2)

See also
Variables (Page 21)

2.1.2.2 Global arithmetic parameters (RG)

Function
In addition to the channel-specific R parameters, the user has access to global R parameters.
They exist once within the control unit and can be read and written from all channels.

Global R parameters are used, for example, to transfer information from one channel to the
next. Another example concerns global settings that should be evaluated for all channels, such
as the overhang of the raw part from the spindle.

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 25

The global R parameters are read and written from the user interface or in the NC program
during the preprocessing. Synchronous actions and technology cycles cannot be used.

Note

No synchronization between the channels when reading and writing global R parameters.

Because the reading and writing is performed during the preprocessing, the point in time when
a written value from one channel becomes active in another channel is not defined.

Example:

In channel 1, a loop runs with a global R parameter as loop counter. Channel 2 writes a value
to this global R parameter; this causes a loop abort in channel 1. All loops that can be
interpreted in the preprocessing in channel 1 are however still executed. The number of loops
is not defined and depends on the channel loading, etc.

The user must implement a synchronization between the channels as application, e.g. with
WAIT flags!

Syntax

Writing in the NC program
RG[<n>]=<value>
RG[<expression>]=<value>

Reading in the NC program
R...=RG[<n>]
R...=RG[<expression>]

Meaning

RG : Default name of the NC address for global R parameters
Note:
The name of the NC address can be set via MD15800 $MN_R_PAR‐
AM_NCK_NAME

<n>: Number of the global R parameter
Type: INT
Range of values: 0 ... MAX_INDEX

Note
MAX_INDEX is calculated from the parameterized number
of global R parameters:
MAX_INDEX = (MD18156 $MN_MM_NUM_R_PAR‐
AM_NCK) - 1

<expression>: Any expression can be used as an array index, as long as the result of the
expression can be converted to the INT data type (INT, REAL, BOOL, CHAR).

Flexible NC programming
2.1 Variables

Job Planning
26 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<value>: Value of the global R parameter
Type: REAL
Range of values: For a non-exponential notation:

± (0.000 0001 ... 9999 9999)
Note:
A maximum of eight decimal places are permitted
For an exponential notation:
± (1*10-300 ... 1*10+300)
Note:
● Notation: <mantissa>EX<exponent> e.g. 8.2EX-3
● A maximum of ten characters are permitted including

sign and decimal point.

2.1.3 Predefined user variables: Link variables
Link variables can be used in the context of the "NCU-Link" function for cyclic data exchange
between NCUs which are linked on a network. They facilitate data-format-specific access to
the link variables memory. The link variables memory is defined both in terms of size and data
structure on a system-specific basis by the user / machine manufacturer.

Link variables are system-global user variables which can be read and written in part programs
and cycles by all NCUs involved in a link if link communication has been configured. Unlike
global user variables (GUD), link variables can also be used in synchronized actions.

On systems without an active NCU link, link variables can be used locally on the control as
additional global user variables alongside global user variables (GUD).

Syntax
$A_DLB[<index>]
$A_DLW[<index>]
$A_DLD[<index>]
$A_DLR[<index>]

Meaning

$A_DLB: Link variable for BYTE data format (1 byte)
Data type: UINT
Range of values: 0 ... 255

$A_DLW: Link variable for WORD data format (2 bytes)
Data type: INT
Range of values: -32768 ... 32767

$A_DLD: Link variable for DWORD data format (4 bytes)
Data type: INT
Range of values: -2147483648 ... 2147483647

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 27

$A_DLR: Link variable for REAL data format (8 bytes)
Data type: REAL
Range of values: ±(2,2*10-308 … 1,8*10+308)

<index>: Address index in bytes, counted from the start of the link variable memory
Data type: INT
Range of values: 0 - MAX_INDEX

Note
● MAX_INDEX is calculated from the parameterized size of the

link variables memory: MAX_INDEX = (MD18700
$MN_MM_SIZEOF_LINKVAR_DATA) - 1

● Only indices may be programmed, so that the bytes
addressed in the link variables memory are located on a data
format limit ⇒
Index = n * bytes, where n = 0, 1, 2, etc.
– $A_DLB[i]: i = 0, 1, 2, ...
– $A_DLW[i]: i = 0, 2, 4, ...
– $A_DLD[i]: i = 0, 4, 8, ...
– $A_DLR[i]: i = 0, 8, 16, ...

Example
An automation system contains two NCUs (NCU1 and NCU2). Machine axis AX2 is connected
to NCU1. It is traversed as a link axis of NCU2.

NCU1 writes the actual current value ($VA_CURR) of axis AX2 cyclically to the link variables
memory. NCU2 reads the actual current value transferred via link communication cyclically
and displays alarm 61000 if the limit value is exceeded.

The data structure in the link variables memory is illustrated in the following figure. The actual
current value is transmitted in the REAL value.

Flexible NC programming
2.1 Variables

Job Planning
28 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

NCU1
NCU1 uses link variable $A_DLR[16] to write the actual current value of axis AX2 to the link
variables memory cyclically in the interpolation cycle in a static synchronized action.

Program code
N111 IDS=1 WHENEVER TRUE DO $A_DLR[16]=$VA_CURR[AX2]

NCU2
NCU2 uses link variable $A_DLR[16] to read the actual current value of axis AX2 to the link
variables memory cyclically in the interpolation cycle in a static synchronized action. If the
actual current value is greater than 23.0 A, alarm 61000 is displayed.

Program code
N222 IDS=1 WHEN $A_DLR[16] > 23.0 DO SETAL(61000)

See also
Variables (Page 21)

2.1.4 Definition of user variables (DEF)
With the DEF command, you can define user-specific variables, or user variables (user data),
and assign values to them.

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 29

According to the range of validity (in other words, the range in which the variable is visible)
there are the following categories of user variable:

● Local user variables (LUD)
Local user variables (LUD) are variables defined in an NC program that is not the main
program at the time of execution. They are created when the NC program is called, and
deleted with an end of program reset – or the next time that the control system powers up.
Local user variables can only be accessed within the NC program in which they are defined.

● Program-global user variables (PUD)
Program-global user variables (PUD) are user variables defined in an NC program used
as the main program. They are created when the NC program is called, and deleted with
an end of program reset – or the next time that the control system powers up. It is possible
to access PUD in the main program and in all subprograms of the main program.

Note
Availability of program-global user variables (PUD)

Program-global user variables (PUD) defined in the main program are only available in
subprograms if the following machine data is set:

MD11120 $MN_LUD_EXTENDED_SCOPE = 1

If MD11120 = 0 the program-global user variables defined in the main program will only be
available in the main program.

● Global user variables (GUD)
Global user variables (GUD) are NC or channel-global variables which are defined in a data
block (SGUD, MGUD, UGUD, GUD4 to GUD9) and are kept even after an end of program
reset or the next time that the control system powers up. GUD can be accessed in all NC
programs.

User variables must be defined before they can be used (read/write). The following rules must
be observed in this context:

● GUDs must be defined in a definition file, e.g. _N_DEF_DIR/_N_UGUD_DEF.

● PUDs and LUDs must be defined in the definition section of the NC program.

● The data must be defined in a dedicated block.

● Only one data type may be used for each data definition.

● Several variables of the same data type can be defined for each data definition.

Syntax

LUD and PUD
DEF <type> <phys_unit> <limit values> <name>[<value_1>, <value_2>,
<value_3>]=<init_value>

GUD
DEF <range> <pp_stop> <access_rights> <data class> <type>
<phys_unit> <limit values> <name>[<value_1>, <value_2>,
<value_3>]=<init_value>

Flexible NC programming
2.1 Variables

Job Planning
30 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

DEF: Command for defining GUD, PUD, LUD user variables
<range>: Range of validity, only relevant for GUD:

NC: NC-global user variable
CHAN: Channel-global user variable

<PP_stop>: Preprocessing stop, only relevant for GUD (optional)
SYNR: Preprocessing stop when reading
SYNW: Preprocessing stop when writing
SYNRW: Preprocessing stop when reading/writing

<access rights>: Protection level for reading/writing GUD via NC program or OPI (optional)
APRP <protection level>: Read: NC program
APWP <protection level>: Write: NC program
APRB <protection level>: Read: OPI
APWB <protection level>: Write: OPI
<protection level>: Range of values: 0 ... 7
See "Attribute: Access rights (APR, APW, APRP, APWP, APRB,
APWB) (Page 45)"

<data class>: Data class assignment (only SINUMERIK 828D)
DCM: Data class M (= Manufacturer)
DCI: Data class I (= Individual)
DCU: Data class U (= User)
See "Attribute: Data class (DCM, DCI, DCU) - only SINUMERIK 828D
(Page 49)".

<type>: Data type:
INT: Integer with sign
REAL: Real number (LONG REAL to IEEE)
BOOL: Truth value TRUE (1)/FALSE (0)
CHAR: ASCII character
STRING[<MaxLength>]: Character string of a defined length
AXIS: Axis/spindle identifier
FRAME: Geometric data for a static coordinate trans‐

formation
See "Data types (Page 58)"

<phys_unit>: Physical unit (optional)
PHU <unit>: Physical unit
See "Attribute: Physical unit (PHU) (Page 43)"

<limit values>: Lower/upper limit value (optional)
LLI <limit val‐
ue>:

Lower limit value (lower limit)

ULI <limit val‐
ue>:

Upper limit value (upper limit)

See "Attribute: Limit values (LLI, ULI) (Page 41)"

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 31

<name>: Name of variable
Note
● Maximum 31 characters
● The first two characters must be a letter and/or an underscore.
● The $ sign is reserved for system variables and must not be used.

[<value_1>,
 <value_2>,
 <value_3>]:

Specification of array sizes for 1- to max. 3-dimensional array variables
(optional)
For the Initialization of array variables see "Definition and initialization
of array variables (DEF, SET, REP) (Page 52)"

<init_value>: Initialization value (optional)
See "Attribute: Initialization value (Page 38)"
For the Initialization of array variables see "Definition and initialization
of array variables (DEF, SET, REP) (Page 52)"

Examples

Example 1: Definition of user variables in the data block for machine manufacturers

Program code Comment
%_N_MGUD_DEF ; GUD block: Machine manufacturer
$PATH=/_N_DEF_DIR
DEF CHAN REAL PHU 24 LLI 0 ULI 10 STROM_1, STROM_2
;Description
;Definition of two GUD items: STROM_1, STROM_2
;Range of validity: Throughout the channel
;Data type: REAL
PP stop: Not programmed => default value = no PP stop
; phys. unit: 24 = [A]
;Limit values: Low = 0.0, high = 10.0
;Access rights: Not programmed => default value = 7 = key-operated switch position 0
;Initialization value: Not programmed => default value = 0.0

DEF NCK REAL PHU 13 LLI 10 APWP 3 APRP 3 APWB 0 APRB 2 ZEIT_1=12, ZEIT_2=45
;Description
;Definition of two GUD items: ZEIT_1, ZEIT_2
;Range of validity: Throughout NC
;Data type: REAL
PP stop: Not programmed => default value = no PP stop
; phys. unit: 13 = [s]
;Limit values: low = 10.0, high = not programmed => upper definition range limit
;Access rights:
; NC program: Write/read = 3 = end user
;OPI: Write = 0 = Siemens, read = 3 = end user
;Initialization value: ZEIT_1 = 12.0, ZEIT_2 = 45.0

Flexible NC programming
2.1 Variables

Job Planning
32 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
DEF NCK APWP 3 APRP 3 APWB 0 APRB 3 STRING[5] GUD5_NAME = "COUNTER"
;Description
;Definition of one GUD item: GUD5_NAME
;Range of validity: Throughout NC
;Data type: STRING, max. 5 characters
PP stop: Not programmed => default value = no PP stop
; phys. unit: Not programmed => default value = 0 = no phys. unit
;Limit values: Not programmed => definition range limits: Low = 0, high = 255
;Access rights:
; NC program: Write/read = 3 = end user
;OPI: Write = 0 = Siemens, read = 3 = end user
;Initialization value: "COUNTER"
M30

Example 2: Global program and local user variables (PUD/LUD)

Program code Comment
PROC MAIN ; Main program
DEF INT VAR1 ;PUD definition
...
SUB2 ;Subprogram call
...
M30

Program code Comment
PROC SUB2 ;Subprogram SUB2
DEF INT VAR2 ;LUD DEFINITION
...
IF (VAR1==1) ;Read PUD
 VAR1=VAR1+1 ;Read & write PUD
 VAR2=1 ;Write LUD
ENDIF
SUB3 ;Subprogram call
...
M17

Program code Comment
PROC SUB3 ;Subprogram SUB3
...
IF (VAR1==1) ;Read PUD
 VAR1=VAR1+1 ;Read & write PUD
 VAR2=1 ;Error: LUD from SUB2 not known
ENDIF

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 33

Program code Comment
...
M17

Example 3: Definition and use of user variables of data type AXIS

Program code Comment
DEF AXIS ABSCISSA ; 1st geometry axis
DEF AXIS SPINDLE ;Spindle
...
IF ISAXIS(1) == FALSE GOTOF CONTINUE
 ABSCISSA = $P_AXN1
CONTINUE:
...
SPINDLE=(S1) ; 1st spindle
OVRA[SPINDLE]=80 ;Spindle override = 80%
SPINDLE=(S3) ; 3rd spindle

Supplementary conditions

Global user variables (GUD)
In the context of the definition of global user variables (GUD), the following machine data has
to be taken into account:

No. Identifier: $MN_ Meaning
11140 GUD_AREA_ SAVE_TAB Additional save for GUD blocks
18118 1) MM_NUM_GUD_MODULES Number of GUD files in the active file system
18120 1) MM_NUM_GUD_NAMES_NCK Number of global GUD names
18130 1) MM_NUM_GUD_NAMES_CHAN Number of channel-specific GUD names
18140 1) MM_NUM_GUD_NAMES_AXIS Number of axis-spec. GUD names
18150 1) MM_GUD_VALUES_MEM Memory location for global GUD values
18660 1) MM_NUM_SYNACT_GUD_REAL Number of configurable GUD of the REAL data

type
18661 1) MM_NUM_SYNACT_GUD_INT Number of configurable GUD of the INT data

type
18662 1) MM_NUM_SYNACT_GUD_BOOL Number of configurable GUD of the BOOL data

type
18663 1) MM_NUM_SYNACT_GUD_AXIS Number of configurable GUD of the AXIS data

type
18664 1) MM_NUM_SYNACT_GUD_CHAR Number of configurable GUD of the CHAR data

type
18665 1) MM_NUM_SYNACT_GUD_STRING Number of configurable GUD of the STRING da‐

ta type
1) For SINUMERIK 828D, MD can only be read!

Flexible NC programming
2.1 Variables

Job Planning
34 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Cross-channel use of an NC-global user variable of the AXIS data type
An NC-global user variable of the AXIS data type initialized during definition in the data block
with an axis identifier can then only be used in other NC channels if the axis has the same
channel axis number in these channels.

If this is not the case, the variable has to be loaded at the beginning of the NC program or, as
in the following example, the AXNAME(...) function (see "Axis functions (AXNAME, AX, SPI,
AXTOSPI, ISAXIS, AXSTRING, MODAXVAL) (Page 631)") has to be used.

Program code Comment
DEF NCK STRING[5] ACHSE="X" ;Definition in the data block
...
N100 AX[AXNAME(ACHSE)]=111 G00 ; Use in the NC program

2.1.5 Redefinition of system data, user data, and NC commands (REDEF)
The REDEF command changes the attributes of system data, user data, and NC commands.
A fundamental condition of redefinition is that it has to post-date the corresponding definition.

Multiple attributes cannot be changed simultaneously during redefinition. A separate REDEF
command must be programmed for each attribute to be changed.

If several concurrent attribute changes are programmed, the last change is always active.

Resetting attribute values
The attributes for access rights and initialization time change with REDEF can be reset to their
default values by reprogramming REDEF, followed by the name of the variable or the NC
language command:

● Access rights: Protection level 7

● Initialization time: No initialization or retention of the current value

Redefinable attributes
See "Overview of definable and redefinable attributes (Page 50)".

Local user variables (PUD/LUD)
Redefinitions are not permitted for local user variables (PUD/LUD).

Syntax
REDEF <name> <PP_stop>
REDEF <name> <phys_unit>
REDEF <name> <limit_values>
REDEF <name> <access_rights>
REDEF <name> <init_time>
REDEF <name> <init_time> <init_value>
REDEF <name> <data class>

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 35

REDEF <name>

Meaning

REDEF: Command for redefinition of a certain attribute or to reset the
"Access rights" and/or "Initialization time" attributes of system
variables, user variables and NC language commands

<name>: Name of an already defined variable or an NC language com‐
mand

<PP stop>: Preprocessing stop
SYNR: Preprocessing stop when reading
SYNW: Preprocessing stop when writing
SYNRW: Preprocessing stop when reading/writing

<phys_unit>: Physical unit
PHU <unit>: Physical unit
See "Attribute: Physical unit (PHU) (Page 43)".
Note
Cannot be redefined for:
● System variables
● Global user data (GUD) of the data types: BOOL, AXIS,

STRING, FRAME
<limit values>: Lower/upper limit

LLI <limit value>: Lower limit value (lower limit)
ULI <limit value>: Upper limit value (upper limit)
See "Attribute: Limit values (LLI, ULI) (Page 41)".
Note
Cannot be redefined for:
● System variables
● Global user data (GUD) of the data types: BOOL, AXIS,

STRING, FRAME
<access rights>: Access rights for reading/writing via part program or OPI

APX <protection level>: Execute: NC language ele‐
ment

APRP <protection level>: Read: Part program
APWP <protection level>: Write: Part program
APRB <protection level>: Read: OPI
APWB <protection level>: Write: OPI
<protection level>: Range of values: 0 ... 7
See "Attribute: Access rights (APR, APW, APRP, APWP,
APRB, APWB) (Page 45)".

Flexible NC programming
2.1 Variables

Job Planning
36 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<init_time>: Point in time at which the variable is reinitialized
INIPO: Power On
INIRE: End of main program, NC reset or Power On
INICF: NEWCONF or main program end, NC reset

or Power On
PRLOC: End of main program, NC reset following lo‐

cal change or Power On
See "Attribute: Initialization value (Page 38)".

<init_value>: Initialization value
When redefining the initialization value, an initialization time
always has to be specified also (see <init_time>).
See "Attribute: Initialization value (Page 38)".
For the Initialization of array variables, see "Definition and ini‐
tialization of array variables (DEF, SET, REP) (Page 52)".
Note
Cannot be redefined for system variables, except setting data.

<data class>: Data class assignment (only SINUMERIK 828D)
DCM: Data class M (= Manufacturer)
DCI: Data class I (= Individual)
DCU: Data class U (= User)
See "Attribute: Data class (DCM, DCI, DCU) - only SINUMER‐
IK 828D (Page 49)".

Example

Redefinitions of system variable $TC_DPCx in the data block for machine manufacturers

Program code
%_N_MGUD_DEF ; GUD block: Machine manufacturer
N100 REDEF $TC_DPC1 APWB 2 APWP 3
N200 REDEF $TC_DPC2 PHU 21
N300 REDEF $TC_DPC3 LLI 0 ULI 200
N400 REDEF $TC_DPC4 INIPO (100, 101, 102, 103)
N800 REDEF $TC_DPC1
N900 REDEF $TC_DPC4
M30

regard‐
ing
N100:

Write access: OPI = protection level 2, part program = protection level 3

regard‐
ing
N200:

Physical unit [%]

regard‐
ing
N300:

Lower limit value = 0, upper limit value = 200

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 37

regard‐
ing
N400:

The array variable is initialized with the four values at POWER ON.

regard‐
ing
N800 /
N900

Reset of the "Access rights" and/or "Initialization time" attribute values

Note
Use of ACCESS files

If ACCESS files are used, the redefinition of access rights has to be relocated from
_N_MGUD_DEF to _N_MACCESS_DEF.

Supplementary conditions

Granularity
A redefinition is always applied to the entire variable which is uniquely identified by its name.
Array variables do not, for example, support the assignment of different attributes to individual
array elements.

2.1.6 Attribute: Initialization value

Definition (DEF) of user variables
During definition, an initialization value can be preassigned for the following user variables:

● Global user variables (GUD)

● Program-global user variables (PUD)

● Local user variables (LUD)

Flexible NC programming
2.1 Variables

Job Planning
38 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Redefinition (REDEF) of system and user variables
During redefinition, an initialization value can be preassigned for the following variables:

● System data

– Setting data

● User data

– R parameters

– Synchronized action variables ($AC_MARKER, $AC_PARAM, $AC_TIMER)

– Synchronized action GUD (SYG_xy[], where x=R, I, B, A, C, S and y=S, M, U, 4 to 9)

– EPS parameters

– Tool data OEM

– Magazine data OEM

– Global user variables (GUD)

Reinitialization time
During redefinition, the point in time can be specified at which the variable should be
reinitialized, i.e. reset to the initialization value.

● INIPO (POWER ON)
The variable is reinitialized at Power On.

● INIRE (reset)
The variable is reinitialized on NC reset, mode group reset, at the end of the part program
(M02/M30) or at Power On.

● INICF (NEWCONF)
For the function "Set machine data active", the variable is reinitialized via HMI, part program
command NEWCONF or NC reset, mode group reset, part program end (M02 / M30) or a
Power On.

● PRLOC (program-local change)
The variable is only reinitialized on an NC reset, mode group reset or at the end of the part
program (M02/M30) if it has changed during the current part program.
The PRLOC attribute may only be changed in conjunction with programmable setting data
(see the table below).

Table 2-1 Programmable setting data

Number Identifier G command 1)

42000 $SC_THREAD_START_ANGLE SF
42010 $SC_THREAD_RAMP_DISP DITS/DITE
42400 $SA_PUNCH_DWELLTIME PDELAYON
42800 $SA_SPIND_ASSIGN_TAB SETMS
43210 $SA_SPIND_MIN_VELO_G25 G25
43220 $SA_SPIND_MAX_VELO_G26 G26
43230 $SA_SPIND_MAX_VELO_LIMS LIMS
43300 $SA_ASSIGN_FEED_PER_REV_SOURCE FPRAON

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 39

Number Identifier G command 1)

43420 $SA_WORKAREA_LIMIT_PLUS G26
43430 $SA_WORKAREA_LIMIT_MINUS G25
43510 $SA_FIXED_STOP_TORQUE FXST
43520 $SA_FIXED_STOP_WINDOW FXSW
43700 $SA_OSCILL_REVERSE_POS1 OSP1
43710 $SA_OSCILL_REVERSE_POS2 OSP2
43720 $SA_OSCILL_DWELL_TIME1 OST1
43730 $SA_OSCILL_DWELL_TIME2 OST2
43740 $SA_OSCILL_VELO FA
43750 $SA_OSCILL_NUM_SPARK_CYCLES OSNSC
43760 $SA_OSCILL_END_POS OSE
43770 $SA_OSCILL_CTRL_MASK OSCTRL
43780 $SA_OSCILL_IS_ACTIVE OS
43790 $SA_OSCILL_START_POS OSB

1) This G command addresses the setting data.

Supplementary conditions

Initialization value: Global user variables (GUD)
● Only INIPO (Power On) can be defined as the initialization time for global user variables

(GUD) with the NC range of validity.

● In addition to INIPO (Power On), INIRE (reset) or INICF (NEWCONF) can be defined as
the initialization time for global user variables (GUD) with the CHAN range of validity.

● In the case of global user variables (GUD) with the CHAN range of validity and INIRE (reset)
or INICF (NEWCONF) initialization time, for an NC reset, mode group reset and "Activate
machine data", the variables are only reinitialized in the channels in which the named events
were triggered.

Initialization value: FRAME data type
It is not permitted to specify an initialization value for variables of the FRAME data type.
Variables of the FRAME data type are initialized implicitly and always with the default frame.

Initialization value: CHAR data type
For variables of the CHAR data type, instead of the ASCII code (0...255), the corresponding
ASCII character can be programmed in quotation marks, e.g. "A".

Initialization value: Data type STRING
In the case of variables of the STRING data type, the character string must be enclosed in
quotation marks, e.g. ...= "MACHINE_1"

Initialization value: AXIS data type
In the case of variables of the AXIS data type, for an extended address notation, the axis
identifier must be enclosed in brackets, e.g. ...=(X3).

Flexible NC programming
2.1 Variables

Job Planning
40 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Initialization value: System variable
For system variables, redefinition cannot be used to define user-specific initialization values.
The initialization values for the system variables are specified by the system and cannot be
changed. However, redefinition can be used to change the point in time (INIRE, INICF) at
which the system variable is reinitialized.

Implicit initialization value: AXIS data type
For variables of the AXIS data type the following implicit initialization value is used:

● System data: "First geometry axis"

● Synchronized action GUD (designation: SYG_A*), PUD, LUD:
axis designation from the machine data: MD20082
$MC_AXCONF_CHANAX_DEFAULT_NAME

Implicit initialization value: Tool and magazine data
Initialization values for tool and magazine data can be defined using the following machine
data: MD17520 $MN_TOOL_DEFAULT_DATA_MASK

Note
Synchronization

The synchronization of events triggering the reinitialization of a global variable when this
variable is read in a different location is the sole responsibility of the user / machine
manufacturer.

See also
Variables (Page 21)

2.1.7 Attribute: Limit values (LLI, ULI)
An upper and a lower limit of the definition range can only be defined for the following data
types:

● INT

● REAL

● CHAR

Definition (DEF) of user variables: Limit values and implicit initialization values
If no explicit initialization value is defined when defining a user variable of one of the above
data types, the variable is set to the data type's implicit initialization value.

● INT: 0

● REAL: 0.0

● CHAR: 0

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 41

If the implicit initialization value is outside the definition range specified by the programmed
limit values, the variable is initialized with the limit value which is closest to the implicit
initialization value:

● Implicit initialization value < lower limit value (LLI) ⇒
 initialization value = lower limit value

● Implicit initialization value > upper limit value (ULI) ⇒
 initialization value = upper limit value

Examples:

Program code Comment
DEF REAL GUD1 ; Lower limit value = definition range limit

; Upper limit value = definition range limit
; No initialization value programmed
; => Implicit initialization value = 0.0

DEF REAL LLI 5.0 GUD2 ; Lower limit value = 5.0
; Upper limit value = definition range limit
; => Initialization value = 5.0

DEF REAL ULI –5 GUD3 ; Lower limit value = definition range limit
; Upper limit value = -5.0
; => Initialization value = -5.0

Redefinition (REDEF) of user variables: Limit values and current actual values
If the limit values of a user variable are redefined, they change to the extent that the current
actual value is outside the new definition range, an alarm will be issued and the limit values
will be rejected.

Note
Redefinition (REDEF) of user variables

If the limit values of a user variable are redefined, care must be taken to ensure that the
following values are changed consistently:
● Limit values
● Actual value
● Initialization value on redefinition and automatic reinitialization on the basis of INIPO, INIRE

or INICF

See also
Variables (Page 21)

Flexible NC programming
2.1 Variables

Job Planning
42 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.1.8 Attribute: Physical unit (PHU)
A physical unit can only be specified for variables of the following data types:

● INT

● REAL

Programmable physical units (PHU)
The physical unit is specified as fixed point number: PHU <unit>
The following physical units can be programmed:

<unit> Meaning Physical unit
0 Not a physical unit -
1 Linear or angular position 1)2) [mm], [inch], [degree]
2 Linear position 2) [mm], [inch]
3 Angular position [degree]
4 Linear or angular velocity 1)2) [mm/min], [inch/min], [rpm]
5 Linear velocity 2) [mm/min]
6 Angular velocity [rpm]
7 Linear or angular acceleration 1)2) [m/s2], [inch/s2], [rev/s2]
8 Linear acceleration 2) [m/s2], [inch/s2]
9 Angular acceleration [rev/s2]
10 Linear or angular jerk 1)2) [m/s3], [inch/s3], [rev/s3]
11 Linear jerk 2) [m/s3], [inch/s3]
12 Angular jerk [rev/s3]
13 Time [s]
14 Position controller gain [16.667/s]
15 Revolutional feedrate 2) [mm/rev], [inch/rev]
16 Temperature compensation 1)2) [mm], [inch]
18 Force [N]
19 Mass [kg]
20 Moment of inertia 3) [kgm2]
21 Percent [%]
22 Frequency [Hz]
23 Voltage [V]
24 Current [A]
25 Temperature [°C]
26 Angle [degree]
27 KV [1000/min]
28 Linear or angular position 3) [mm], [inch], [degree]
29 Cutting rate 2) [m/min], [feet/min]
30 Peripheral speed 2) [m/s], [feet/s]
31 Resistance [ohm]
32 Inductance [mH]

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 43

<unit> Meaning Physical unit
33 Torque 3) [Nm]
34 Torque constant 3) [Nm/A]
35 Current controller gain [V/A]
36 Speed controller gain 3) [Nm/(rad*s)]
37 Speed [rpm]
42 Power [kW]
43 Current, low [μA]
46 Torque, low 3) [μNm]
48 Per mil -
49 - [Hz/s]
65 Flow rate [l/min]
66 Pressure [bar]
67 Volume 3) [cm3]
68 Controlled-system gain 3) [mm/(V*min)]
69 Force controller controlled-system gain [N/V]
155 Thread lead 3) [mm/rev], [inch/rev]
156 Change in thread lead 3) [mm/rev / rev], [inch/rev / rev]

1) The physical unit depends on the axis type: Linear or rotary axis
2) System of units changeover
G70/G71(inch/metric)
After changing over the basic system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC) with G70/
G71, for read/write operations to system and user variables involving a length, then the values are not
converted (actual value, default value and limit values)
G700/G710(inch/metric)
After changing over the basic system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC) with G700/
G710, for read/write operations to system and user variables involving a length, then the values are
converted (actual value, default value and limit values)
3) The variable is not converted to the NC's current measuring system (inch/metric) automatically.
Conversion is the sole responsibility of the user/machine manufacturer.

Note
Level overflow due to format conversion

The internal storage format for all user variables (GUD/PUD/LUD) with physical units of length
is metric. Excessive use of these types of variable in the NCK's main run, e.g. in synchronized
actions, can lead to a CPU time overflow at interpolation level when the measuring system is
switched over, generating alarm 4240.

Note
Compatibility of units

When using variables (assignment, comparison, calculation, etc.) the compatibility of the units
involved is not checked. Should conversion be required, this is the sole responsibility of the
user / machine manufacturer.

Flexible NC programming
2.1 Variables

Job Planning
44 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

See also
Variables (Page 21)

2.1.9 Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB)

Designation
The designation of the access attribute AP... comprises:

1. A: Access

2. P: Protection

3. R / W: Read / Write

4. P / O: Program / BTSS (OPI)

Access rights / access levels
The following access levels, which have to be specified during programming, correspond to
the access rights:

Access right Protection level
System password 0
Machine manufacturer password 1
Service password 2
End user password 3
Key-operated switch position 3 4
Key-operated switch position 2 5
Key-operated switch position 1 6
Key-operated switch position 0 7

Definition (DEF) of user data
Access rights (APR.../APW...) can be defined for the following data:

● Global user data (GUD)

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 45

Redefinition (REDEF) of system and user data
Access rights (APR.../APW...) can be redefined for the following data:

● System data

– Machine data

Note
Redefinition of reading rights of machine data

The protection level for reading machine data can only be set with the keyword APR in
common for part program and OPI.

The keywords APRP and APRB are not supported by the redefinition of the reading rights,
and lead to the message of interrupt 12490 "Access right APRP/APRB <protection
level> was not set".

– Setting data

– System variable

– Process data

– Magazine data

– Tool data

● User data

– R parameters

– Synchronized action variables ($AC_MARKER, $AC_PARAM, $AC_TIMER)

– Synchronized action GUD (SYG_xy[], where x=R, I, B, A, C, S and y=S, M, U, 4 to 9)

– EPS parameters

– Tool data OEM

– Magazine data OEM

– Global user variables (GUD)

Note

During redefinition the access right can be freely assigned to a variable between the
lowest protection level 7 and the dedicated protection level, e.g. 1 (machine
manufacturer).

Redefinition (REDEF) of NC language commands
The access or execution right (APX) can be redefined for the following NC language commands:

● G commands / preparatory functions
References
Programming Manual, Fundamentals, Section: G commands / preparatory functions

● Predefined functions
References
Programming Manual, Fundamentals, Section: Predefined functions

Flexible NC programming
2.1 Variables

Job Planning
46 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● Predefined subprogram calls
References
Programming Manual, Fundamentals, Section: Predefined subprogram calls

● DO operation with synchronized actions

● Cycles program identifier
The cycle must be saved in a cycle directory and must contain a PROC operation.

Access rights in relation to NC programs and cycles (APRP, APWP)
The various access rights facilitate the following with regard to access from an NC program or
cycle:

● APRP 0/APWP 0
– During NC program processing the system password has to be set.

– The cycle has to be stored in the _N_CST_DIR directory (system).

– The execution right must be set to system for the _N_CST_DIR directory in MD11160
$MN_ACCESS_EXEC_CST.

● APRP 1/APWP 1 or APRP 2/APWP 2
– During NC program processing the machine manufacturer or service password has to

be set.

– The cycle has to be stored in the _N_CMA_DIR (machine manufacturer) or _N_CST_DIR
directory.

– The execution rights must be set to at least machine manufacturer for the _N_CMA_DIR
or _N_CST_DIR directories in machine data MD11161 $MN_ACCESS_EXEC_CMA or
MD11160 $MN_ACCESS_EXEC_CST respectively.

● APRP 3/APWP 3
– During NC program execution, the end-user password must be set.

– The cycle has to be stored in the _N_CUS_DIR (user), _N_CMA_DIR or _N_CST_DIR
directory.

– The execution rights must be set to at least end user for the _N_CUS_DIR, _N_CMA_DIR
or _N_CST_DIR directories in machine data MD11162 $MN_ACCESS_EXEC_CUS,
MD11161 $MN_ACCESS_EXEC_CMA or MD11160 $MN_ACCESS_EXEC_CST
respectively.

● APRP 4...7/APWP 4...7
– During NC program processing the key-operated switch must be set to 3 ... 0.

– The cycle has to be stored in directory _N_CUS_DIR, _N_CMA_DIR or in directory
_N_CST_DIR.

– The execution rights must be set to at least the corresponding key-operated switch
position for the _N_CUS_DIR, _N_CMA_DIR or _N_CST_DIR directories in machine
data MD11162 $MN_ACCESS_EXEC_CUS, MD11161 $MN_ACCESS_EXEC_CMA or
MD11160 $MN_ACCESS_EXEC_CST respectively.

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 47

Access rights in relation to OPI (APRB, APWB)
The access rights (APRB, APWB) restrict access to system and user variables via the OPI
equally for all system components (HMI, PLC, external computers, EPS services, etc.).

Note
Local HMI access rights

When changing access rights to system data, care must be taken to ensure that such changes
are consistent with the access rights defined using HMI mechanisms.

APR/APW access attributes
For compatibility reasons, attributes APR and APW are implicitly mapped to the attributes APRP /
APRB and APWP / APWB:

● APR x ⇒ APRP x APRB x
● APW y ⇒ APWP y APWB y

Access rights using ACCESS files
When using ACCESS files to assign access rights, access rights for system data, user data,
and NC language commands must only be redefined in ACCESS files. Global user data (GUD)
is an exception. For this data, access rights still have to be redefined in the corresponding
definition files *_DEF.

For continuous access protection, the machine data for the execution rights and the access
protection for the corresponding directories have to be modified consistently.

In principle, the procedure is as follows:

1. Creation of the necessary definition files:

– _N_DEF_DIR/_N_SACCESS_DEF

– _N_DEF_DIR/_N_MACCESS_DEF

– _N_DEF_DIR/_N_UACCESS_DEF

2. Setting of the write right for the definition files to the value required for redefinition:

– MD11170 $MN_ACCESS_WRITE_SACCESS = <protection level>

– MD11171 $MN_ACCESS_WRITE_MACCESS = <protection level>

– MD11172 $MN_ACCESS_WRITE_UACCESS = <protection level>

Flexible NC programming
2.1 Variables

Job Planning
48 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

3. For access to protected elements from cycles, the execution and write rights for cycle
directories _N_CST_DIR, _N_CMA_DIR, and _N_CST_DIR have to be modified.
Execution rights

– MD11160 $MN_ACCESS_EXEC_CST = <protection level>

– MD11161 $MN_ACCESS_EXEC_CMA = <protection level>

– MD11162 $MN_ACCESS_EXEC_CUS = <protection level>

Write rights

– MD11165 $MN_ACCESS_WRITE_CST = <protection level>

– MD11166 $MN_ACCESS_WRITE_CMA = <protection level>

– MD11167 MN_ACCESS_WRITE_CUS = <protection level>

The execution right has to be set to at least the same protection level as the highest
protection level of the element used.
The write right must be set to at least the same protection level as the execution right.

4. The write rights of the local HMI cycle directories must be set to the same protection level
as the local NC cycle directories.
References
Operating Manual

Subprogram calls in ACCESS files
To structure access protection further, subprograms (SPF or MPF identifier) can be called in
ACCESS files. The subprograms inherit the execution rights of the calling ACCESS file.

Note

Only access rights can be redefined in the ACCESS files. All other attributes have to continue
to be programmed/redefined in the corresponding definition files.

See also
Variables (Page 21)

2.1.10 Attribute: Data class (DCM, DCI, DCU) - only SINUMERIK 828D
To simplify the data handling during the commissioning, series start-up and upgrade of
machines and machine series, all system and user data of the NC is divided into data classes.

Data class Data
S = System System data provided by Siemens, such as machine and set‐

ting data, standard and measuring cycles, definitions (SGUD)
and macros (SMAC), etc.

M = Manufacturer
(machine manufacturer)

Machine series-specific commissioning data such as manufac‐
turer cycles, definitions (MGUD) and macros (MMAC) and ma‐
chine data that defines the functional scope of the machine.

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 49

Data class Data
I = Individual (machine-specific) Machine-specific commissioning data such as compensation

data reference point offsets.
U = User Machine-specific data generated during operation of the ma‐

chine such as tool data, setting data, part programs, user cy‐
cles, definitions (UGUD) and macros (UMAC).

References:
 SINUMERIK 828D Commissioning Manual, Turning and Milling; Section "Introduction and use
of data classes"

Definition (DEF) of user data
The data class of the data item is implicitly specified through the data class of the file or directory
in which the user data is defined. The data class of the data item cannot be changed.

However, for the definition (DEF) of the user data, a different data class to that of the data item
can be specified for the data value.

The following must apply for the data class of the data item:

Priority of the data class of the data value ≤ priority of the data class of the data item

Example:
The definition of the GUD, which defines a probe, should be in data class M (= Manufacturer)
because it is required to run the manufacturer cycles. However, the value of the data item
should belong to data class I (= Individual) because the probe type can differ from machine to
machine.

MGUD.DEF (data class M)
...
DEF CHAN DCI INT CALIPER
...

Redefinition (REDEF) of system data
The data class of the system data can be changed through redefinition (REDEF). The
redefinition must be performed in a definition file with data class S or M.

When using ACCESS files, the redefinitions may only be performed with the ACCESS files.

The respective data class of the machine, setting and option data as well as the system
variables can be found in the

● List Manual, Detailed Machine Data Description, parameter: "Class"

● List Manual, System Variables

2.1.11 Overview of definable and redefinable attributes
The following tables show which attributes can be defined (DEF) and/or redefined (REDEF) for
which data types.

Flexible NC programming
2.1 Variables

Job Planning
50 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

System data

Data type Init. value Limit values Physical unit Access rights Data class
(only 828D)

Machine data --- --- --- REDEF REDEF
Setting data REDEF --- --- REDEF ---
FRAME data --- --- --- REDEF ---
Process data --- --- --- REDEF ---
Leadscrew error comp. (EEC) --- --- --- REDEF ---
Sag compensation (CEC) --- --- --- REDEF ---
Quadrant error compensation (QEC) --- --- --- REDEF ---
Magazine data --- --- --- REDEF ---
Tool data --- --- --- REDEF ---
Protection areas --- --- --- REDEF ---
Toolholder, with orientation capability --- --- --- REDEF ---
Kinematic chains --- --- --- REDEF ---
3D protection areas --- --- --- REDEF ---
Working area limitation --- --- --- REDEF ---

User data

Data type Init. value Limit values Physical unit Access rights Data class
R-parameters REDEF REDEF REDEF REDEF ---
Synchronized action variable
($AC_...)

REDEF REDEF REDEF REDEF ---

Synchronized action GUD (SYG_...) REDEF REDEF REDEF REDEF ---
EPS parameters REDEF REDEF REDEF REDEF ---
Tool data OEM REDEF REDEF REDEF REDEF ---
Magazine data OEM REDEF REDEF REDEF REDEF ---
Global user variables (GUD) DEF/REDEF DEF DEF DEF/REDEF DEF/REDEF
Local user variables (PUD/LUD) DEF DEF DEF --- ---

See also
Variables (Page 21)

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 51

2.1.12 Definition and initialization of array variables (DEF, SET, REP)
A user variable can be defined as a 1- up to a maximum of a 3-dimensional array.

● 1-dimensional: DEF <data type> <variable name>[<n>]
● 2-dimensional: DEF <data type> <variable name>[<n>,<m>]
● 3-dimensional: DEF <data type> <variable name>[<n>,<m>,<o>]

Note

STRING data type user variables can be defined as up to a maximum of 2-dimensional
arrays.

Data types
User variables can be defined as arrays for the following data types: BOOL, CHAR, INT, REAL,
STRING, AXIS, FRAME

Assignment of values to array elements
Values can be assigned to array elements at the following points in time:

● During array definition (initialization values)

● During program execution

Values can be assigned by means of:

● Explicit specification of an array element

● Explicit specification of an array element as a starting element and specification of a value
list (SET)

● Explicit specification of an array element as a starting element and specification of a value
and the frequency at which it is repeated (REP)

Note

FRAME data type user variables cannot be assigned initialization values.

Syntax (DEF)
DEF <data type> <variable name>[<n>,<m>,<o>]
DEF STRING[<string length>] <variable name>[<n>,<m>]

Flexible NC programming
2.1 Variables

Job Planning
52 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax (DEF...=SET...)
Using a value list:

● During definition:
DEF <data type> <variable
name>[<n>,<m>,<o>]=SET(<value1>,<value2>, etc.)
Equivalent to:
DEF <data type> <variable name>[<n>,<m>,<o>]=(<value1>,<value2>,
etc.)
Note

SET does not have to be specified for initialization via a value list.

● During value assignment:
<variable name>[<n>,<m>,<o>]=SET(<VALUE1>,<value2>, etc.)

Syntax (DEF...=REP...)
Using a value with repetition

● During definition:
DEF <data type> <variable name>[<n>,<m>,<o>]=REP(<value>)
DEF <data type> <variable name>[<n>,<m>,<o>]=REP(<value>,
<number_array_elements>)

● During value assignment:
<variable name>[<n>,<m>,<o>]=REP(<value>)
DEF <data type> <variable
name>[<n>,<m>,<o>]=REP(<value>,<number_array_elements>)

Meaning

DEF: Command to define variables
<data type>: Data type of variables

Range of values:
● for system variables:

BOOL, CHAR, INT, REAL, STRING, AXIS
● for GUD or LUD variables:

BOOL, CHAR, INT, REAL, STRING, AXIS, FRAME
<string length>: Maximum number of characters for a STRING data type
<variable name>: Variable name.
[<n>,<m>,<o>]: Array sizes or array indices
<n>: Array size or array index for 1st dimension

Type: INT (for system variables, also AXIS)
Range of values: Max. array size: 65535

Array index: 0 ≤ n ≤ 65534

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 53

<m>: Array size or array index for 2nd dimension
Type: INT (for system variables, also AXIS)
Range of values: Max. array size: 65535

Array index: 0 ≤ m ≤ 65534
<o>: Array size or array index for 3rd dimension

Type: INT (for system variables, also AXIS)
Range of values: Max. array size: 65535

Array index: 0 ≤ o ≤ 65534
SET: Value assignment using specified value list
(<value1>,<value2>, etc.): Value list
REP: Value assignment using specified <value>
<value>: Value, which the array elements should be written when in‐

itializing with REP.
<number_array_elements>: Number of array elements to be written with the specified

<value>. The following apply to the remaining array ele‐
ments, dependent on the point in time:
● Initialization when defining the array:

→ Zero is written to the remaining array elements.
● Assignment during program execution:

→ The actual values of the array elements remain
unchanged.

If the parameter is not programmed, all array elements are
written with <value>.
If the parameter equals zero, the following apply dependent
on the point in time:
● Initialization when defining the array:

→ All elements are pre-assigned zero
● Assignment during program execution:

→ The actual values of the array elements remain
unchanged.

Array index
The implicit sequence of the array elements, e.g. in the case of value assignment using SET
or REP, is right to left due to iteration of the array index.

Example: Initialization of a 3-dimensional array with 24 array elements:

DEF INT FELD[2,3,4] = REP(1,24)
 FELD[0,0,0] = 1 1. array element
 FELD[0,0,1] = 1 2. array element
 FELD[0,0,2] = 1 3. array element
 FELD[0,0,3] = 1 4. array element
 ...
 FELD[0,1,0] = 1 5. array element
 FELD[0,1,1] = 1 6. array element
 ...

Flexible NC programming
2.1 Variables

Job Planning
54 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

 FELD[0,2,3] = 1 12. array element
 FELD[1,0,0] = 1 13. array element
 FELD[1,0,1] = 1 14. array element
 ...
 FELD[1,2,3] = 1 24. array element

corresponding to:

FOR n=0 TO 1
 FOR m=0 TO 2
 FOR o=0 TO 3
 FELD[n,m,o] = 1
 ENDFOR
 ENDFOR
ENDFOR

Example: Initializing complete variable arrays
For the actual assignment, refer to the diagram.

Program code
N10 DEF REAL FELD1[10,3]=SET(0,0,0,10,11,12,20,20,20,30,30,30,40,40,40,)
N20 ARRAY1[0,0] = REP(100)
N30 ARRAY1[5,0] = REP(-100)
N40 FELD1[0,0]=SET(0,1,2,-10,-11,-12,-20,-20,-20,-30, , , ,-40,-40,-50,-60,-70)
N50 FELD1[8,1]=SET(8.1,8.2,9.0,9.1,9.2)

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 55

See also
Definition and initialization of array variables (DEF, SET, REP): Further Information
(Page 56)

Variables (Page 21)

2.1.13 Definition and initialization of array variables (DEF, SET, REP): Further
Information

Further information (SET)

initialization during definition
● Starting with the 1st array element, as many array elements are assigned with the values

from the value list as there are elements programmed in the value list.

● A value of 0 is assigned to array elements without explicitly declared values in the value
list (gaps in the value list).

● For variables of the AXIS data type, gaps in the value list are not permitted.

● If the value list contains more values than there are array elements defined, an alarm will
be displayed.

Flexible NC programming
2.1 Variables

Job Planning
56 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Value assignment in program execution
In the case of value assignment in program execution, the rules described above for definition
apply. The following options are also supported:

● Expressions are also permitted as elements in the value list.

● Value assignment starts with the programmed array index. Values can be assigned
selectively to subarrays.

Example:

Program code Comments
DEF INT ARRAY[5,5] ; Array definition
ARRAY[0,0]=SET(1,2,3,4,5) ; Value assignment to the first 5 array ele-

ments [0,0] - [0,4]
FELD[0,0]=SET(1,2, , ,5) ; Value assignment with gap to the first 5 array

elements [0,0] - [0,4], array elements[0,2] and
[0,3] = 0

ARRAY[2,3]=SET(VARIABLE,4*5.6) ; Value assignment with variable and expression
starting at array index [2,3]:
[2,3] = VARIABLE
[2,4] = 4 * 5.6 = 22.4

Further information (REP)

initialization during definition
● All or the optionally specified number of array elements are initialized with the specified

value (constant).

● Variables of the FRAME data type cannot be initialized.

Example:

Program code Comments
DEF REAL varName[10]=REP(3.5,4) ; Initialize array definition and array ele-

ments [0] to [3] with value 3.5.

Value assignment in program execution
In the case of value assignment in program execution, the rules described above for definition
apply. The following options are also supported:

● Expressions are also permitted as elements in the value list.

● Value assignment starts with the programmed array index. Values can be assigned
selectively to subarrays.

Examples:

Program code Comments
DEF REAL varName[10] ; Array definition
varName[5]=REP(4.5,3) ; Array elements [5] to [7] = 4.5
R10=REP(2.4,3) ; R-parameters R10 to R12 = 2.4
DEF FRAME FRM[10] ; Array definition

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 57

Program code Comments
FRM[5] = REP(CTRANS (X,5)) ; Array elements [5] to [9] = CTRANS(X,5)

See also
Definition and initialization of array variables (DEF, SET, REP) (Page 52)

2.1.14 Data types
The following data types are available in the NC:

Data type Meaning Value Range
INT Integer with sign -2147483648 ... +2147483647
REAL Real number (LONG REAL to IEEE) ±(∼2,2*10-308 … ∼1,8*10+308)
BOOL Truth value TRUE (1) and FALSE (0) 1, 0
CHAR ASCII character ASCII code 0 to 255
STRING Character string of a defined length Maximum of 200 characters (no special

characters)
AXIS Axis/spindle identifier Channel axis identifier
FRAME Geometric parameters for static coordinate

transformation (translation, rotation, scal‐
ing, mirroring)

Implicit data type conversions
The following data type conversions are possible and are performed implicitly during
assignments and parameter transfers:

from ↓/ to → REAL INT BOOL
REAL x o &
INT x x &
BOOL x x x
x : Possible without restrictions
o: Data loss possible due to the range of values being overshot ⇒ alarm;
 rounding: decimal place value ≥ 0.5 ⇒ round up, decimal place value < 0.5 ⇒ round down
&: value ≠ 0 ⇒ TRUE, value== 0 ⇒ FALSE

See also
Variables (Page 21)

Flexible NC programming
2.1 Variables

Job Planning
58 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.1.15 Check availability of a variable (ISVAR)
The predefined ISVAR function can be used to check whether a system/user variable (e.g.
machine data, setting data, system variable, general variables such as GUD) is known in the
NC.

Variable
The variables to be queried have the following structure:

Dimensionless variable: <Variable>
One-dimensional variable without array index: <Variable>[]
One-dimensional variable with array index n: <Variable>[<n>]
Two-dimensional variable without array index: <Variable>[,]
Two-dimensional variable with array indices n
and m:

<Variable>[<n>,<m>]

Syntax
<Result>=ISVAR(<Variable>[<n>,<m>])

Meaning

<result>: Return value
Data type: BOOL
Range of values: 1 Variable available

0 Variable unknown
ISVAR: Checks whether the specified system/user variable is known in the NC.
<Variable>: Name of the system/user variable

Data type: STRING
<n>: Array index of the first dimension (optional)

Data type: INT
<m>: Array index of the second dimension (optional)

Data type: INT

The following checks are made in accordance with the transfer parameter:

● Is the name known?

● Is the variable an array?

● Is it a one- or two-dimensional array?

● Is the respective array index in the permissible range?

Only if all checks are positive, TRUE (1) is returned.

If a check is negative or a syntax error has occurred, FALSE (0) is returned.

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 59

Examples

Program code Comment
DEF INT VAR1
DEF BOOL IS_VAR=FALSE
N10 IS_VAR=ISVAR("VAR1") ; IS_VAR is in this case TRUE.

 Program code Comment
DEF REAL VARARRAY[10,10]
DEF BOOL IS_VAR=FALSE
N10 IS_VAR=ISVAR("VARARRAY[,]") ; IS_VAR is in this case TRUE, is a two-di-

mensional array.
N20 IS_VAR=ISVAR("VARARRAY") ; IS_VAR is TRUE, variable exists.
N30 IS_VAR=ISVAR("VARARRAY[8,11]") ; IS_VAR is FALSE, array index is not per-

mitted.
N40 IS_VAR=ISVAR("VARARRAY[8,8") ; IS_VAR is FALSE, "]" missing (syntax er-

ror).
N50 IS_VAR=ISVAR("VARARRAY[,8]") ; IS_VAR is TRUE, array index is permitted.
N60 IS_VAR=ISVAR("VARARRAY[8,]") ; IS_VAR is TRUE, array index is permitted.

 Program code Comment
DEF BOOL IS_VAR=FALSE
N100 IS_VAR=ISVAR("$MC_GCODE_RESET_VALUES[1]" ; Transfer parameter is a machine

data item, IS_VAR is TRUE.

 Program code Comment
DEF BOOL IS_VAR=FALSE
N10 IS_VAR=ISVAR("$P_EP") ; IS_VAR is in this case TRUE.
N20 IS_VAR=ISVAR("$P_EP[X]") ; IS_VAR is in this case TRUE.

2.1.16 Reading attribute values / data type (GETVARPHU, GETVARAP, GETVARLIM,
GETVARDIM, GETVARDFT, GETVARTYP)

The attribute values of system/user variables can be read with the predefined GETVARPHU,
GETVARAP, GETVARLIM and GETVARDFT functions, the data type of a system/user
variable with GETVARTYP.

Read physical unit

Syntax:
<Result>=GETVARPHU(<name>)

Flexible NC programming
2.1 Variables

Job Planning
60 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning:

<result>: Numeric value of the physical unit
Data type: INT
Range of values: See Table in "Attribute: Physical unit (PHU) (Page 43)"

In case of fault
- 2 The specified <name> has not been assigned to a sys‐

tem parameter or a user variable.
GETVARPHU: Reading of the physical unit of a system/user variable
<name>: Name of the system/user variables

Data type: STRING

Example:
The NC contains the following GUD variables:

DEF CHAN REAL PHU 42 LLI 0 ULI 10000 electric

Program code Comment
DEF INT result=0
result=GETVARPHU("elec-
tric")

; Determine the physical unit of the GUD variables.

IF (result < 0) GOTOF error

The value 42 is returned as result. This corresponds to the physical unit [kW].

Note

GETVARPHU can be used, for example, to check whether both variables have the expected
physical units in a variable assignment a = b.

Read access right

Syntax:
<Result>=GETVARAP(<name>,<access>)

Meaning:

<result>: Protection level for the specified <access>
Data type: INT
Range of val‐
ues:

0 ... 7 See "Attribute: Access rights (APR, APW, APRP, APWP,
APRB, APWB) (Page 45)".

In case of fault
- 1 Cannot be written (only relevant for <Access> "WP" and

"WB")
- 2 The specified <name> has not been assigned to a system

parameter or a user variable.
- 3 Incorrect value for <access>

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 61

GETVARAP: Reading of the access right to a system/user variable
<name>: Name of the system/user variables

Data type: STRING
<access>: Type of access

Data type: STRING
Range of val‐
ues:

"RP" Read via part program
"WP" Write via part program
"RB" Read via OPI
"WB" Write via OPI

Example:

Program code Comment
DEF INT result=0
result=GETVAR-
AP("$TC_MAP8","WB")

; Determine the access protection for the system pa-
rameter "magazine position" with regard to writing via
OPI.

IF (result < 0) GOTOF error

The value 7 is returned as result. This corresponds to the key switch position 0 (= no access
protection).

Note

GETVARAP can be used, for example, to implement a checking program that checks the
access rights expected by the application.

Read limit values

Syntax:
<Status>=GETVARLIM(<name>,<limit value>,<result>)

Meaning:

<Status>: Function status
Data type: INT
Range of val‐
ues:

1 OK
-1 No limit value defined

(for variables of type AXIS, STRING, FRAME)
-2 The specified <name> has not been assigned to a system

parameter or a user variable.
-3 Incorrect value for <limit value>

GETVARLIM: Reading of the lower/upper limit value of a system/user variable
<name>: Name of the system/user variables

Data type: STRING

Flexible NC programming
2.1 Variables

Job Planning
62 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<limit
value>:

specifies which limit value should be read out
Data type: CHAR
Range of val‐
ues:

"L"
:

= lower limit value

"U"
:

= upper limit value

<result>: Return of the limit value
Data type: VAR REAL

Example:

Program code Comment
DEF INT state=0
DEF REAL result=0
state=GETVARLIM("$MA_MAX_AX_VE-
LO","L",result)

Determine the lower limit value for MD32000
$MA_MAX_AX_VELO.

IF (result < 0) GOTOF error

Read attributes / data type

Syntax:
<Result>=GETVARDIM(<Name>, Index)

Meaning:

<Result>: Dimension / number of array <Index>
Data type: INT

GETVARDIM: Reading of the lower/upper limit value of a system/user variable
<Name>: Reading the number of elements of the array

Data type: STRING
<Index>: Number of the array, max. 3.

Data type: INT

Example:

Program code Comment
N5 DEF REAL myReal[5,4]
N10 R1 = GETVATDIM("myReal",1)
N15 R2 = GETVATDIM("myReal",2)

R1 = 5
R2 = 4

Read default value

Syntax:
<Status>=GETVARDFT(<name>,<result>[,<index_1>,<index_2>,<index_3>])

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 63

Meaning:

<Status>: Function status
Data type: INT
Range of val‐
ues:

1 OK
-1 No default value available

(e.g. because <result> has the wrong type for <name>)
-2 The specified <name> has not been assigned to a system

parameter or a user variable.
-3 Incorrect value for <index_1>, dimension less than one (=

no array = scalar)
-4 Incorrect value for <index_2>
-5 Incorrect value for <index_3>

GETVARDFT: Reading of the default value of a system/user variable
<name>: Name of the system/user variables

Data type: STRING
<result>: Return of the default value

Data type: VAR REAL
(when reading the default value of variables of the types INT, RE‐
AL, BOOL, AXIS)
VAR STRING
(when reading the default value of variables of the types STRING
and CHAR)
VAR FRAME
(when reading the default value of variables of the type FRAME)

<index_1>: Index to the first dimension (optional)
Data type: INT
Not programmed means = 0

<index_2>: Index to the second dimension (optional)
Data type: INT
Not programmed means = 0

<index_3>: Index to the third dimension (optional)
Data type: INT
Not programmed means = 0

Example:

Program code Comment
DEF INT state=0
DEF REAL resultR=0 ; Variable to accept the default values

of the types INT, REAL, BOOL, AXIS.
DEF FRAME resultF=0 ; Variable to accept the default values

of the type FRAME

IF (GETVARTYP("$MA_MAX_AX_VELO") <> 4)
GOTOF error

state=GETVARDFT("$MA_MAX_AX_VELO",
resultR, AXTOINT(X))

; Determine the default value of the
"X" axis.

Flexible NC programming
2.1 Variables

Job Planning
64 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
IF (result < 0) GOTOF error

IF (GETVARTYP("$TC_TP8") <> 3) GOTOF error
state=GETVARDFT("$TC_TP8", resultR)

IF (GETVARTYP("$P_UBFR") <> 7) GOTOF error
state=GETVARDFT("$P_UBFR", resultF)

Read data type

Syntax:
<Result>=GETVARTYP(<name>)

Meaning:

<result>: Data type of the specified system/user variables
Data type: INT
Range of val‐
ues:

1 = BOOL
2 = CHAR
3 = INT
4 = REAL
5 = STRING
6 = AXIS
7 = FRAME
In case of fault
< 0 The specified <name> has not been assigned to a system

parameter or a user variable.
GETVARTYP: Reading of the data type of a system/user variable
<name>: Name of the system/user variables

Data type: STRING

Example:

Program code Comment
DEF INT result=0
DEF STRING name="R"
result=GETVARTYP(name) ; Determine the type of the R parameter.
IF (result < 0) GOTOF error

The value 4 is returned as result. This corresponds to the REAL data type.

Flexible NC programming
2.1 Variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 65

2.2 Indirect programming

2.2.1 Indirectly programming addresses
When indirectly programming addresses, the extended address (<index>) is replaced by a
variable with a suitable type.

Note

It is not possible to indirectly program addresses for:
● N (block number)
● L (subprogram)
● Settable addresses

(e.g. X[1] instead of X1 is not permissible)

Syntax
<ADDRESS>[<Index>]

Meaning

<ADDRESS>[...]: Fixed address with extension (index)
<index>: Variable, e.g. for spindle number, axis,

Examples

Example 1: Indirectly programming a spindle number
Direct programming:

Program code Comment
S1=300 ; Speed in rpm for the spindle number 1.

Indirect programming:

Program code Comment
DEF INT SPINU=1 ; Defining variables, type INT and value assignment.
S[SPINU]=300 ; Speed 300 rpm for the spindle, whose number is saved in

the SPINU variable (in this example 1, the spindle with the
number 1).

Example 2: Indirectly programming an axis
Direct programming:

Program code Comment
FA[U]=300 ; Feedrate 300 for axis "U".

Flexible NC programming
2.2 Indirect programming

Job Planning
66 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Indirect programming:

Program code Comment
DEF AXIS AXVAR2=U ; Defining a variable, type AXIS and value assignment.
FA[AXVAR2]=300 ; Feedrate of 300 for the axis whose address name is saved

in the variables with the name AXVAR2.

Example 3: Indirectly programming an axis
Direct programming:

Program code Comment
$AA_MM[X] ; Read probe measured value (MCS) of axis "X".

Indirect programming:

Program code Comment
DEF AXIS AXVAR3=X ; Defining a variable, type AXIS and value assignment.
$AA_MM[AXVAR3] ; Read probe measured value (MCS) whose name is saved in

the variables AXVAR3.

Example 4: Indirectly programming an axis
Direct programming:

Program code
X1=100 X2=200

Indirect programming:

Program code Comment
DEF AXIS AXVAR1 AXVAR2 ; Defining two type AXIS variables.
AXVAR1=(X1) AXVAR2=(X2) ; Assigning the axis names.
AX[AXVAR1]=100 AX[AXVAR2]=200 ; Traversing the axes whose address names are

saved in the variables with the names AXVAR1
and AXVAR2

Example 5: Indirectly programming an axis
Direct programming:

Program code
G2 X100 I20

Indirect programming:

Program code Comment
DEF AXIS AXVAR1=X ; Defining a variable, type AXIS and value assignment.
G2 X100 IP[AXVAR1]=20 ; Indirect programming the center point data for the axis,

whose address name is saved in the variable with the name
AXVAR1.

Flexible NC programming
2.2 Indirect programming

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 67

Example 6: Indirectly programming array elements
Direct programming:

Program code Comment
DEF INT ARRAY1[4,5] ; Defining array 1

Indirect programming:

Program code Comment
DEFINE DIM1 AS 4 ; For array dimensions, array sizes must be specified as

fixed values.
DEFINE DIM2 AS 5
DEF INT ARRAY[DIM1,DIM2]
ARRAY[DIM1-1,DIM2-1]=5

Example 7: Indirect subprogram call

Program code Comment
CALL "L" << R10 ; Call the program, whose number is located in R10 (string

cascading).

2.2.2 Indirectly programming G commands
Indirect programming of G commands permits cycles to be effectively programmed.

Syntax
G[<group>]=<number>

Meaning

G[...]: G command with extension (index)
<group>: Index parameter: G group

Type: INT
<number>: Variable for the G command number

Type: INT or REAL

Note

Generally, only G commands that do not determine the syntax can be indirectly programmed.

Only G group 1 is possible from the G commands that determine the syntax.
The syntax-determining G commands of G groups 2, 3 and 4 are not possible.

Flexible NC programming
2.2 Indirect programming

Job Planning
68 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note

Arithmetic functions are not permitted in the indirect G command programming. If it is
necessary to calculate the G command number, this must be done in a separate part program
line before the indirect G command programming.

Examples

Example 1: Adjustable work offset (G group 8)

Program code Comment
N1010 DEF INT INT_VAR
N1020 INT_VAR=2
...
N1090 G[8]=INT_VAR G1 X0 Y0 ;G54
N1100 INT_VAR=INT_VAR+1 ; G command calculation
N1110 G[8]=INT_VAR G1 X0 Y0 ;G55

Example 2: Level selection (G group 6)

Program code Comment
N2010 R10=$P_GG[6] ; Read active G command of G group 6
...
N2090 G[6]=R10

References
For information on the G groups, see:
Programming Manual, Fundamentals; Section "G groups"

2.2.3 Indirectly programming position attributes (GP)
Position attributes, e.g. the incremental or absolute programming of the axis position, can be
indirectly programmed as variables in conjunction with the key word GP.

Application
The indirect programming of position attributes is used in replacement cycles, as in this case,
the following advantage exists over programming position attributes as keyword (e.g. IC,
AC, ...):

As a result of the indirect programming as variable, no CASE statement is required, which would
otherwise branch for all possible position attributes.

Flexible NC programming
2.2 Indirect programming

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 69

Syntax
<POSITIONING COMMAND>[<axis/spindle>]=
GP(<position>,<position attribute)
<axis/spindle>=BP(<position>,<position attribute)

Meaning

<POSITIONING COMMAND>[]: The following positioning commands can be programmed to‐
gether with the key word GP:
POS, POSA,SPOS, SPOSA
Also possible:
● All axis and spindle identifiers present in the channel:

<axis/spindle>
● Variable axis/spindle identifier AX

<axis/spindle>: Axis/spindle that is to be positioned
GP(): Key word for positioning
<position>: Parameter 1

Axis/spindle position as constant or variable
<position attribute>: Parameter 2

Position attribute (e.g. position approach mode as a variable
(e.g. $P_SUB_SPOSMODE) or as key word (IC, AC, ...)

The values supplied from the variables have the following significance:

Value Meaning Permissible for:
0 No change to the position attribute
1 AC POS, POSA,SPOS, SPOSA,AX, axis address
2 IC POS, POSA,SPOS, SPOSA,AX, axis address
3 DC POS, POSA,SPOS, SPOSA,AX, axis address
4 ACP POS, POSA,SPOS, SPOSA,AX, axis address
5 ACN POS, POSA,SPOS, SPOSA,AX, axis address
6 OC -
7 PC -
8 DAC POS, POSA,AX, axis address
9 DIC POS, POSA,AX, axis address
10 RAC POS, POSA,AX, axis address
11 RIC POS, POSA,AX, axis address
12 CAC POS, POSA
13 CIC POS, POSA
14 CDC POS, POSA
15 CACP POS, POSA
16 CACN POS, POSA

Flexible NC programming
2.2 Indirect programming

Job Planning
70 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
For an active synchronous spindle coupling between the leading spindle S1 and the following
spindle S2, the following replacement cycle to position the spindle is called using the SPOS
command in the main program.

Positioning is realized using the statement in N2230:
SPOS[1]=GP($P_SUB_SPOSIT,$P_SUB_SPOSMODE) SPOS[2]=GP($P_SUB_SPOSIT,
$P_SUB_SPOSMODE)
The position to be approached is read from the system variable $P_SUB_SPOSIT; the position
approach mode is read from the system variable $P_SUB_SPOSMODE.

Program code Comment
N1000 PROC LANG_SUB DISPLOF SBLOF
...
N2100 IF($P_SUB_AXFCT==2)
N2110 ; Replacement of the SPOS / SPOSA / M19

command for an active synchronous spindle
coupling

N2185 DELAYFSTON ; Start of stop delay area
N2190 COUPOF(S2,S1) ; Deactivate synchronous spindle coupling
N2200 ; Position leading and following spindles
N2210 IF($P_SUB_SPOS==TRUE) OR
($P_SUB_SPOSA==TRUE)

N2220 ; Positioning the spindle with SPOS:
N2230 SPOS[1]=GP($P_SUB_SPOSIT,
$P_SUB_SPOSMODE)

 SPOS[2]=GP($P_SUB_SPOSIT,
$P_SUB_SPOSMODE)

N2250 ELSE
N2260 ; Positioning the spindle using M19:
N2270 M1=19 M2=19 ; Position leading and following spindles
N2280 ENDIF
N2285 DELAYFSTOF ; End of stop delay area
N2290 COUPON(S2,S1) ; Activate synchronous spindle coupling
N2410 ELSE
N2420 ; Query on further replacements
...
N3300 ENDIF
...
N9999 RET

Supplementary conditions
● The indirect programming of position attributes is not possible in synchronized actions.

Flexible NC programming
2.2 Indirect programming

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 71

References
Function Manual Basic Functions; BAG, Channel, Program Operation, Reset Response (K1),
Section: Replacement of NC functions by subprograms

2.2.4 Indirectly programming part program lines (EXECSTRING)
Using the part program command EXECSTRING, it is possible to execute a previously
generated string variable as part program line.

Syntax
EXECSTRING is programmed in a separate part program line:
EXECSTRING (<string_variable>)

Meaning

EXECSTRING: Command to execute a string variable as part program line
<string variable>: Type STRING variable, that includes the actual part program line to be

executed

Note

With EXECSTRING, all part program constructions that can be programmed in the program
section of a part program, with the exception of control structures (Page 113), can be extracted.
This means that PROC and DEF statements are excluded as well as the general use in INI and
DEF files.

Example

Program code Comment
N100 DEF STRING[100] MY_BLOCK ; Definition of string variables to accept the part

program line to be executed.
N110 DEF STRING[10] MFCT1="M7"
...
N200 EXECSTRING(MFCT1 <<
"M4711")

; Execute part program line "M7 M4711".

...
N300 R10=1
N310 MY_BLOCK="M3"
N320 IF(R10)
N330 MY_BLOCK = MY_BLOCK <<
MFCT1

N340 ENDIF
N350 EXECSTRING(MY_BLOCK) ; Execute part program line "M3 M7".

Flexible NC programming
2.2 Indirect programming

Job Planning
72 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.3 Arithmetic functions

Operator / arithmetic function Meaning
+ Addition
- Subtraction
* Multiplication
/ 1) Division 1)

DIV 1) Integer number division 1)

MOD 1) Modulo division (supplies the remainder of the integer number divi‐
sion) 1)

: Chain operator for FRAME variables
SIN() Sine
COS() Cosine
TAN() Tangent
ASIN() Arc sine
ACOS() Arc cosine
ATAN2(,) 1) Arc tangent2 1)

SQRT() Square root
ABS() Absolute value
POT() 2nd power (square)
TRUNC() Integer component

The accuracy for comparison commands can be set using TRUNC
(see "Precision correction on comparison errors (TRUNC)
(Page 78)")

ROUND() Round to integer
LN() Natural logarithm
EXP() Exponential function
MINVAL () Lower value of two variables

(see "Variable minimum, maximum and range (MINVAL, MAXVAL
and BOUND) (Page 80)")

MAXVAL () Larger value of two variables
(see "Variable minimum, maximum and range (MINVAL, MAXVAL
and BOUND) (Page 80)")

BOUND () Variable value within the defined value range
(see "Variable minimum, maximum and range (MINVAL, MAXVAL
and BOUND) (Page 80)")

CTRANS() Offset
CROT () Rotation
CSCALE() Change of scale
CMIRROR() Mirroring
1) See the paragraph, "Examples"

Flexible NC programming
2.3 Arithmetic functions

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 73

Programming
The usual mathematical notation is used for arithmetic functions. Priorities for execution are
indicated by parentheses. Angles are specified for trigonometry functions and their inverse
functions (right angle = 90°).

Examples

Division: /
(type REAL) = type INT or type REAL) / (type INT or type REAL);

Example: 3 / 4 = 0.75

Integer number division: DIV
(type INT) = (type INT or REAL) / (type INT or REAL);

Example: 7 DIV 4.1 = 1

Modulo division (supplies the remainder of the integer number division): MOD
(type REAL) = (type INT or REAL) MOD (type INT or REAL);

Example: 7 MOD 4.1 = 2.9

Arc tangent 2: ATAN2
The arithmetic function ATAN2 calculates the angle of the total vector from two mutually
perpendicular vectors.

The result is in one of four quadrants (-180° < 0 < +180°).

The angular reference is always based on the 2nd value in the positive direction.

Flexible NC programming
2.3 Arithmetic functions

Job Planning
74 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Programming examples

Program code Comment
R1=R1+1 ; New R1 = old R1 + 1
R1=R2+R3 R4=R5-R6 R7=R8*R9
R10=R11/R12 R13=SIN(25.3)
R14=R1*R2+R3 ; Multiplication or division takes precedence

over addition or subtraction.
R14=(R1+R2)*R3 ; Expressions and parentheses are calculated

first.
R15=SQRT(POT(R1)+POT(R2)) ; Inner parentheses are resolved first:

R15 = square root of ((R1^2 + R2^2))
RESFRAME=FRAME1:FRAME2
FRAME3=CTRANS(…):CROT(…)

; FRAME logic operation with chain operator
Value assignment at a FRAME component

Flexible NC programming
2.3 Arithmetic functions

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 75

2.4 Comparison and logic operations
Comparison operations can be used, for example, to formulate a jump condition. Complex
expressions can also be compared.

The comparison operations are applicable to variables of type CHAR, INT, REAL and BOOL.
The code value is compared with the CHAR type.
For types STRING, AXIS and FRAME, the following are possible: == and <>, which can be used
for STRING type operations, even in synchronous actions.

The result of comparison operations is always of BOOL type.

Logic operators are used to link truth values.

The logical operations can only be applied to type BOOL variables. However, they can also be
applied to the CHAR, INT and REAL data types via internal type conversion.

For the logic (Boolean) operations, the following applies to the BOOL, CHAR, INT and REAL
data types:

● 0 corresponds to: FALSE

● Not equal to 0 means: TRUE

Bit-by-bit logic operators

Logic operations can also be applied to single bits of types CHAR and INT. Type conversion
is automatic.

Programming

Relational operator Meaning
== Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Logic operator Meaning
AND AND
OR OR
NOT Negation
XOR Exclusive OR

Bit-by-bit logic operator Meaning
B_AND Bit-by-bit AND
B_OR Bit-by-bit OR
B_NOT Bit-by-bit negation
B_XOR Bit-by-bit exclusive OR

Flexible NC programming
2.4 Comparison and logic operations

Job Planning
76 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note

In arithmetic expressions, the execution order of all the operators can be specified by
parentheses, in order to override the normal priority rules.

Note

Spaces must be left between BOOLEAN operands and operators.

Note

The operator B_NOT only refers to one operand. This is located after the operator.

Examples

Example 1: Comparison operators
IF R10>=100 GOTOF DEST
or
R11=R10>=100
IF R11 GOTOF DEST
The result of the R10>=100 comparison is first buffered in R11.

Example 2: Logic operators
IF (R10<50) AND ($AA_IM[X]>=17.5) GOTOF DESTINATION
or
IF NOT R10 GOTOB START
NOT only refers to one operand.

Example 3: Bit-by-bit logic operators
IF $MC_RESET_MODE_MASK B_AND 'B10000' GOTOF ACT_PLANE

Flexible NC programming
2.4 Comparison and logic operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 77

2.5 Precision correction on comparison errors (TRUNC)
The TRUNC command truncates the operand multiplied by a precision factor.

Settable precision for comparison commands
Program data of type REAL is displayed internally with 64 bits in IEEE format. This display
format can cause decimal numbers to be displayed imprecisely and lead to unexpected results
when compared with the ideally calculated values.

Relative equality
To prevent the imprecision caused by the display format from interfering with program flow,
the comparison commands do not check for absolute equality, but rather for relative equality.

Syntax

Precision correction on comparison errors
TRUNC (R1*1000)

Meaning

TRUNC: Truncate decimal places

Relative quality of 10-12 taken into account for
● Equality: (==)

● Inequality: (<>)

● Greater than or equal to: (>=)

● Less than or equal to: (<=)

● Greater/less than: (><) with absolute equality

● Greater than: (>)

● Less than: (<)

Compatibility
For compatibility reasons, the check for relative quality for (>) and (<) can be deactivated by
setting machine data MD10280 $MN_ PROG_FUNCTION_MASK Bit0 = 1.

Note

Comparisons with data of type REAL are subject to a certain imprecision for the above reasons.
If deviations are unacceptable, use INTEGER calculation by multiplying the operands by a
precision factor and then truncating with TRUNC.

Synchronized actions
The response described for the comparison commands also applies to synchronized actions.

Flexible NC programming
2.5 Precision correction on comparison errors (TRUNC)

Job Planning
78 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Examples

Example 1: Precision considerations

Program code Comments
N40 R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values
N41 IF ABS(R2-R1) > R3 GOTOF ERROR ; Jump would have been executed up

until now
N42 M30 ; End of program
N43 ERROR: SETAL(66000)
R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values
R11=TRUNC(R1*1000) R12=TRUNC(R2*1000)

R13=TRUNC(R3*1000)

; Accuracy correction

IF ABS(R12-R11) > R13 GOTOF ERROR ; Jump is no longer executed
M30 ; End of program
ERROR: SETAL(66000)

Example 2: Calculate and evaluate the quotient of both operands

Program code Comments
R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values
IF ABS((R2-R1)/R3)-1) > 10EX-5 GOTOF ERROR ; Jump is not executed
M30 ; End of program
ERROR: SETAL(66000)

Flexible NC programming
2.5 Precision correction on comparison errors (TRUNC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 79

2.6 Variable minimum, maximum and range (MINVAL, MAXVAL and
BOUND)

The MINVAL and MAXVAL commands compare the values of two variables. The smaller value
(in the case of MINVAL) or the larger value (in the case of MAXVAL) respectively is delivered
as a result.

The BOUND command tests whether the value of a test variable falls within a defined range of
values.

Syntax
<smaller value>=MINVAL(<variable1>,<variable2>)
<larger value>=MAXVAL(<variable1>,<variable2>)
<return value>=<BOUND>(<minimum>,<maximum>,<test variable>)

Meaning

MINVAL: Obtains the smaller value of two variables (<variable1>,
<variable2>)

<smaller value>: Result variable for the MINVAL command
Set to the smaller variable value.

MAXVAL: Obtains the larger value of two variables (<variable1>,
<variable2>)

<larger value>: Result variable for the MAXVAL command
Set to the larger variable value.

BOUND: Tests whether a variable (<test variable) is within a defined range of
values.

<minimum>: Variable which defines the minimum value of the range of values.
<maximum>: Variable which defines the maximum value of the range of values.
<return value>: Result variable for the BOUND command

If the value of the test variable is within the defined range of values, the
result variable is set to the value of the test variable.
If the value of the test variable is greater than the maximum value, the
result variable is set to the maximum value of the definition range.
If the value of the test variable is less than the minimum value, the result
variable is set to the minimum value of the definition range.

Note

MINVAL, MAXVAL, and BOUND can also be programmed in synchronized actions.

Note
Behavior if values are equal

If the values are equal, MINVAL/MAXVAL are set to this equal value. In the case of BOUND the
value of the variable to be tested is returned again.

Flexible NC programming
2.6 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND)

Job Planning
80 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example

Program code Comment
DEF REAL rVar1=10.5, rVar2=33.7, rVar3, rVar4, rVar5, rValMin, rValMax, rRetVar
rValMin=MINVAL(rVar1,rVar2) ; rValMin is set to value 10.5.
rValMax=MAXVAL(rVar1,rVar2) ; rValMax is set to value 33.7.
rVar3=19.7
rRetVar=BOUND(rVar1,rVar2,rVar3) ; rVar3 is within the limits, rRetVar is set to 19.7.
rVar3=1.8
rRetVar=BOUND(rVar1,rVar2,rVar3) ; rVar3 is below the minimum limit, rRetVar is set to

10.5.
rVar3=45.2
rRetVar=BOUND(rVar1,rVar2,rVar3) ; rVar3 is above the maximum limit, rRetVar is set to

33.7.

Flexible NC programming
2.6 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 81

2.7 Priority of the operations
Each operator is assigned a priority. When an expression is evaluated, the operators with the
highest priority are always applied first. Where operators have the same priority, the evaluation
is from left to right.

In arithmetic expressions, the execution order of all the operators can be specified by
parentheses, in order to override the normal priority rules.

Order of operators

From the highest to lowest priority

1. NOT, B_NOT Negation, bit-by-bit negation
2. *, /, DIV, MOD Multiplication, division
3. +, – Addition, subtraction
4. B_AND Bit-by-bit AND
5. B_XOR Bit-by-bit exclusive OR
6. B_OR Bit-by-bit OR
7. AND AND
8. XOR Exclusive OR
9. OR OR
10. << Concatenation of strings, result type STRING
11. ==, <>, >, <, >=, <= Comparison operators

Note

The concatenation operator ":" for Frames must not be used in the same expression as other
operators. A priority level is therefore not required for this operator.

Example: IF statement
If (otto==10) and (anna==20) gotof end

Flexible NC programming
2.7 Priority of the operations

Job Planning
82 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.8 Possible type conversions
Function

Type conversion on assignment
The constant numeric value, the variable, or the expression assigned to a variable must be
compatible with the variable type. If this is the case, the type is automatically converted when
the value is assigned.

Possible type conversions

to REAL INT BOOL CHAR STRING AXIS FRAME
from
REAL yes yes* Yes1) Yes * – – –
INT yes yes Yes1) Yes 2) – – –
BOOL yes yes yes yes yes – –
CHAR yes yes Yes 1) yes yes – –
STRING – – Yes 4) Yes 3) yes – –
AXIS – – – – – yes –
FRAME – – – – – – yes

Explanation

* At type conversion from REAL to INT, fractional values that are >=0.5 are rounded up,
others are rounded down (cf. ROUND function).

1) Value <> 0 is equivalent to TRUE; value == 0 is equivalent to FALSE
2) If the value is in the permissible range
3) If only 1 character
4) String length 0 = >FALSE, otherwise TRUE

Note

If conversion produces a value greater than the target range, an error message is output.

If mixed types occur in an expression, type conversion is automatic. Type conversions are also
possible in synchronous actions, see Chapter "Motion-synchronous actions, implicit type
conversion".

Flexible NC programming
2.8 Possible type conversions

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 83

2.9 String operations

Sting operations
In addition to the classic operations "assign" and "comparison" the following string operations
are possible:

● Type conversion to STRING (AXSTRING) (Page 84)

● Type conversion from STRING (NUMBER, ISNUMBER, AXNAME) (Page 85)

● Concatenation of strings (<<) (Page 86)

● Conversion to lower/upper case letters (TOLOWER, TOUPPER) (Page 87)

● Determine length of string (STRLEN) (Page 88)

● Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH) (Page 89)

● Selection of a substring (SUBSTR) (Page 90)

● Reading and writing of individual characters (Page 91)

● Formatting a string (SPRINT) (Page 92)

Special significance of the 0 character
Internally, the 0 character is interpreted as the end identifier of a string. If a character is replaced
with the 0 character, the string is truncated.

Example:

Program code Comment
DEF STRING[20] STRG="axis . stationary"
STRG[6]="X"
MSG(STRG) ; Supplies the message "axis X sta-

tionary".
STRG[6]=0
MSG(STRG) ; Supplies the message "axis".

2.9.1 Type conversion to STRING (AXSTRING)
The function "type conversion to STRING" allows variables of different types to be used as a
component of a message (MSG).

When using the << operator this is realized implicitly for data types INT, REAL, CHAR and
BOOL (see " Concatenation of strings (<<) (Page 86) ").

An INT value is converted to normal readable format. REAL values convert with up to 10
decimal places.

Type AXIS variables can be converted to STRING using the AXSTRING command.

Flexible NC programming
2.9 String operations

Job Planning
84 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax
<STRING_RES> = << <any_type>
<STRING_RES> = AXSTRING(<axis identifier>)

Meaning

<STRING_RES>: Variable for the result of the type conversion
Type: STRING

<any_type>: Variable types INT, REAL, CHAR, STRING and BOOL
AXSTRING: The AXSTRING command supplies the specified axis identifier as

string.
<axis identifier>: Variable for axis identifier

Type: AXIS

Note

FRAME variables cannot be converted.

2.9.2 Type conversion from STRING (NUMBER, ISNUMBER, AXNAME)
A conversion is made from STRING to REAL using the NUMBER command. The ability to be
converted can be checked using the ISNUMBER command.

A string is converted into the axis data type using the AXNAME command.

Syntax
<REAL_RES>=NUMBER("<string>")
<BOOL_RES>=ISNUMBER("<string>")
<AXIS_RES>=AXNAME("<string>")

Meaning

NUMBER: The NUMBER command returns the number represented by the <string> as RE‐
AL value.

<string>: Type STRING variable to be converted
<REAL_RES>: Variable for the result of the type conversion with NUMBER

Type: REAL
ISNUMBER: The ISNUMBER command checks whether the <string> can be converted into

a valid number.

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 85

<BOOL_RES>: Variable for the result of the interrogation with ISNUMBER
Type: BOOL
Value: TRUE ISNUMBER supplies the value TRUE, if the

<string> represents a valid REAL number in com‐
pliance with the language rules.

FALSE If ISNUMBER supplies the value FALSE, when calling
NUMBER with the same <string>, an alarm is initi‐
ated.

AXNAME: The AXNAME command converts the specified <string> into an axis identifier.
Note:
If the <string> cannot be assigned a configured axis identifier, an alarm is initi‐
ated.

<AXIS_RES>: Variable for the result of the type conversion with AXNAME
Type: AXIS

Example

Program code Comment
DEF BOOL BOOL_RES
DEF REAL REAL_RES
DEF AXIS AXIS_RES
REAL_RES == 1234.9876Ex-7 ; BOOL_RES == TRUE
BOOL_RES=ISNUMBER("1234XYZ") ; BOOL_RES == FALSE
REAL_RES=NUMBER("1234.9876Ex-7") ; REAL_RES == 1234.9876Ex-7
AXIS_RES=AXNAME("X") ; AXIS_RES == X

2.9.3 Concatenation of strings (<<)
The function "concatenation strings" allows a string to be configured from individual
components.

The concatenation is realized using the operator "<<". This operator has STRING as the target
type for all combinations of basic types CHAR, BOOL, INT, REAL, and STRING. Any
conversion that may be required is carried out according to existing rules.

Syntax
<any_type> << <any_type>

Flexible NC programming
2.9 String operations

Job Planning
86 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

<any_type>: Variable, type CHAR, BOOL, INT, REAL or STRING
<< : Operator to chain variables (<any_type>) to configure a character string (type

STRING).
This operator is also available alone as a so-called "unary" variant. This can be used
for explicit type converter to STRING (not for FRAME and AXIS):
<< <any_type>

For example, such a message or a command can be configured from text lists and parameters
can be inserted (for example a block name):
MSG(STRG_TAB[LOAD_IDX]<<BLOCK_NAME)

Note

The intermediate results of string concatenation must not exceed the maximum string length.

Note

The FRAME and AXIS types cannot be used together with the operator "<<".

Examples

Example 1: Concatenation of strings

Program code Comment
DEF INT IDX=2
DEF REAL VALUE=9.654
DEF STRING[20] STRG="INDEX:2"
IF STRG=="Index:"<<IDX GOTOF NO_MSG
MSG("Index:"<<IDX<<"/value:"<<VALUE) ; Display:

"Index:2/value:9.654"
NO_MSG:

Example 2: Explicit type conversion with <<

Program code Comment
DEF REAL VALUE=3.5
<<VALUE ; The specified REAL type variable is converted into a

STRING type.

2.9.4 Conversion to lower/upper case letters (TOLOWER, TOUPPER)
The "conversion to lowercase/uppercase letters" function allows all of the letters of a string to
be converted into a standard representation.

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 87

Syntax
<STRING_RES>=TOUPPER("<string>")
<STRING_RES>=TOLOWER("<string>")

Meaning

TOUPPER: Using the TOUPPER command, all of the letters in a character string are con‐
verted into uppercase letters.

TOLOWER: Using the TOLOWER command, all of the letters in a character string are con‐
verted into lowercase letters.

<string>: Character string that is to be converted
Type: STRING

<STRING_RES>: Variable for the result of the conversion
Type: STRING

Example
Because user inputs can be initiated on the user interface, they can be given standard
capitalization (uppercase or lowercase):

Program code
DEF STRING [29] STRG
...
IF "LEARN.CNC"==TOUPPER(STRG) GOTOF LOAD_LEARN

2.9.5 Determine length of string (STRLEN)
The STRLEN command determines the length of a character string.

Syntax
<INT_RES>=STRLEN("<STRING>")

Meaning

STRLEN: The STRLEN command determines the length of the specified character string.
The number of characters that are not the 0 character, counting from the beginning
of the string is returned.

<string>: Character string whose length is to be determined
Type: STRING

<INT_RES>: Variable for the result of the determination
Type: INT

Flexible NC programming
2.9 String operations

Job Planning
88 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
In conjunction with the single character access, this function allows the end of a character
string to be determined:

Program code
IF (STRLEN(BLOCK_NAME)>10) GOTOF ERROR

2.9.6 Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH)
This functionality searches for single characters or a string within a string. The function results
specify where the character/string is positioned in the string that has been searched.

Syntax
INT_RES=INDEX(STRING,CHAR) ; Result type: INT

INT_RES=RINDEX(STRING,CHAR) ; Result type: INT

INT_RES=MINDEX(STRING,STRING) ; Result type: INT

INT_RES=MINDEX(STRING,STRING) ; Result type: INT

Semantics
Search functions: It supplies the position in the string (first parameter) where the search has
been successful. If the character/string cannot be found, then the value -1 is returned. The first
character has position 0.

Meaning

INDEX: Searches for the character specified as second parameter (from the beginning) in the
first parameter.

RINDEX: Searches for the character specified as second parameter (from the end) in the first
parameter.

MINDEX: Corresponds to the INDEX function, except for the case that a list of characters is
transferred (as string) in which the index of the first found character is returned.

MATCH: Searches for a string in a string.

This allows strings to be broken up according to certain criteria, for example, at positions with
blanks or path separators ("/").

Example

Breaking up an input into path and block names

Program code Comment
DEF INT PFADIDX, PROGIDX
DEF STRING[26] INPUT
DEF INT LISTIDX

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 89

Program code Comment
INPUT = "/_N_MPF_DIR/_N_EXECUTE_MPF"
LISTIDX = MINDEX (INPUT, "M,N,O,P")
+ 1

; The value returned in LISTIDX is 3; because
"N" is the first character in the parameter IN-
PUT from the selection list starting from the
beginning.

PFADIDX = INDEX (INPUT, "/") +1 ; Therefore the following applies: PFADIDX = 1
PROGIDX = RINDEX (INPUT, "/") +1 ; Therefore the following applies: PROGIDX = 12
 ; The SUBSTR function introduced in the next

section can be used to break-up
variable INPUT into the components "path" and
"module":

VARIABLE = SUBSTR (INPUT,
PFADIDX, PROGIDX-PFADIDX-1)

; Then returns "_N_MPF_DIR"

VARIABLE = SUBSTR (INPUT, PROGIDX) ; Then returns "_N_EXECUTE_MPF"

2.9.7 Selection of a substring (SUBSTR)
Arbitrary parts within a string can be read with the SUBSTRING function.

Syntax
<STRING_RES>=SUBSTR(<string>,<index>,<length>)
<STRING_RES>=SUBSTR(<string>,<index>)

Meaning

SUBSTR: This function returns a substring from <string>, starting with <index> with the speci‐
fied <length>.
If the parameter <length> is not specified, the function returns a substring starting
with <index> until the end of the string.

<index>: Start position of the substring within the string. If the start position is after the end of
the string, an empty string (" ") is returned. First character of the string: Index = 0
Range of values: 0 ... (string length - 1)

<length>: Length of the substring. If too long a length is specified, only the substring up to the
end of the string is returned.
Range of values: 1 ... (string length - 1)

Example

Program code Comment
DEF STRING[29] RES
; 1
; 0123456789012345678
RES = SUBSTR("QUITTUNG: 10 to 99", 10, 2)

; RES == "10"

Flexible NC programming
2.9 String operations

Job Planning
90 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
RES = SUBSTR("QUITTUNG: 10 to 99", 10) ; RES == "10 to 99"

2.9.8 Reading and writing of individual characters
Individual characters can be read and written within a string.

The following supplementary conditions must be observed:

● Only possible with user-defined variables, not with system variables

● Individual characters of a string are only transferred "call by value" for subprogram calls

Syntax
<Character>=<string>[<index>]
<Character>=<string_array>[<array_index>,<index>]
<String>[<index>]=<character>
<String_array>[<array_index>,<index>]=<character>

Meaning

<string>: Any string
<character>: Variable of type CHAR
<index>: Position of the character within the string.

First character of the string: Index = 0
Range of values: 0 ... (string length - 1)

Examples

Example 1: Variable message

Program code Comment
; 0123456789
DEF STRING [50] MESSAGE = "Axis n has reached position"
MESSAGE [6] = "X"
MSG (MESSAGE) ; "Axis X has reached position"

Example 2: Evaluating a system variable

Program code Comment
DEF STRING[50] STRG ; Buffer for system variable
...
STRG = $P_MMCA ; Load system variable
IF STRG[0] == "E" GOTO ... ; Evaluating the system variable

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 91

Example 3: Parameter transfer "call by value" and "call by reference"

Program code Comment
; 0123456
DEF STRING[50] STRG = "Axis X"

DEF CHAR CHR
...
EXTERN UP_VAL(ACHSE) ; Definition of subprogram with "call

by value" parameters
EXTERN UP_REF(VAR ACHSE) ; Definition of subprogram with "call

by reference" parameters
...
UP_VAL(STRG[6]) ; Parameter transfer "by value"
...
CHR = STRG[6] ; Buffer
UP_REF(CHR) ; Parameter transfer "by reference"

2.9.9 Formatting a string (SPRINT)
Using the pre-defined SPRINT function, character strings can be formatted and e.g. prepared
for output on external devices (also see "Process DataShare - Output to an external device/
file (EXTOPEN, WRITE, EXTCLOSE): (Page 659)").

Syntax
"<Result_string>"=SPRINT("<Format_string>",<value_1>,<value_2>,...,
<value_n>)

Meaning

SPRINT: Identifier for a pre-defined function that supplies a val‐
ue, type STRING.

"<Format_String>": Character string that contains fixed and variable ele‐
ments. The variable elements are defined using the
format control character % and a subsequent format
description.

< value_1>,< value_2>,…,< value_n>: Value in the form of a constant or NC variables, which
is inserted at the location where the nth format control
character % is located, corresponding to the format
description in the <format_string>.

"<result_string>": Formatted character string (maximum 400 bytes)

Flexible NC programming
2.9 String operations

Job Planning
92 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Format descriptions available

%B: Conversion into the "TRUE" string, if the value to be converted:
● Is not equal to 0.
● Is not an empty string (for string values).
Conversion into the "FALSE" string, if the value to be converted:
● Is equal to 0.
● Is an empty string.
Example:
N10 DEF BOOL BOOL_VAR=1
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF BOOL_VAR:%B", BOOL_VAR)
Result: The character string "CONTENT OF BOOL_VAR:TRUE" is written to the
RESULT string variable.

%C: Conversion into an ASCII character.
Example:
N10 DEF CHAR CHAR_VAR="X"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF CHAR_VAR:%C",CHAR_VAR)
Result: The character string "CONTENT OF CHAR_VAR:X is written to the string
variable RESULT.

%D: Conversion into a string with an integer value (INTEGER).
Example:
N10 DEF INT INT_VAR=123
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF INT_VAR:%D",INT_VAR)
Result: The character string "CONTENT OF INT_VAR:123" is written to the string
variable RESULT.

%<m>D: Conversion into a string with an integer value (INTEGER). The string has a minimum
length of <m> characters. The missing locations are filled with spaces, left-justified.
Example:
N10 DEF INT INT_VAR=-123
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF INT_VAR:%6D",INT_VAR)
Result: The character string "CONTENT OF INT_VAR:xx-123" is written to string
variable RESULT ("x" in the example represents spaces).

%F: Conversion into a string with a decimal number with 6 decimal places. Where rele‐
vant, the decimal places are rounded-off or filled with 0.
Example:
N10 DEF REAL REAL_VAR=-1.2341234EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%F",REAL_VAR)
Result: The string variable RESULT is written with the character string "CONTENT
OF REAL_VAR: -1234.123400".

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 93

%<m>F: Conversion into a string with a decimal number with 6 decimal places and a total
length of at least <m> characters. Where relevant, the decimal places are rounded-
off or filled with 0. Missing characters are filled up to the total length <m> using
spaces, left-justified.
Example:
N10 DEF REAL REAL_VAR=-1.23412345678EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%15F",REAL_VAR)
Result: The string variable RESULT is written with the character string "CONTENT
OF REAL_VAR: xxx-1234.123457" (where "x" is a placeholder for space).

%.<n>F: Conversion into a string with a decimal number with <n> decimal places. Where
relevant, the decimal places are rounded-off or filled with 0.
Example:
N10 DEF REAL REAL_VAR=-1.2345678EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%.3F",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:-1234.568" is written to the
string variable RESULT.

%<m>.<n>F: Conversion into a string with a decimal number with <n> decimal places and a total
length of at least <m> characters. Where relevant, the decimal places are rounded-
off or filled with 0. Missing characters are filled up to the total length <m> using
spaces, left-justified.
Example:
N10 DEF REAL REAL_VAR=-1.2341234567890EX+03
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%10.2F",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xx-1234.12" is written to the
string variable RESULT ("x" in the example represents spaces).

%E: Conversion into a string with a decimal number in the exponential representation.
The mantissa is saved, normalized with one pre-decimal place and 6 decimal places.
Where relevant, the decimal places are rounded-off or filled with 0. The exponent
starts with the keyword "EX". It is followed by the sign ("+" or "-") and a two or three-
digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.567890
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%E",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:-1.234568EX+03" is written
to the string variable RESULT.

%<m>E: Conversion into a string with a decimal number in the exponential representation and
a total length of at least <m> characters. The missing characters are filled with
spaces, left-justified. The mantissa is saved, normalized with one pre-decimal place
and 6 decimal places. Where relevant, the decimal places are rounded-off or filled
with 0. The exponent starts with the keyword "EX". It is followed by the sign ("+" or
"-") and a two or three-digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.5
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%20E",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxxxxx-1.234500EX+03" is
written to the string variable RESULT ("x" in the example represents spaces).

Flexible NC programming
2.9 String operations

Job Planning
94 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

%.<n>E: Conversion into a string with a decimal number in the exponential representation.
The mantissa is saved, normalized with one pre-decimal place and <n> decimal
places. Where relevant, the decimal places are rounded-off or filled with 0. The ex‐
ponent starts with the keyword "EX". It is followed by the sign ("+" or "-") and a two
or three-digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.5678
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%.2E",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:-1.23EX+03" is written to
the string variable RESULT.

%<m>.<n>E: Conversion into a string with a decimal number in the exponential representation and
a total length of at least <m> characters. The missing characters are filled with
spaces, left-justified. The mantissa is saved, normalized with one pre-decimal place
and <n> decimal places. Where relevant, the decimal places are rounded-off or filled
with 0. The exponent starts with the keyword "EX". It is followed by the sign ("+" or
"-") and a two or three-digit number.
Example:
N10 DEF REAL REAL_VAR=-1234.5678
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%12.2E", REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xx-1.23EX+03" is written to
the string variable RESULT ("x" in the example represents spaces).

%G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential representation: If the absolute value to be represented is
less than 1.0EX-04 or greater than/equal to 1.0EX+06, then the exponential notation
is selected, otherwise the decimal notation. A maximum of six significant places are
displayed or if required, rounded-off.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:0.000123457" is written to
the string variable RESULT.
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+06
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:1.23457EX+06" is written
to the string variable RESULT.

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 95

%<m>G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential notation (like %G). The string has a total length of at least
<m> characters. The missing characters are filled with spaces, left-justified.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%15G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxxx0.000123457" is writ‐
ten to the string variable RESULT ("x" in the example represents spaces).
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+06
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%15G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxx1.23457EX+06" is writ‐
ten to the string variable RESULT ("x" in the example represents spaces).

%.<n>G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential representation. A maximum of <n> significant places are
displayed or if required, rounded-off. If the absolute value to be represented is less
than 1.0EX-04 or greater than/equal to 1.0EX(+<n>), then the exponential notation
is selected, otherwise the decimal notation.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%.3G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:0.000123" is written to the
string variable RESULT.
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+03
N20 DEF STRING[80] RESULT
N30 RESULT = SPRINT("CONTENT OF REAL_VAR:%.3G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:1.23EX+03" is written to
the string variable RESULT.

%<m>.<n>G: Conversion into a string with a decimal number – depending on the value range – in
a decimal or exponential notation (like %.<n>G). The string has a total length of at
least <m> characters. The missing characters are filled with spaces, left-justified.
Example with decimal notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX-04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%12.4G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xxx0.0001235" is written to
the string variable RESULT ("x" in the example represents spaces).
Example with exponential notation:
N10 DEF REAL REAL_VAR=1.234567890123456EX+04
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF REAL_VAR:%12.4G",REAL_VAR)
Result: The character string "CONTENT OF REAL_VAR:xx1.235EX+06" is written
to the string variable RESULT ("x" in the example represents spaces).

Flexible NC programming
2.9 String operations

Job Planning
96 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

%.<n>P: Converting a REAL value into an INTEGER value taking into account <n> decimal
places. The INTEGER value is output as a 32-bit binary number. If the value to be
converted cannot be represented with 32 bits, then processing is interrupted with an
alarm.
As a byte sequence generated using the format statement %.<n>P can also contain
binary zeroes, then the total string that is generated in this way no longer corresponds
to the conventions of the NC data type STRING. As a consequence, it can neither
be saved in a variable, type STRING, nor be further processed using the string com‐
mands of the NC language. The only possible use is to transfer the parameter to the
WRITE command with output at an appropriate external device (see the following
example).
As soon as the <Format_String> contains a format description, type %P then the
complete string, with the exception of the binary number generated with %.<n>P, is
output corresponding to the MD10750 $MN_SPRINT_FORMAT_P_CODE in the AS‐
CII character code, ISO (DIN6024) or EIA (RS244). If a character that cannot be
converted is programmed, then processing is interrupted with an alarm.
Example:
N10 DEF REAL REAL_VAR=123.45
N20 DEF INT ERROR
N30 DEF STRING[20] EXT_DEVICE="/ext/dev/1"
...
N100 EXTOPEN(ERROR,EXT_DEVICE)
N110 IF ERROR <> 0
... ; error handling
N200 WRITE(ERROR,EXT_DEVICE,SPRINT("INTEGER BINARY CODED:%.
3P",REAL_VAR)
N210 IF ERROR <> 0
… ; error handling
Result: The string "INTEGER BINARY CODED: 'H0001E23A'" is transferred to the
output device /ext/dev/1. The hexadecimal value 0x0001E23A corresponds to the
decimal value 123450.

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 97

%<m>.<n>P: Conversion of a REAL value corresponding to the setting in machine data
MD10751 $MN_SPRINT_FORMAT_P_DECIMAL into a string with:
● An integer of <m> + <n> places or
● A decimal number with a maximum of <m> pre-decimal places and precisely <n>

decimal places.
Just the same as for the format description %.<n>P, the complete string is saved in
the character code defined by MD10750 $MN_SPRINT_FORMAT_P_CODE.
Conversion for MD10751 = 0:
The REAL value is converted into a string with an integer number of <m> + <n>
places. If required, decimal places are rounded-off to <n> places or filled with 0. The
missing pre-decimal places are filled with spaces. The minus sign is attached, left-
justified; a space is entered instead of the plus sign.
Example:
N10 DEF REAL REAL_VAR=-123.45
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("PUNCHED TAPE FORMAT:%5.3P",REAL_VAR)
Result: The character string "PUNCHED TAPE FORMAT:-xx123450" is written to
the string variable RESULT ("x" in the example represents spaces).
Conversion for MD10751 = 1:
The REAL value is converted into a string with a decimal number with a maximum
of <m> pre-decimal places and precisely <n> decimal places. Where necessary, the
pre-decimal places are cut-off and the decimal places are rounded-off or filled with
0. If <n> is equal to 0, then the decimal point is also omitted.
Example:
N10 DEF REAL REAL_VAR1=-123.45
N20 DEF REAL REAL_VAR2=123.45
N30 DEF STRING[80] RESULT
N40 RESULT=SPRINT("PUNCHED TAPE FORMAT:%5.3P VAR2:%2.0P",
REAL_VAR1,REAL_VAR2)
Result: The character string "PUNCHED TAPE FORMAT:-123.450 VAR2:23" is writ‐
ten to the string variable RESULT.

%S: Inserting a string.
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%S",STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:ABCDEFG" is written to
the string variable RESULT.

%<m>S: Inserting a string with a minimum of <m> characters. The missing places are filled
with spaces.
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%10S",STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:xxxABCDEFG" is written
to the string variable RESULT ("x" in the example represents spaces).

Flexible NC programming
2.9 String operations

Job Planning
98 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

%.<n>S: Inserting <n> characters of a string (starting with the first character).
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%.3S",STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:ABC" is written to the
string variable RESULT.

%<m>.<n>S: Inserting <n> characters of a string (starting with the first character). The total length
of the generated string has at least <m> characters. The missing places are filled
with spaces.
Example:
N10 DEF STRING[16] STRING_VAR="ABCDEFG"
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("CONTENT OF STRING_VAR:%10.5S", STRING_VAR)
Result: The character string "CONTENT OF STRING_VAR:xxxxxABCDE" is written
to the string variable RESULT ("x" in the example represents spaces).

%X: Converting an INTEGER value into a string with the hexadecimal notation.
Example:
N10 DEF INT INT_VAR='HA5B8’
N20 DEF STRING[80] RESULT
N30 RESULT=SPRINT("INTEGER HEXADECIMAL:%X",INT_VAR)
Result: The character string "INTEGER HEXADECIMAL:A5B8" is written to the string
variable RESULT.

Note

A property of the NC language, where a distinction is not made between uppercase and
lowercase letters for identifiers and keywords, also applies to the format descriptions. As a
consequence, you can program using either lowercase or uppercase letters without any
functional difference.

Combination options
The following table provides information as to which NC data types can be combined with
which format description. The rules regarding implicit data type conversion apply (see "Data
types (Page 58)").

 NC data types
BOOL CHAR INT REAL STRING AXIS FRAME

%B + + + + + - -
%C - + - - + - -
%D + + + + - - -
%F - - + + - - -
%E - - + + - - -
%G - - + + - - -
%S - + - - + - -
%X + + + - - - -
%P - - + + - - -

Flexible NC programming
2.9 String operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 99

Note

The table indicates that the NC data types AXIS and FRAME cannot be directly used in the
SPRINT function. However it is possible:
● To convert the AXIS data type into a string using the AXSTRING function – which can then

be processed with SPRINT.
● To read the individual values of the FRAME data type per frame component access. As a

consequence, a REAL data type is obtained, which can be processed with SPRINT.

Flexible NC programming
2.9 String operations

Job Planning
100 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.10 Program jumps and branches

2.10.1 Return jump to the start of the program (GOTOS)
The GOTOS command can be used to jump back to the beginning of a main or subprogram in
order to repeat the program.

Machine data can be used to set that for every return jump is made to the program start:

● The program runtime is set to "0".

● Workpiece counting is incremented by the value "1".

Syntax
GOTOS

Meaning

GOTOS: Jump statement where the destination is the beginning of the program.
The execution is controlled via the NC/PLC interface signal:
DB21, to DBX384.0 (control program branching)
Value: Meaning:
0 No return jump to the beginning of the program. Program execution is re‐

sumed with the next part program block after GOTOS.
1 Return jump to the beginning of the program. The part program is repeated.

Supplementary conditions
● GOTOS internally initiates a STOPRE (pre-processing stop).

● For a subprogram with data definitions (LUD variables) with the GOTOS, a jump is made to
the first program block after the definition section, i.e. data definitions are not executed
again. This is the reason that the defined variables retain the value reached in the GOTOS
block and are not reset to the standard values programmed in the definition section.

● The GOTOS command is not available in synchronized actions and technology cycles.

Example

Program code Comment
N10 ... ; Start of the program.
...
N90 GOTOS ; Jump to beginning of the program.
...

Flexible NC programming
2.10 Program jumps and branches

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 101

2.10.2 Program jumps to jump markers (GOTOB, GOTOF, GOTO, GOTOC)
Jump labels can be set in a program, which can be jumped to from another location within the
same program using the commands GOTOF, GOTOB, GOTO, or GOTOC. Program execution is
resumed with the statement that immediately follows the jump label. This means that branches
can be realized within the program.

In addition to jump labels, main and sub-block numbers are possible as jump designation.

If a jump condition (IF ...) is formulated before the jump statement, the program jump is
only executed if the jump condition is fulfilled.

Syntax
GOTOB <jump destination>
IF <jump condition> == TRUE GOTOB <jump destination>

GOTOF <jump destination>
IF <jump condition> == TRUE GOTOF <jump destination>

GOTO <jump destination>
IF <jump condition> == TRUE GOTO <jump destination>

GOTOC <jump destination>
IF <jump condition> == TRUE GOTOC <jump destination>

Meaning

GOTOB: Jump statement with jump destination toward the beginning of the program.
GOTOF: Jump statement with jump destination toward the end of the program.
GOTO: Jump statement with jump destination search. The search is first made in the

direction of the end of the program, then in the direction of the beginning of the
program.

GOTOC: Same effect as for GOTO with the difference that Alarm 14080 "Jump designa‐
tion not found" is suppressed.
This means that program execution is not interrupted in the case that the jump
destination search is unsuccessful – but is continued with the program line fol‐
lowing the GOTOC command.

<jump
destination>:

Jump destination parameter
Possible data include:
<jump label>: Jump destination is the jump label set in the program

with a user-defined name:<jump label>:
<block number>: Jump destination is main block or sub-block number

(e.g.: 200, N300)
STRING type variable: Variable jump destination. The variable stands for a

jump label or a block number.
IF: Keyword to formulate the jump condition.

The jump condition permits all comparison and logical operations (result: TRUE
or FALSE). The program jump is executed if the result of this operation is TRUE.

Flexible NC programming
2.10 Program jumps and branches

Job Planning
102 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note
Jump labels

Jump labels are always located at the beginning of a block. If a program number exists, the
jump label is located immediately after the block number.

The following rules apply when naming jump labels:
● Number of characters:

– Minimum 2
– Maximum 32

● Permissible characters are:
– Letters
– Numbers
– Underscores

● The first two characters must be letters or underscores.
● The name of the jump label is followed by a colon (":").

Supplementary conditions
● The jump destination can only be a block with jump label or block number that is located

within the program.

● A jump statement without jump condition must be programmed in a separate block. This
restriction does not apply to jump statements with jump conditions. In this case, several
jump statements can be formulated in a block.

● For programs with jump statements without jump conditions, the end of the program M2/
M30 does not necessarily be at the end of the program.

Examples

Example 1: Jumps to jump labels

Program code Comment
N10 …
N20 GOTOF Label_1 ; Jump toward end of program to

; jump label "Label_1".
N30 …
N40 Label_0: R1=R2+R3 ; Jump label "Label_0" set.
N50 …
N60 Label_1: ; Jump label "Label_1" set.
N70 …
N80 GOTOB Label_0 ; Jump toward beginning of program

; to the jump label "Label_0."
N90 …

Flexible NC programming
2.10 Program jumps and branches

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 103

Example 2: Indirect jump to the block number

Program code Comment
IF <condition> == TRUE
 R10=100 ; Assign jump destination
ELSE
 R10=110 ; Assign jump destination
ENDIF
; Jump toward end of program to the block whose block number is located in R10
N10 GOTOF "N"<<R10
...
N90 ...
N100 ... ; Jump destination
N110 ...
...

Example 3: Jump to variable jump destination

Program code Comment
DEF STRING[20] DESTINATION
IF <condition> == TRUE
 DESTINATION = "Label1" ; Assign jump destination
ELSE
 DESTINATION = “Label2" ; Assign jump destination
ENDIF
; Jump toward end of program to the variable jump destination "Content of DESTINA-
TION."
GOTOF DESTINATION
Label1: T="Drill1" ; Jump destination 1
...
Label2: T="Drill2" ; Jump destination 2
...

Example 4: Jump with jump condition

Program code Comment
N40 R1=30 R2=60 R3=10 R4=11 R5=50 R6=20 ; Assignment of the initial values
N41 LA1: G0 X=R2*COS(R1)+R5 Y=R2*SIN(R1)+R6 ; Jump label LA1
N42 R1=R1+R3 R4=R4-1
; IF jump condition == TRUE
; THEN jump toward beginning of program to the jump label LA1
N43 IF R4>0 GOTOB LA1
N44 M30 ; End of program

Flexible NC programming
2.10 Program jumps and branches

Job Planning
104 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.10.3 Program branch (CASE ... OF ... DEFAULT ...)
The CASE function provides the possibility of checking the actual value (type: INT) of a variable
or an arithmetic function and, depending on the result, to jump to different positions in the
program.

Syntax
CASE(<expression>) OF <constant_1> GOTOF <jump target_1>
<constant_2> GOTOF <jump target_2> ... DEFAULT GOTOF <jump target_n>

Meaning

CASE: Jump statement
<expression>: Variable or arithmetic function
OF: Keyword to formulate conditional program branches.
<constant_1>: First specified constant value for the variable or arithmetic function

Type: INT
<constant_2>: Second specified constant value for the variable or arithmetic function

Type: INT
DEFAULT: For the cases where the variable or arithmetic function does not assume

any of the specified constant values, the DEFAULT statement can be used
to determine the jump target.
Note:
If the DEFAULT statement is not programmed, then in these cases, the
block following the CASE statement is the jump target.

GOTOF: Jump statement with jump target towards the end of the program.
Instead of GOTOF all other GOTO commands can be programmed (refer to
the subject "Program jumps to jump markers").

<jump target_1>: A branch is made to this jump target if the value of the variable or arithmetic
function corresponds to the first specific constant.
The jump target can be specified as follows:
<jump marker>: Jump target is the jump marker (label) set in the

program with a user-defined name: <jump
marker>:

<block number>: Jump target is main block or sub-block number
(e.g.: 200, N300)

STRING type varia‐
ble:

Variable jump target. The variable stands for a jump
marker or a block number.

<jump target_2>: A branch is made to this jump target if the value of the variable or arithmetic
function corresponds to the second specified constant.

<jump target_n>: A branch is made to this jump target if the value of the variable does not
assume the specified constant value.

Example

Program code
...

Flexible NC programming
2.10 Program jumps and branches

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 105

Program code
N20 DEF INT VAR1 VAR2 VAR3
N30 CASE(VAR1+VAR2-VAR3) OF 7 GOTOF Label_1 9 GOTOF La-
bel_2 DEFAULT GOTOF Label_3

N40 Label_1: G0 X1 Y1
N50 Label_2: G0 X2 Y2
N60 Label_3: G0 X3 Y3
...

The CASE statement from N30 defines the following program branch possibilities:

1. If the value of the arithmetic function VAR1+VAR2-VAR3 = 7, then jump to the block with
the jump marker definition "Label_1" (→ N40).

2. If the value of the arithmetic function VAR1+VAR2-VAR3 = 9, then jump to the block with
the jump marker definition "Label_2" (→ N50).

3. If the value of the arithmetic function VAR1+VAR2-VAR3 is neither 7 nor 9, then jump to
the block with the jump marker definition "Label_3" (→ N60).

Flexible NC programming
2.10 Program jumps and branches

Job Planning
106 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)
Program section repetition allows you to repeat existing program sections within a program in
any order.

The program lines or program sections to be repeated are identified by jump markers (labels).

Note
Jump markers (labels)

Jump markers are always located at the beginning of a block. If a program number exists, the
jump marker is located immediately after the block number.

The following rules apply when naming jump markers:
● Number of characters:

– Minimum 2
– Maximum 32

● Permissible characters are:
– Letters
– Numbers
– Underscores

● The first two characters must be letters or underscores.
● The name of the jump marker is followed by a colon (":").

Syntax

1. Repeat individual program line:

<jump marker>: ...
...
REPEATB <jump marker> P=<n>
...

2. Repeat program section between jump marker and REPEAT statement:

<jump marker>: ...
...
REPEAT <jump marker> P=<n>
...

3. Repeat section between two jump markers:

<start jump marker>: ...
...
<end jump marker>: ...
...
REPEAT <start jump marker> <end jump marker> P=<n>
...

Flexible NC programming
2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 107

Note

It is not possible to nest the REPEAT statement with the two jump markers in parentheses. If
the <start jump marker> appears before the REPEAT statement and the <end jump
marker> is not reached before the REPEAT statement, the section between the <start
jump marker> and the REPEAT statement will be repeated.

4. Repeat section between jump marker and ENDLABEL:

<jump marker>: ...
...
ENDLABEL: ...
...
REPEAT <jump marker> P=<n>
...

Note

It is not possible to nest the REPEAT statement with the <jump marker> and the
ENDLABEL in parentheses. If the <jump marker> appears before the REPEAT statement and
the ENDLABEL is not reached before the REPEAT statement, the section between the <jump
marker> and the REPEAT statement will be repeated.

Meaning

REPEATB: Command for repeating a program line
REPEAT: Command for repeating a program section
<jump marker>: The <jump marker> identifies:

● The program line to be repeated (in the case of REPEATB)
or

● The start of the program section to be repeated (in the case of REPEAT)
The program line identified by the <jump marker> can appear before or
after the REPEAT/REPEATB statement. The search initially commences to‐
ward the start of the program. If the jump marker is not found in this direction,
the search continues working toward the end of the program.
Exception:
If the program section between the jump marker and the REPEAT statement
needs to be repeated (see 2. under Syntax), the program line identified by
the <jump marker> has to appear before the REPEAT statement, since in
this case the search runs only toward the beginning of the program.
If the line with the <jump marker> contains further operations, these are
executed again on each repetition.

ENDLABEL: Keyword marking the end of a program section to be repeated.
If the line with the ENDLABEL contains further operations, these are executed
again on each repetition.
ENDLABEL can be used more than once in the program.

Flexible NC programming
2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)

Job Planning
108 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

P: Address for specifying the number of repetitions
<n>: Number of program section repetitions

Type: INT
The program section to be repeated is repeated <n> times. After the last
repetition, the program is resumed at the line following the REPEAT/
REPEATB line.
Note:
In the absence of a number being specified for P=<n>, the program section
is repeated just once.

Examples

Example 1: Repeat individual program line

Program code Comment
N10 POSITION1: X10 Y20
N20 POSITION2: CYCLE(0,,9,8) ;Position cycle
N30 ...
N40 REPEATB POSITION1 P=5 ; Execute BLOCK N10 five times.
N50 REPEATB POSITION2 ; Execute block N20 once.
N60 ...
N70 M30

Example 2: Repeat program section between jump marker and REPEAT statement:

Program code Comment
N5 R10=15
N10 Begin: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10
N50 X=-R10
N60 Y=-R10
N70 Z=10+R10
N80 REPEAT BEGIN P=4 ; Execute section from N10 to N70 four times.
N90 Z10
N100 M30

Example 3: Repeat section between two jump markers

Program code Comment
N5 R10=15
N10 Begin: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10
N50 X=-R10

Flexible NC programming
2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 109

Program code Comment
N60 Y=-R10
N70 END: Z=10
N80 Z10
N90 CYCLE(10,20,30)
N100 REPEAT BEGIN END P=3 ; Execute section from N10 to N70 three times.
N110 Z10
N120 M30

Example 4: Repeat section between jump marker and ENDLABEL

Program code Comment
N10 G1 F300 Z-10
N20 BEGIN1:
N30 X10
N40 Y10
N50 BEGIN2:
N60 X20
N70 Y30
N80 ENDLABEL: Z10
N90 X0 Y0 Z0
N100 Z-10
N110 BEGIN3: X20
N120 Y30
N130 REPEAT BEGIN3 P=3 ; Execute section from N110 to N120 three times.
N140 REPEAT BEGIN2 P=2 ; Execute section from N50 to N80 twice.
N150 M100
N160 REPEAT BEGIN1 P=2 ; Execute section from N20 to N80 twice.
N170 Z10
N180 X0 Y0
N190 M30

Example 5: Milling, machine drill position with different technologies

Program code Comment
N10 CENTER DRILL() ; Load centering drill.
N20 POS_1: ;Drilling positions 1
N30 X1 Y1
N40 X2
N50 Y2
N60 X3 Y3
N70 ENDLABEL:
N80 POS_2: ;Drilling positions 2
N90 X10 Y5
N100 X9 Y-5
N110 X3 Y3

Flexible NC programming
2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)

Job Planning
110 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N120 ENDLABEL:
N130 DRILL() ; Change drill and drilling cycle.
N140 THREAD(6) ; Load tap M6 and threading cycle.
N150 REPEAT POS_1 ; Repeat program section once from POS_1 up to ENDLABEL.
N160 DRILL() ; Change drill and drilling cycle.
N170 THREAD(8) ; Load tap M8 and threading cycle.
N180 REPEAT POS_2 ; Repeat program section once from POS_2 up to ENDLABEL.
N190 M30

Further information
● Program section repetitions can be nested. Each call uses a subprogram level.

● If M17 or RET is programmed during processing of a program section repetition, the
repetition is canceled. The program is resumed at the block following the REPEAT line.

● In the actual program display, the program section repetition is displayed as a separate
subprogram level.

● If the level is canceled during the program section repetition, the program resumes at the
point after the program section repetition call.
Example:

Program code Comments
N5 R10=15
N10 BEGIN: R10=R10+1 ;Width
N20 Z=10-R10
N30 G1 X=R10 F200
N40 Y=R10 ; Interrupt level
N50 X=-R10
N60 Y=-R10
N70 END: Z10
N80 Z10
N90 CYCLE(10,20,30)
N100 REPEAT BEGIN END P=3
N120 Z10 ; Resume program execution.
N130 M30

● Check structures and program section repetitions can be used in combination. There should
be no overlap between the two, however. A program section repetition should appear within
a check structure branch or a check structure should appear within a program section
repetition.

● If jumps and program section repetitions are mixed, the blocks are executed purely
sequentially. For example, if a jump is performed from a program section repetition,
processing continues until the programmed end of the program section is found.
Example:

Flexible NC programming
2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 111

Program code
N10 G1 F300 Z-10
N20 BEGIN1:
N30 X=10
N40 Y=10
N50 GOTOF BEGIN2
N60 ENDLABEL:
N70 BEGIN2:
N80 X20
N90 Y30
N100 ENDLABEL: Z10
N110 X0 Y0 Z0
N120 Z-10
N130 REPEAT BEGIN1 P=2
N140 Z10
N150 X0 Y0
N160 M30

Note

The REPEAT statement should appear after the traversing block.

Flexible NC programming
2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)

Job Planning
112 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.12 Check structures
The control processes the NC blocks as standard in the programmed sequence.

This sequence can be variable by programming alternative program blocks and program loops.
These check structures are programmed using the key words IF, ELSE, ENDIF, LOOP, FOR,
WHILE and REPEAT.

NOTICE

Programming error

Check structures may only be inserted in the statement section of a program. Definitions in
the program header may not be executed conditionally or repeatedly.

It is not permissible to superimpose macros on keywords for check structures or on jump
targets. No such check is made when the macro is defined.

Effectiveness
The check structure cannot be used program-wide.

Nesting depth
A nesting depth of up to 16 check structures can be set up on each subprogram level.

Runtime response
In interpreter mode (active as standard), it is possible to shorten program processing times
more effectively by using program branches than can be obtained with check structures.

Flexible NC programming
2.12 Check structures

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 113

There is no difference between program branches and check structures in precompiled cycles.

Current block display for program loops
If only selected blocks are executed within a program loop, the last main run block before the
program loop is shown in the current block display.

So that the processed selected blocks are also visible in the current block display, e.g. for
diagnostic purposes, the decoding single block SBL2 must be activated.

References
Function Manual, Basic Functions, Section: Mode group, channel, program operation, reset
response (K1) > Single block > Decoding single block SBL2 with implicit preprocessing stop

Grinding without main run block
If, within a program loop, no main run block has been programmed, then the loop is pre-
processed until the loop condition is satisfied.

As a consequence, a high level of utilization can occur and this can have a negative impact
on the display.

The STOPRE command or a dwell time G04 of 0 seconds can be inserted in the loop as
countermeasure.

Supplementary conditions
● Blocks with check structure elements cannot be suppressed.

● Jumper markers (labels) are not permitted in blocks with check structure elements.

● Check structures are processed interpretively. When a loop end is detected, a search is
made for the loop beginning, allowing for the check structures found in the process. For
this reason, the block structure of a program is not checked completely in interpreter mode.

● It is not generally advisable to use a mixture of check structures and program branches.

● A check can be made to ensure that check structures are nested correctly when cycles are
preprocessed.

2.12.1 Conditional statement and branch (IF, ELSE, ENDIF)

Conditional statement: IF - program block - ENDIF
With a conditional statement, the program block between IF and ENDIF is only executed when
the condition is satisfied.

Branch: IF - program block_1 - ELSE - program block_2 - ENDIF
With a branch, one of two program blocks is always executed.

If the condition is satisfied, program block_1 between IF and ELSE is executed.

If the condition is not satisfied, program block_2 between ELSE and ENDIF is executed.

Flexible NC programming
2.12 Check structures

Job Planning
114 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax

Conditional statement

IF <condition>
Program block ; Execution when: <condition> == TRUE
ENDIF

Branch

IF <condition>
 Program block_1 ; Execution when: <condition> == TRUE
ELSE
 Program block_2 ; Execution when: <condition> == FALSE
ENDIF

Meaning

IF: Introduces the conditional statement or branch.
ELSE: Introduces the alternative program block.
ENDIF: Marks the end of the conditional statement or branch.
<condition>: Logical expression that is evaluated as TRUE or FALSE.

Example: Tool change subprogram

Program code Comment
PROC L6 Tool change routine
N500 DEF INT TNR_AKTUELL Variable for active T number
N510 DEF INT TNR_VORWAHL Variable for preselected T number
 Determine current tool
N520 STOPRE
N530 IF $P_ISTEST In the program test mode ...
N540 TNR_AKTUELL = $P_TOOLNO ... The "current" tool is read

from the program context.
N550 ELSE Otherwise ...
N560 TNR_AKTUELL = $TC_MPP6[9998,1] ... The tool of the spindle is

read-out.
N570 ENDIF
N580 GETSELT(TNR_VORWAHL) Read the T number of the pre-se-

lected tool in the spindle.
N590 IF TNR_AKTUELL <> TNR_VORWAHL If the pre-selected tool is

still not the current tool,
then ...

N600 G0 G40 G60 G90 SUPA X450 Y300 Z300 D0 ... Approach tool change posi-
tion ...

N610 M206 ... and execute a tool change.
N620 ENDIF

Flexible NC programming
2.12 Check structures

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 115

Program code Comment
N630 M17

2.12.2 Continuous program loop (LOOP, ENDLOOP)
Endless loops are used in endless programs. At the end of the loop, there is always a branch
back to the beginning.

Syntax

LOOP
...
ENDLOOP

Meaning

LOOP: Initiates the endless loop.
ENDLOOP: Marks the end of the loop and results in a return jump to the beginning of the loop.

Example

Program code
...
LOOP
MSG ("no tool cutting edge active")
M0
STOPRE
ENDLOOP
...

2.12.3 Count loop (FOR ... TO ..., ENDFOR)
The count loop is used if an operation must be repeated with a fixed number of runs.

Syntax

FOR <variable> = <initial value> TO <end value>
...
ENDFOR

Flexible NC programming
2.12 Check structures

Job Planning
116 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

FOR: Initiates the count loop.
ENDFOR: Marks the end of the loop and results in a return jump to the beginning of the

loop, as long as the end value of the count has still not been reached.
<variable>: Count variable, which is incremented from the initial to the end value and is

increased by the value "1" at each run.
Type INT or REAL

Note:
The REAL type is used if R parameters are programmed for a count
loop, for example. If the count variable is of the REAL type, its value
is rounded to an integer.

<initial value>: Initial value of the count
Condition: The start value must be lower than the end value.

<full-scale
value>:

End value of the count

Examples

Example 1: INTEGER variable or R parameter as count variable
INTEGER variable as count variable:

Program code Comment
DEF INT iVARIABLE1
R10=R12-R20*R1 R11=6
FOR iVARIABLE1 = R10 TO R11 ; Count variable = INTEGER variable
 R20=R21*R22+R33
ENDFOR
M30

R parameter as count variable:

Program code Comment
R11=6
FOR R10=R12-R20*R1 TO R11 ; Count variable = R parameter (real variable)
 R20=R21*R22+R33
ENDFOR
M30

Example 2: Production of a fixed quantity of parts

Program code Comment
DEF INT WKPCCOUNT ; Defines type INT variable with the name

"WKPCCOUNT".

Flexible NC programming
2.12 Check structures

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 117

Program code Comment
FOR WKPCCOUNT = 0 TO 100 ; Initiates the count loop. The "WKPCCOUNT" vari-

able increments from the initial value "0" to the
end value "100".

G01 …
ENDFOR ; End of count loop
M30

2.12.4 Program loop with condition at start of loop (WHILE, ENDWHILE)
For a WHILE loop, the condition is at the beginning of the loop. The WHILE loop is executed
as long as the condition is fulfilled.

Syntax

WHILE <condition>
...
ENDWHILE

Meaning

WHILE: Initiates the program loop.
ENDWHILE: Marks the end of the loop and results in a return jump to the beginning of the

loop.
<condition>: The condition must be fulfilled so that the WHILE loop is executed.

Example

Program code Comment
...
WHILE $AA_IW[DRILL_AXIS] > -10 ; Call the WHILE loop under the following

condition: The actual WCS setpoint for the
drilling axis must be greater than -10.

G1 G91 F250 AX[DRILL_AXIS] = -1
ENDWHILE
...

2.12.5 Program loop with condition at the end of the loop (REPEAT, UNTIL)
For a REPEAT loop, the condition is at the end of the loop. The REPEAT loop is executed
once and repeated continuously until the condition is fulfilled.

Flexible NC programming
2.12 Check structures

Job Planning
118 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax

REPEAT
...
UNTIL <significance>

Meaning

REPEAT: Initiates the program loop.
UNTIL: Marks the end of the loop and results in a return jump to the beginning of the

loop.
<condition>: The condition that must be fulfilled so that the REPEAT loop is no longer exe‐

cuted.

Example

Program code Comment
...
REPEAT ; Call the REPEAT loop.
...
UNTIL ... ; Check whether the condition is fulfilled.
...

2.12.6 Program example with nested check structures

Program code Comment
LOOP
IF NOT $P_SEARCH ; IF no block search
 G1 G90 X0 Z10 F1000
 WHILE $AA_IM[X] <= 100 ; WHILE (setpoint X axis <= 100)
 G1 G91 X10 F500 ; Drilling pattern
 Z–5 F100
 Z5
 ENDWHILE
 ELSE ; ELSE block search
 MSG("No drilling during block search")
 ENDIF ; ENDIF
 $A_OUT[1] = 1 ; Next drilling plate
 G4 F2
ENDLOOP
M30

Flexible NC programming
2.12 Check structures

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 119

2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE,
SETM, CLEARM)

In principle, a channel of the NC can execute the program started in it independently of other
channels in its mode group. If, however, several programs in several channels of the mode
group are involved in machining a workpiece, the program sequences in the different channels
must be coordinated with the following coordination commands.

Requirement
All of the channels involved in the program coordination must belong to the same mode group:

MD10010 $MC_ASSIGN_CHAN_TO_MODE_GROUP[<Channel>] = <Mode group number>

Channel name instead of channel number
Instead of the channel numbers, the channel names entered in MD20000
$MC_CHAN_NAME[<Channel index>] can also be used as parameters of the predefined
procedures for the program coordination. Use of the channel names in the NC programs must
be enabled first:

MD10280 $MN_PROG_FUNCTION_MASK, bit 1 = TRUE

Syntax
INIT(<ChanNr>, <Prog>, <AckMode>)
START(<ChanNr>, <ChanNr>, ...)
WAITM(<MarkNr>, <ChanNr>, <ChanNr>, ...)
WAITE(<ChanNr>, <ChanNr>, ...)
WAITMC(<MarkNr>, <ChanNr>, <ChanNr>, ...)
SETM(<MarkNr>, <MarkNr>, ...)
CLEARM(<MarkNr>, <MarkNr>, ...)

Meaning

INIT(): Predefined procedure for selecting the NC program that is to be executed in the speci‐
fied channel

START(): Predefined procedure for starting the program selected in the respective channel
WAITM(): Predefined procedure to wait for a wait marker to be reached in the specified channels

The specified wait marker is set by WAITM in the same channel. The previous block is
terminated with exact stop. The wait marker is deleted after synchronization.
Ten markers can be set per channel simultaneously.

WAITE(): Predefined procedure to wait for the end of program in one or more other channels
WAITMC(): 1) Predefined procedure to wait for a wait marker to be reached in the specified channels

In contrast to WAITM, the braking of the axes on exact stop is only initiated if the other
channels have not yet reached the wait marker.

SETM(): 1) Predefined procedure to set one or more wait markers for the channel coordination
The execution in the own channel is not affected by this.
SETM remains valid after a channel reset and NC start.

Flexible NC programming
2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)

Job Planning
120 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

CLEARM(): 1) Predefined procedure to delete one or more wait markers for the channel coordination
The execution in the own channel is not affected by this.
CLEARM() deletes all wait markers in the channel.
CLEARM(0) only deletes wait marker "0".
CLEARM remains valid after a channel reset and NC start.

<ChanNr>: Channel number
The number of the own channel does not have to be specified.
Type: INT

<Prog>: Absolute or relative path specification (optional) + program name
Type: STRING
For the path specification, see:
References
Programming Manual, Work Planning, Section "File and Program Administration" >
"Program memory" > "Addressing the files of the program memory" (Page 217)

<AckMode>:

Acknowledgment mode (optional)
Type: CHAR
Val‐
ues:

"N" Without acknowledgment
The program execution is continued after the command has been sent.
The sender is not informed if the command cannot be executed suc‐
cessfully.

"S" Synchronous acknowledgment
The program execution is stopped until the receiving component has
acknowledged the command. If the acknowledgment is positive, the
next command is executed. If the acknowledgment is negative, an error
message is output.

<MarkNr>: Number of the wait marker
Note
In a multi-channel system, a maximum of 100 wait markers are available (wait markers
0 ... 99).
Only wait marker 0 is available in a single-channel system.

1) For user-specific communication and/or coordination of channels, wait markers can be deployed
using SETM/CLEARM - also without using the conditional wait command WAITMC. The wait marks keep
their value - also after a channel reset and NC start.

Examples

START using channel names from MD20000
● Parameterization

MD10280 $MN_PROG_FUNCTION_MASK, bit 1 = TRUE
$MC_CHAN_NAME[0] = "MACHINING" ; Name of channel 1
$MC_CHAN_NAME[1] = "INFEED" ; Name of channel 2

● Programming

Program code Comment
START(MACHINING) ; Start of channel 1
START(INFEED) ; Start of channel 2

Flexible NC programming
2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 121

START using local "channel names" and user variables

Program code Comment
DEF INT MACHINE = 1 ; Definition of user variable for channel 1
DEF INT LOADER = 2 ; Definition of user variable for channel 2
...
START(MACHINE) ; Start of channel 1
START(LOADER) ; Start of channel 2

START using local "channel names", user variables and parameterized channel names

Program code Comment
DEF INT chanNo1 ; Definition of user variable for channel 1
DEF INT chanNo2 ; Definition of user variable for channel 2
chanNo1 = CHAN_1 ; Assignment of parameterized channel name channel 1
chanNo2 = CHAN_2 ; Assignment of parameterized channel name channel 2
...
START(chanNo1) ; Start of channel 1
START(chanNo2) ; Start of channel 2

INIT command with absolute path specification
Selection of program /_N_MPF_DIR/_N_ABSPAN1_MPF in channel 2.

Program code
INIT(2,"/_N_WCS_DIR/_N_SHAFT1_WPD/_N_CUT1_MPF")

INIT command with program name
Selection of the program with the name "MYPROG". The control searches for the program
using the search path.

Program code
INIT(2,"MYPROG")

Flexible NC programming
2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)

Job Planning
122 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program coordination with WAITM
● Channel 1: The program /_N_MPF_DIR/_N_MPF100_MPF has already been selected and

started.

Program code Comment
 ; Program MPF100
N10 INIT(2,"MPF200","N") ; Selection of program MPF200, channel 2
N11 START(2) ; Start of channel 2
...
N80 WAITM(1,1,2) ; Wait for WAIT marker 1 in channels 1 and

2
N81 ... ; Channel 1, N81 and channel 2, N71 are

; started synchronously
...
N180 WAITM(2,1,2) ; Wait for WAIT marker 2 in channels 1 and

2
N181 ... ; Channel 1, N181 and channel 2, N271 are

; started synchronously
...
N200 WAITE(2) ; Wait for end of program in channel 2
N201 ... ; N201 is only started after the end of

program
; MPF200 in channel 2

N201 M30 ; End of program channel 1

● Channel 2: In channel 1, the program MPF200_MPF is selected and started for channel 2
using blocks N10 and N20.

Program code Comment
;$PATH=/_N_MPF_DIR ; Program MPF200
...
N70 WAITM(1,1,2) Wait for WAIT marker 1 in channels 1 and 2
N71 ... ; Channel 1, N81 and channel 2, N71 are

; started synchronously
...
N270 WAITM(2,1,2) Wait for WAIT marker 2 in channels 1 and 2
N271 ... ; Channel 1, N181 and channel 2, N271 are

; started synchronously
...
N400 M30 End of program channel 2

Flexible NC programming
2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 123

Supplementary conditions

Non-synchronous start of execution of following blocks after WAIT markers
In the case of channel coordination using WAIT markers, a non-synchronous start when
executing the following blocks can occur. This behavior occurs if an action is triggered in one
of the channels immediately before reaching the common WAIT marker; the consequence of
which is implicit repositioning (REPOSA) in this delete distance-to-go.

Assumption: Current axis assignment in channels 1 and 2

● Channel 1: Axes X1 and U

● Channel 2: Axis X2

Table 2-2 Time sequence in channels 1 and 2

Channel 1 Channel 2 Description
... ... Arbitrary processing in channels 1 and 2

N100
WAITM(20,1,2)

Channel 1: Reaches the WAIT marker and waits for
synchronization with channel 2

Start of the GETD(U)
processing:
● Axis exchange
● Delete distance-to-

go
● REPOSA
End

N200 GETD(U) Channel 2: Requests axis U from channel 1
Channel 1: Processing of GET(U) in the background

N210
WAITM(20,1,2)

Channel 2: Reaches the WAIT mark. ⇒ This completes
the synchronization of channels 1 and 2

N220 G0 X2=100 Channel 2: Start of processing of N220

N110 G0 X1=100 Channel 1: Staggered start of processing of N110

Flexible NC programming
2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)

Job Planning
124 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.14 Interrupt routine (ASUB)

2.14.1 Function of an interrupt routine

Note

The terms "asynchronous subprogram (ASUB)" and "interrupt routine" are used
interchangeably in the description below to refer to the same functionality.

A typical example should clarify the function of an interrupt routine:

The tool breaks during machining. This triggers a signal that stops the current machining
process and simultaneously starts a subprogram – the so-called interrupt routine. The interrupt
routine contains all the statements which are to be executed in this case.

When the interrupt routine execution has finished and the machine is ready to continue
operation, the control jumps back to the main program and continues machining at the point
of interruption – depending on the REPOS command (see " Repositioning at contour
(Page 529) ").

CAUTION

Risk of collision

If a REPOS command has not been programmed in the subprogram, then the control goes to
the end point of the block that follows the interrupted block.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 125

References
Function Manual, Basic Functions; Mode Group, Channel, Program Operation, Reset
Response (K1), Section: "Asynchronous subprograms (ASUBs), interrupt routines"

2.14.2 Creating an interrupt routine

Create interrupt routine as subprogram
The interrupt routine is identified as a subprogram in the definition.

Example:

Program code Comment
PROC LIFT_Z ; Program name "ABHEB_Z"
N10 ... ; The NC blocks then follow:
...
N50 M17 ; Finally, end the program and return to the main program.

Saving modal G commands (SAVE)
The interrupt routine can be designated by defining with SAVE.

The SAVE attribute means that the active modal G commands are saved before calling the
interrupt routine and are reactivated after the end of the interrupt routine (see " Subprograms
with SAVE mechanism (SAVE) (Page 166) ").

This means that it is possible to resume processing at the interruption point after the interrupt
routine has been completed.

Example:

Program code
PROC LIFT_Z SAVE
N10 ...
...
N50 M17

Assign additional interrupt routines (SETINT)
SETINT statements can be programmed within the interrupt routine (see "Assign and start
interrupt routine (SETINT)" (Page 127)) therefore activating additional interrupt routines. They
are triggered via the input.

References
You will find more information on how to create subprograms in Section "Subprograms,
Macros".

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
126 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.14.3 Assign and start interrupt routine (SETINT, PRIO, BLSYNC)
The control has several fast inputs (inputs 1 ... 8), which initiate an interrupt (1 ... 8). Each
interrupt can be assigned a priority and an interrupt routine using the SETINT command. If the
interrupt is initiated by setting the fast input, then processing in the channel is interrupted and
the interrupt routine started.

Interrupt priority
If, in a part program, several inputs are assigned interrupts, then the interrupts must be
assigned different priorities.

An interrupt can be assigned a priority value from 1 ... 128. Priority value 1 corresponds to the
highest priority and 128 the lowest.

Syntax
SETINT(<n>) <NAME>
SETINT(<n>) PRIO=<value> <NAME>
SETINT(<n>) PRIO=<value> <NAME> BLSYNC
SETINT(<n>) PRIO=<value> <NAME> LIFTFAST

Meaning

SETINT(<n>): Input <n> is assigned the interrupt routine <Name>. The assigned interrupt routine
is started as soon as input <n> == 1 is detected.
Note:
If an already programmed input <n> is assigned another interrupt routine, then the
previous assignment is no longer effective.

<n>: Input number
Type: INT
Range of values: 1 ... 8

PRIO= : Priority of the interrupt
(optional)

<value>: Priority value
(optional)
Type: INT
Range of values: 1 ... 128 (1 ⇒ highest priority)

<NAME>: Name of the interrupt routine (subprogram)
BLSYNC: BLSYNC ensures that after initiating the interrupt, the system first waits until the

actual block has been completed. Only then is the interrupt routine executed.
(optional)

LIFTFAST: LIFTFAST ensures that after initiating the interrupt, initially a fast retraction is
realized (see Chapter "Fast retraction from the contour (SETINT LIFTFAST,
ALF) (Page 130)"). Only then is the interrupt routine executed.
(optional)

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 127

Supplementary conditions

Interrupt rules
1. For every interrupt that cannot be immediately executed, or is presently already being

processed, an additional interrupt request is saved. All other interrupt requests for this
interrupt are lost.

2. If an interrupt is currently being processed and an additional interrupt with higher priority
initiated, then this interrupts the lower-priority interrupt. The lower priority interrupt is
continued after the higher priority interrupt has been completed. If, while the higher priority
interrupt is being processed, additional requests are received for the lower-priority interrupt,
then one request is saved. All others are lost.

3. If an interrupt is currently being processed and an additional interrupt with higher priority
initiated, then this interrupts the lower-priority interrupt. The higher priority interrupt is
processed. If a higher priority interrupt is initiated, the actual interrupt is interrupted and the
higher priority interrupt processed. A maximum of six active interrupt levels are possible.
One interrupt level presently being processed and five waiting interrupt levels. For each
active interrupt level, a maximum of one additional interrupt request is saved. All other
interrupt requests are lost. Interrupt requests are also lost if these are requested for
additional interrupt levels (interrupt level ≥ 7).

Examples

Example 1: Assign interrupt routines and define the priority

Program code Comment
...
N20 SETINT(3) PRIO=1 ABHEB_Z ; IF input 3 == 1 THEN start interrupt routine

"ABHEB_Z"
N30 SETINT(2) PRIO=2 ABHEB_X ; IF input 2 == 1 THEN start interrupt routine

"ABHEB_X".
...

The interrupt routines are executed in the sequence of the priority values if the inputs become
available simultaneously (are energized simultaneously): First "ABHEB_Z", then "ABHEB_X".

Example 2: Newly assign an interrupt routine

Program code Comment
...
N20 SETINT(3) PRIO=2 ABHEB_Z ; IF input 3 == 1 THEN start interrupt routine

"ABHEB_Z"
...
N80 SETINT(3) PRIO=1 ABHEB_X ; IF input 3 == 1 THEN start interrupt routine

"ABHEB_X"
...

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
128 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.14.4 Deactivating/reactivating the assignment of an interrupt routine (DISABLE,
ENABLE)

A SETINT statement can be deactivated with DISABLE and reactivated with ENABLE without
losing the input → interrupt routine assignment.

Syntax
DISABLE(<n>)
ENABLE(<n>)

Meaning

DISABLE(<n>): Command: Deactivating the interrupt routine assignment of input <n>
ENABLE(<n>): Command: Reactivating the interrupt routine assignment of input <n>
<n>: Parameter: Number of the interrupt signal

Type: INT
Range of values: 1 ... 32

Example

Program code Comment
N20 SETINT(3) PRIO=1 ABHEB_Z ; If input 3 switches, then interrupt

; routine "ABHEB_Z" should start.
...
N90 DISABLE(3) ; The SETINT statement from N20 is deactivated.
...
N130 ENABLE(3) ; The SETINT statement from N20 is reactivated.
...

2.14.5 Delete assignment of interrupt routine (CLRINT)
An interrupt signal assignment defined with SETINT for an NC program (ASUP) can be deleted
with CLRINT.

Syntax
CLRINT(<n>)

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 129

Meaning

CLRINT(<n>): Command: Delete assignment of the interrupt signal <n> to the NC program
(ASUP) defined with SETINT <n>

<n>: Parameter: Number of the interrupt signal
Type: INT
Range of values: 1 ... 32

Example

Program code Comment
N20 SETINT(3) PRIO=2 ABHEB_Z
...
N50 CLRINT(3) ; The assignment between input "3" and inter-

rupt routine "ABHEB_Z" is deleted.

2.14.6 Fast retraction from the contour (SETINT LIFTFAST, ALF)
For a SETINT statement with LIFTFAST, when the input is switched, the tool is moved away
from the workpiece contour using fast retraction.

The further sequence is then dependent on whether the SETINT statement includes an
interrupt routine in addition to LIFTFAST:

With interrupt routine: After the fast retraction, the interrupt routine is executed.
Without interrupt routine: Machining is stopped after fast retraction and an alarm is output.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
130 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax
SETINT(<n>) PRIO=1 LIFTFAST
SETINT(<n>) PRIO=1 <NAME> LIFTFAST

Meaning

SETINT(<n>): Command: Assign input <n> to an interrupt routine. The assigned interrupt routine
starts when input <n> switches.

<n>: Parameter: Input number
Type: INT
Range of values: 1 ... 8

PRIO= : Defining the priority
<value>: Priority value

Range of values: 1 ... 128
Priority 1 corresponds to the highest priority.

<NAME>: Name of the subprogram (interrupt routine) that is to be executed.
LIFTFAST: Command: Fast retraction from the contour
ALF=… : Command: Programmable traverse direction (in motion block)

Regarding the possibilities of programming with ALF, refer to the subject "Travers‐
ing direction for fast retraction from the contour (Page 132)".

Supplementary conditions
Behavior for active frame with mirroring

When determining the retraction direction, a check is performed to see whether a frame with
mirror is active. In this case, for the retraction direction, right and left are interchanged referred
to the tangential direction. The direction components in tool direction are not mirrored. This
behavior is activated with the MD setting:

MD21202 $MC_LIFTFAST_WITH_MIRROR = TRUE

Example
A broken tool should be automatically replaced by a daughter tool. Machining is then continued
with the new tool.

Main program:

Main program Comment
N10 SETINT(1) PRIO=1 W_WECHS LIFTFAST ; When input 1 is switched, the

tool is immediately retracted from
the contour with fast retraction
(code no. 7 for tool radius compen-
sation G41). Then interrupt rou-
tine "W_WECHS" is executed.

N20 G0 Z100 G17 T1 ALF=7 D1
N30 G0 X-5 Y-22 Z2 M3 S300
N40 Z-7

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 131

Main program Comment
N50 G41 G1 X16 Y16 F200
N60 Y35
N70 X53 Y65
N90 X71.5 Y16
N100 X16
N110 G40 G0 Z100 M30

Subprogram:

Subprogram Comment
PROC W_CHANGE SAVE ; Subprogram where the actual operat-

ing state is saved
N10 G0 Z100 M5 ;Tool changing position, spindle stop
N20 T11 M6 D1 G41 ;Change tool
N30 REPOSL RMBBL M3 ; Reposition at the contour and return

jump into the main program (this is
programmed in a block)

2.14.7 Traversing direction for fast retraction from the contour

Retraction movement
The following G commands define the retraction movement plane:

● LFTXT
The retraction movement plane is defined by the path tangent and the tool direction (default
setting).

● LFWP
The plane of the retraction movement is the active working plane selected with G
commands G17, G18 or G19. The direction of the retraction movement is not dependent
on the path tangent. This allows a fast retraction to be programmed parallel to the axis.

● LFPOS
Retraction of the axis declared using POLFMASK/POLFMLIN to the absolute axis position
programmed with POLF.
ALF has no influence on the retraction direction for several axes and for several axes in a
linear system.
References:
Programming Manual, Fundamentals, Section: "Rapid retraction during thread cutting"

Programmable traversing direction (ALF=…)
The direction is programmed in discrete steps of 45 degrees with ALF in the plane of the
retraction movement.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
132 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The possible traversing directions are stored in special code numbers on the control and can
be called up using these numbers.

Example:

Program code
N10 SETINT(2) PRIO=1 ABHEB_Z LIFTFAST
ALF=7

With G41 activated (machining direction to the left of the contour) the tool vertically moves
away from the contour.

Reference plane for defining the traversing direction for LFTXT
At the point of application of the tool to the programmed contour, the tool is clamped at a plane
which is used as a reference for specifying the retraction movement with the corresponding
code number.

The reference plane is derived from the longitudinal tool axis (infeed direction) and a vector
positioned perpendicular to this axis and perpendicular to the tangent at the point of application
of the tool.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 133

Code numbers with traversing direction for LFTXT
Starting from the reference plane, you will find the code numbers with traversing directions in
the following diagram.

The retraction in the tool direction is defined for ALF=1.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
134 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The "fast retraction" function is deactivated with ALF=0.

CAUTION

Risk of collision

When the tool radius compensation is activated, then:
● For G41 codes 2, 3, 4
● For G42 codes 6, 7, 8

should not be used, as in these cases, the tool would move to the contour and would collide
with the workpiece.

Code numbers with traversing directions for LFWP
With LFWP, the direction in the working plane is derived from the following assignment:

● G17: X/Y plane
ALF=1: Retraction in the X direction
ALF=3: Retraction in the Y direction

● G18: Z/X plane
ALF=1: Retraction in the Z direction
ALF=3: Retraction in the X direction

● G19: Y/Z plane
ALF=1: Retraction in the Y direction
ALF=3: Retraction in the Z direction

2.14.8 Motion sequence for interrupt routines

Interrupt routine without LIFTFAST
Axis motion is braked along the path down to standstill (zero speed). The interrupt routine then
starts.

The standstill position is saved as interrupt position and is approached at the end of the
interrupt routine for REPOS with RMIBL.

Interrupt routine with LIFTFAST
Axis motion is braked along the path. The LIFTFAST motion is simultaneously executed as
superimposed motion. If the path motion and LIFTFAST motion have come to a standstill (zero
speed), the interrupt routine is started.

The position on the contour is saved as interrupt position where the LIFTFAST motion is
started and therefore the path was left.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 135

The interrupt routine with LIFTFAST and ALF=0 behaves in precisely the same way as the
interrupt routine without LIFTFAST.

Note

The absolute value through which the geometry axes move when quickly retracting from the
contour can be set using machine data.

Flexible NC programming
2.14 Interrupt routine (ASUB)

Job Planning
136 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)
One or more axes or spindles can only ever be interpolated in one channel. If an axis has to
alternate between two different channels (e.g. pallet changer) it must first be enabled in the
current channel and then transferred to the other channel. Axis replacement is effective
between channels.

Axis replacement extensions

An axis/spindle can be replaced either with a preprocessing stop and synchronization between
preprocessing and main run, or without a preprocessing stop. Axis replacement is also possible
via:

● Axis container rotation AXCTSWE or AXCTWED using implicit GET/GETD
● Frame with rotation if this process links the axis with other axes.

● Synchronized actions, see Motion-synchronous actions, "Axis replacement RELEASE,
GET".

Machine manufacturer

Please refer to the machine manufacturer's instructions. For the purpose of axis replacement,
one axis must be defined uniquely in all channels in the configurable machine data and the
axis replacement characteristics can also be set using machine data.

Syntax
RELEASE (axis name, axis name, ...) or RELEASE (S1)
GET (axis name, axis name, ...) or GET (S2)
GETD(axis name, axis name, ...) or GETD(S3)
With GETD (GET Directly), an axis is fetched directly from another channel. This means that
no suitable RELEASE must be programmed for this GETD in another channel. It also means
that other channel communication has to be established (e.g. wait markers).

Meaning

RELEASE (axis name, axis name, etc.): Release the axis (axes)
GET (axis name, axis name, etc.): Accept the axis (axes)
GETD (axis name, axis name, etc.): Directly accept the axis (axes)
Axis name: Axis assignment in the system: AX1, AX2, ... or

specify machine axis name
RELEASE(S1) : Release spindles S1, S2, ...
GET(S2) : Accept spindles S1, S2, ...
GETD(S3) : Direct acceptance of spindles S1, S2, ...

GET request without preprocessing stop

Flexible NC programming
2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 137

If, following a GET request without preprocessing stop, the axis is enabled again with
RELEASE(axis) or WAITP(axis), a subsequent GET will induce a GET with preprocessing
stop.

CAUTION

Axis assignment changed

An axis or spindle accepted with GET remains assigned to this channel even after a key or
program RESET.

When a program is restarted the replaced axes or spindles must be reassigned in the program
if the axis is required in its original channel.

It is assigned to the channel defined in the machine data on POWER ON.

Examples

Example 1: Axis exchange between two channels
Of the six axes, the following are used for machining in channel 1: 1., 2., 3. 1st, 2nd, 3rd and
4th axis.
The 5th and 6th axes in channel 2 are used for the workpiece change.

Axis 2 should be exchanged between two channels and after POWER ON can be assigned
to channel 1.

Program "MAIN" in channel 1:

Program code Comment
INIT (2,"TRANSFER2") ; Select program TRANSFER2 in channel 2.
N… START (2) ; Start the program in channel 2.
N… GET (AX2) ; Accept axis AX2.
...
N… RELEASE (AX2) ; Release axis AX2.
N… WAITM (1,1,2) ; Wait for WAIT marker in channel 1 and 2 for synchro-

nizing in both channels.
... ; Rest of program after axis replacement.
N… M30

Program "TRANSFER2" in channel 2:

Programming Comment
N… RELEASE (AX2)
N160 WAITM(1,1,2) ; Wait for WAIT marker in channel 1 and 2 for synchro-

nizing in both channels.
N150 GET(AX2) ; Accept axis AX2.
... ; Rest of program after axis replacement.
N… M30

Flexible NC programming
2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job Planning
138 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example 2: Axis exchange without synchronization
If the axis does not have to be synchronized no preprocessing stop is generated by GET.

Programming Comment
N01 G0 X0
N02 RELEASE(AX5)
N03 G64 X10
N04 X20
N05 GET(AX5) ; If synchronization is not required, then this is

not a block that can be executed.
N06 G01 F5000 ; Block that cannot be executed.
N07 X20 ; Block that cannot be executed, because X position

as in N04.
N08 X30 ; First block that can be executed after N05.
...

Example 3: Activating an axis exchange without a preprocessing stop
Requirement: Axis replacement without a preprocessing stop must be configured via machine
data.

Programming Comment
N010 M4 S100
N011 G4 F2
N020 M5
N021 SPOS=0
N022 POS[B]=1
N023 WAITP(B) ; Axis B becomes the neutral axis.
N030 X1 F10
N031 X100 F500
N032 X200
N040 M3 S500 ; Axis does not trigger a preprocessing stop / REORG
N041 G4 F2
N050 M5
N099 M30

If the spindle or axis B is traversed, e.g. to 180 degrees and then back to 1 degree immediately
after block N023 as the PLC axis, this axis will revert to its neutral status and will not trigger a
preprocessing stop in block N40.

Further information

Requirements for axis replacement
● The axis must be defined in all channels that use the axis in the machine data.

● It is necessary to define to which channel the axis will be assigned after POWER ON in the
axis-specific machine data.

Flexible NC programming
2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 139

Description
Release axis: RELEASE

When enabling the axis please note:

1. The axis must not be involved in a transformation.

2. All the axes involved in an axis link (tangential control) must be enabled.

3. A concurrent positioning axis cannot be replaced in this situation.

4. All the following axes of a gantry master axis are transferred with the master.

5. With coupled axes (coupled motion, master value coupling, electronic gear) only the leading
axis of the group can be enabled.

Accept axis: GET

The actual axis replacement is performed with this command. The channel for which the
command is programmed takes full responsibility for the axis.

Effects of GET:

Axis replacement with synchronization:

An axis always has to be synchronized if it has been assigned to another channel or the PLC
in the meantime and has not been resynchronized with "WAITP", G74 or delete distance-to-
go before GET.

● A preprocessing stop follows (as for STOPRE).

● Execution is interrupted until the replacement has been completed.

Automatic "GET"
If an axis is in principle available in a channel but is not currently defined as a "channel axis",
GET is executed automatically. If the axis/axes is/are already synchronized no preprocessing
stop is generated.

Varying the axis replacement behavior
The transfer point of axes can be set as follows using machine data:

● Automatic axis replacement between two channels then also takes place when the axis
has been brought to a neutral state by WAITP (response as before)

● When requesting an axis container rotation, all axes of the axis container which can be
assigned to the executing channel are brought into the channel using implicit GET or GETD.
A subsequent axle replacement is only permitted again once the axis container rotation
has been completed.

Flexible NC programming
2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job Planning
140 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● When an intermediate block is inserted in the main run, a check will be made to determine
whether or not reorganization is required. Reorganization is only necessary if the axis states
of this block do not match the current axis states.

● Instead of a GET block with preprocessing stop and synchronization between
preprocessing and main run, axes can be replaced without a preprocessing stop. In this
case, an intermediate block is simply generated with the GET request. In the main run,
when this block is executed, the system checks whether the states of the axes in the block
match the current axis states.

For more information about how axis or spindle replacement works, see
Function Manual, Extended Functions, Mode Groups, Channels, Axis Replacement (K5).

Flexible NC programming
2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 141

2.16 Transfer axis to another channel (AXTOCHAN)
The AXTOCHAN language command can be used to request an axis in order to move it to a
different channel. The axis can be moved to the corresponding channel both from the NC part
program and from a synchronized action.

Syntax
AXTOCHAN(axis name,channel number[,axis name,channel number[,...]])

Meaning

Element Description
AXTOCHAN: Request axis for a specific channel
Axis name: Axis assignment in the system: X, Y, … or entry of machine axis names con‐

cerned. The executing channel does not have to be the same channel or even
the channel currently in possession of the interpolation right for the axis.

Channel number: Name of the channel to which the axis is to be assigned

Note
Competing positioning axis and PLC controlled axis exclusively

A PLC axis cannot replace the channel as a competing positioning axis. An axis controlled
exclusively by the PLC cannot be assigned to the NC program.

References:
Function Manual, Extended Functions; Positioning Axes (P2)

Example

AXTOCHAN in the NC program
Axes X and Y have been declared in the first and second channels. Currently, channel 1 has
the interpolation right and the following program is started in that channel.

Program code Comment
N110 AXTOCHAN(Y,2) ;Move Y axis to the second channel
N111 M0
N120 AXTOCHAN(Y,1) ; Retrieve Y axis (neutral).
N121 M0
N130 AXTOCHAN(Y,2,X,2) ;Move Y axis and X axis to the second channel (axes

are neutral).
N131 M0
N140 AXTOCHAN(Y,2) ; Move Y axis to the second channel (NC program).
N141 M0

Flexible NC programming
2.16 Transfer axis to another channel (AXTOCHAN)

Job Planning
142 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information

AXTOCHAN in the NC program
A GET is only executed in the event of the axis being requested for the NC program in the
same channel (this means that the system waits for the state to actually change). If the axis
is requested for another channel or is to become the neutral axis in the same channel, the
request is sent accordingly.

AXTOCHAN from a synchronized action
In the event of an axis being requested for the same channel, AXTOCHAN from a synchronized
action is mapped to a GET from a synchronized action. In this case, the axis becomes the
neutral axis on the first request for the same channel. On the second request, the axis is
assigned to the NC program in the same way as the GET request in the NC program. For more
information about GET requests from a synchronized action, see "Motion-synchronous
actions".

Flexible NC programming
2.16 Transfer axis to another channel (AXTOCHAN)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 143

2.17 Activate machine data (NEWCONF)
The NEWCONF command activates all machine data. The function can also be activated in the
HMI user interface by pressing the "MD data effective" softkey.

When the "NEWCONF" function is executed there is an implicit preprocessing stop; in other
words, path movement is interrupted.

Syntax
NEWCONF

Meaning

NEWCONF: Command for setting all machine data of the "NEW_CONFIG" effectiveness level active

Cross-channel execution of NEWCONF from the part program
If changes are made to axial machine data from the part program and then activated with
NEWCONF, NEWCONF will only activate the machine data containing changes affecting the part
program channel.

Note

In order to ensure that all changes are applied, the NEWCONF command must be executed in
every channel in which the axes or functions affected by the changes to the machine data is
being calculated.

No axial machine data is effective for NEWCONF.

An axial RESET must be performed for axes controlled by the PLC.

Example
Milling: Machine drill position with different technologies

Program code Comment
N10 $MA_CONTOUR_TOL[AX]=1.0 ; Change machine data.
N20 NEWCONF ; Activate machine data.
...

Flexible NC programming
2.17 Activate machine data (NEWCONF)

Job Planning
144 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.18 Write file (WRITE)
The WRITE command writes sets/data from the NC program at the end of a file (log file) in the
passive file system or to external program memory. This can also be the program that is
presently being executed.

Note

If no such file exists in the program memory, one will be created and can be written to using
the WRITE command.

Requirement
The currently set protection level must be equal to or greater than the WRITE right of the file.
If this is not the case, access is denied with an error message (return value of error variable
= 13).

Syntax

DEF INT <error>
...
WRITE(<error>,"<file name>"/"<ExtG>","<set/data>")

Meaning

WRITE: Command for appending a block or data to the end of the specified file.
<error>: Parameter 1: Variable for returning the error value

Type: INT
Value: 0 No error

1 Path not permitted
2 Path not found
3 File not found
4 Incorrect file type
10 File is full
11 The file is in use
12 No resources available
13 No access rights
14 Missing or unsuccessful EXTOPEN for the output device
15 Error when writing to an external device
16 Invalid external path has been programmed

Flexible NC programming
2.18 Write file (WRITE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 145

<file name>: Parameter 2: The name of the file in which the specified block or specified data is
to be added.
Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 217)".

<ExtG>: If the data is to be output to an external device/file using the "Process DataShare"
function, then the symbolic identifiers for the external device/file to be opened must
be specified instead of the file name.
Type: STRING
For further information, see "Process DataShare - Output to an external device/file
(EXTOPEN, WRITE, EXTCLOSE): (Page 659)".
Note:
The identifier must be identical to the identifier specified in the EXTOPEN command.

<block/data>: Parameter 3: The block or data to be added to the specified file.
Type: STRING

Note

When writing to the passive file system or to an external program memory, the WRITE
command implicitly inserts an "LF" character (LINE FEED = new line) at the end of the output
string.

This behavior does not apply for output to an external device/file using the "Process
DataShare" function. If an "LF" is also to be output, then this must be explicitly specified in the
output string.

→ also refer to example 3: Implicit/explicit "LF"!

Supplementary conditions
● Maximum file size (→ machine manufacturer)

The maximum possible file size of log files in the passive file system is set with the machine
data:
MD11420 $MN_LEN_PROTOCOL_FILE
The maximum file length is applicable for all files created using the WRITE command in the
passive file system. If it is exceeded, an error message is output and the block or data is
not saved. If there is sufficient free memory, a new file can be created.

Examples

Example 1: WRITE command into the passive file system without absolute path data

Program code Comment
N10 DEF INT ERROR ; Definition of error variables.
N20 WRITE(ERROR,"PROT","LOG FROM 7.2.97") ; Write the text "LOG FROM 7.2.97"

to file _N_PROT_MPF.
N30 IF ERROR ;Error evaluation.

Flexible NC programming
2.18 Write file (WRITE)

Job Planning
146 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N40 MSG ("Error with WRITE command:" <<ERROR)
N50 M0
N60 ENDIF
...

Example 2: WRITE command into the passive file system with absolute path data

Program code
...
WRITE(ERROR,"/_N_WKS_DIR/_N_PROT_WPD/_N_PROT_MPF","LOG FROM 7.2.97")
...

Example 3: Implicit/explicit "LF"
a) Write to the passive file system with implicitly generated "LF"

Program code
...
N110 DEF INT ERROR
N120 WRITE(ERROR,"/_N_MPF_DIR/_N_MYPROTFILE_MPF","MY_STRING")
N130 WRITE(ERROR,"/_N_MPF_DIR/_N_MYPROTFILE_MPF","MY_STRING")
N140 M30

Output result:

MY_STRING

MY_STRING

b) Write to an external file without implicitly generated "LF"

Program code
...
N200 DEF STRING[30] DEV_1
N210 DEF INT ERROR
N220 DEV_1="LOCAL_DRIVE/myprotfile.mpf"
N230 EXTOPEN(ERROR,DEV_1)
N240 WRITE(ERROR,DEV_1,"MY_STRING")
N250 WRITE(ERROR,DEV_1,"MY_STRING")
N260 EXTCLOSE(ERROR,DEV_1)
N270 M30

Output result:

MY_STRINGMY_STRING

Flexible NC programming
2.18 Write file (WRITE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 147

c) Write to an external file with explicitly generated "LF"

The following must be programmed in order to achieve the same result as under a:

Program code
...
N200 DEF STRING[30] DEV_1
N210 DEF INT ERROR
N220 DEV_1="LOCAL_DRIVE/myprotfile.mpf"
N230 EXTOPEN(ERROR,DEV_1)
N240 WRITE(ERROR,DEV_1,"MY_STRING'H0A'")
N250 WRITE(ERROR,DEV_1,"MY_STRING'H0A'")
N260 EXTCLOSE(ERROR,DEV_1)
N270 M30

Output result:

MY_STRING

MY_STRING

Flexible NC programming
2.18 Write file (WRITE)

Job Planning
148 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.19 Delete file (DELETE)
The DELETE command deletes all files, irrespective of whether these were created using the
WRITE command or not. Files that were created using a higher access authorization can also
be deleted with DELETE.

Syntax
DEF INT <error>
DELETE(<error>,"<file name>")

Meaning

DELETE: Command for deleting the specified file.
<error>: Variable for returning the error value.

Type. INT
Value: 0 No error

1 Path not allowed
2 Path not found
3 File not found
4 Incorrect file type
11 The file is in use
12 No resources available
20 Other error

<file name>: Name of the file to be deleted
Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 217)".

Example

Program code Comment
N10 DEF INT ERROR ; Definition of error variables.
N15 STOPRE ; Preprocessing stop.
N20 DELETE(ERROR,"/_N_SPF_DIR/_N_TEST1_SPF") ; Deletes file TEST1 in the sub-

program directory.
N30 IF ERROR ; Error evaluation.
N40 MSG("error for DELETE command:" <<ERROR)
N50 M0
N60 ENDIF

Flexible NC programming
2.19 Delete file (DELETE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 149

2.20 Read lines in the file (READ)
The READ command reads one or several lines in the specified file and stores the information
read in a STRING type array. In this array, each read line occupies an array element.

Requirement
The currently set protection level must be equal to or greater than the READ right of the file.
If this is not the case, access is denied with an error message (return value of error variable
= 13).

Syntax
DEF INT <error>
DEF STRING[<string length>] <result>[<n>,<m>]
READ(<error>,"<file name>",<start line>,<number of lines>,<result>)

Meaning

READ: Command for reading lines from the specified file and storing these lines in a
variable array.

<error>: Variable for returning the error value (call-by-reference parameter)
Type. INT
Value: 0 No error

1 Path not allowed
2 Path not found
3 File not found
4 Incorrect file type
11 The file is in use
13 Insufficient access rights
21 Line does not exist (<start line> or <number of

lines> parameter exceeds the number of lines in the
specified file).

22 Field length of the result variable (<result>) is too
small.

23 Line range too large (<number of lines> parameter
selected so large that the read would go beyond the end
of the file).

<file name>: Name of the file to be read (call-by-value parameter)
Type: STRING
The absolute path can be specified before the actual file name. If a path is
not specified, the file is searched for in the current directory (= directory of
selected program).
Rules regarding path data, see "Addressing program memory files
(Page 217)".

Flexible NC programming
2.20 Read lines in the file (READ)

Job Planning
150 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<start line>: Start line of the file section to be read (call-by-value parameter)
Type: INT
Value: 0 Reads the number of lines specified with the

<number of lines> parameter before the end
of the file.

1 to n Number of the first line to be read.
<number of
lines>:

Number of lines to be read (call-by-value parameter)
Type: INT

<result>: Result variable (call-by-reference parameter)
Variable array in which the read text is stored.
Type: STRING (max. length: 255)
If fewer lines are specified in the <number of lines> parameter than the
array size [<n>,<m>] of the result variable, the remaining array elements
will not be modified.
Termination of a line by means of the control characters "LF" (Line Feed) or
"CR LF" (Carriage Return Line Feed) is not stored in the result variable.
Read lines are cropped if the line is longer than the defined string length. An
error message is not output.

Note

Binary files cannot be read in. The "incorrect data type" error is output (return value of the error
variable = 4). The following types of file are not readable: _BIN, _EXE, _OBJ, _LIB, _BOT,
_TRC, _ACC, _CYC, _NCK.

Example

Program code Comment
N10 DEF INT ERROR ; Definition of error variables.
N20 DEF STRING[255] RESULT[5] ; Definition of result variables.
N30 READ(ERROR,"/_N_CST_DIR/_N_TESTFILE_MPF",
1,5,RESULT)

;File name with domain and file iden-
tifier
and path name.

N40 IF ERROR <>0 ;Error evaluation.
N50 MSG("ERROR"<<ERROR<<"ON READ COMMAND")
N60 M0
N70 ENDIF
...

Flexible NC programming
2.20 Read lines in the file (READ)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 151

2.21 Check for presence of file (ISFILE)
The ISFILEcommand checks whether a file exists in the program memory.

Syntax
<Result>=ISFILE("<File name>")

Meaning

ISFILE: Command to check the availability of a file
<file name>: Name of the file whose availability is to be checked.

Type: STRING
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 217)".

<result>: Result variable to which the result of the check is assigned.
Type. BOOL
Value: TRUE File exists

FALSE File does not exist

Examples

Example 1

Program code Comment
N10 DEF BOOL RESULT ; Definition of result variables.
N20 RESULT=ISFILE("TESTFILE")
N30 IF(RESULT==FALSE)
N40 MSG("FILE DOES NOT EXIST")
N50 M0
N60 ENDIF
...

Example 2

Program code Comment
N10 DEF BOOL RESULT ; Definition of result variables.
N20 RESULT=ISFILE("TESTFILE")
N30 IF(NOT ISFILE("TESTFILE"))
N40 MSG("FILE DOES NOT EXIST")
N50 M0
N60 ENDIF
...

Flexible NC programming
2.21 Check for presence of file (ISFILE)

Job Planning
152 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.22 Read out file information (FILEDATE, FILETIME, FILESIZE,
FILESTAT, FILEINFO)

The FILEDATE, FILETIME, FILESIZE, FILESTAT, and FILEINFO commands read out
specific file information such as date/time of the last write access, current file size, file status
or all of this information.

Requirement
The currently set protection level must be equal to or greater than the show right of the
superordinate directory. If this is not the case, access is denied with an error message (return
value of error variable = 13).

Syntax
FILE....(<Error>,"<File name>",<Result>)

Meaning

FILEDATE: Returns the date of the last write access to a file
FILETIME: Returns the time of the last write access to a file
FILESIZE: Returns the current size of a file
FILESTAT: Returns a file with regard to the following rights for the status:

● Read (r: read)
● Write (w: write)
● Execute (x: execute)
● Show (s: show)
● Delete (d: delete)
Note:
These protection levels are specific properties of the passive file system. When
accessing an external program memory, FILESTAT therefore supplies default
access rights (77777).

FILEINFO: For a file, supplies the sum of the information, which can be read out via
FILEDATE, FILETIME, FILESIZE and FILESTAT

<Error>: Variable for returning the error value (call-by-reference parameter)
Type. VAR INT
Value: 0 No error

1 Path not allowed
2 Path not found
3 File not found
4 Incorrect file type

13 Insufficient access rights
22 String length of the result variable (<result>) is too small.

Flexible NC programming
2.22 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 153

<file name>: Name of the file from which the file information is to be read out
Type: CHAR[160]
The absolute path can be specified before the actual file name. If a path is not
specified, the file is searched for in the current directory (= directory of selected
program).
Rules regarding path data, see "Addressing program memory files (Page 217)".

<result>: Result variable (Call-By-Reference parameter)
Variable in which the requested file information is stored.
Type: VAR CHAR[8]

at FILEDATE

Format: "dd.mm.yy"
VAR CHAR[8] at FILETIME

Format: "hh.mm.ss"
VAR INT at FILESIZE

The file size is output in bytes.
VAR CHAR[5] at FILESTAT

Format: "rwxsd"
(r: read, w: write, x: execute, s: show,
d: delete)

VAR CHAR[32] at FILEINFO
Format: "rwxsd nnnnnnnn dd.mm.yy
hh:mm:ss"

Example

Program code Comment
N10 DEF INT ERROR ; Definition of error varia-

bles.
N20 STRING[32] RESULT ; Definition of result varia-

bles.
N30 FILEINFO(ERROR,"/_N_MPF_DIR/_N_TESTFILE_MPF",RE-
SULT)

; File name with domain, file
ID and path data.

N40 IF ERROR <> 0 ; Error evaluation
N50 MSG("ERROR"<<ERROR<<"FOR FILE INFORMATION COM-
MAND")

N60 M0
N70 ENDIF
...

In the result variables RESULT, the example could supply the following result:

"77777 12345678 26.05.00 13:51:30"

Flexible NC programming
2.22 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO)

Job Planning
154 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.23 Roundup (ROUNDUP)
Input values, type REAL (fractions with decimal point) can be rounded up to the next higher
integer number using the ROUNDUP" function.

Syntax
ROUNDUP(<value>)

Meaning

ROUNDUP: Command to roundup an input value
<value>: Input value, type REAL

Note

Input value, type INTEGER (an integer number) is returned unchanged.

Examples

Example 1: Various input values and their rounding up results

Example Rounding up result
ROUNDUP(3.1) 4.0
ROUNDUP(3.6) 4.0
ROUNDUP(-3.1) -3.0
ROUNDUP(-3.6) -3.0
ROUNDUP(3.0) 3.0
ROUNDUP(3) 3.0

Example 2: ROUNDUP in the NC program

Program code
N10 X=ROUNDUP(3.5) Y=ROUNDUP(R2+2)
N15 R2=ROUNDUP($AA_IM[Y])
N20 WHEN X=100 DO Y=ROUNDUP($AA_IM[X])
...

Flexible NC programming
2.23 Roundup (ROUNDUP)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 155

2.24 Subprogram technique

2.24.1 General information

2.24.1.1 Subprogram
The term "subprogram" has its origins during the time when part programs were split strictly
into main and subprograms. Main programs were the part programs selected for processing
on the control and then launched. Subprograms were the part programs called from within the
main program.

This strict division no longer exists with today's SINUMERIK NC language. In principle, each
part program can be selected as a main program and launched or called from another part
program as a subprogram.

Accordingly, the subprogram can then be used to refer to a part program called from within
another part program.

Application
As in all high-level programming languages, in the NC language, subprograms swaps out
program sections used more than once to independent, self-contained programs.

Subprograms offer the following advantages:

● Increase the transparency and readability of programs

● Increase quality by reusing tested program parts

● Offer the possibility of creating specific machining libraries

● Save memory space

Flexible NC programming
2.24 Subprogram technique

Job Planning
156 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.24.1.2 Subprogram names

Naming rules
The subprogram name can be chosen freely providing the following rules are observed:

● Permissible characters:

– Letters: A ... Z, a ... z

– Numbers: 0 ... 9

– Underscore: _

● The first two characters should either be two letters or an underscore followed by a letter.

Note

If this condition is satisfied, then an NC program can be called as subprogram from another
program just by specifying the program name. However, if the program name starts with
digits, the subprogram call is then only possible via the CALL statement.

● Maximum length: 24 characters

Note
Uppercase/lowercase letters

The SINUMERIK NC language does not distinguish between uppercase and lowercase letters.

Note
Impermissible program names

To avoid problems with Windows applications, the following program names may not be used:
● CON, PRN, AUX, NUL
● COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9
● LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, LPT9

Control-internal extensions
The program name assigned when the subprogram is created is expanded within the control
with the addition of a prefix and a suffix:

● Prefix: _N_
● Postfix: _SPF

Using the program name
When using the program name, e.g. in the context of a subprogram call, all combinations of
prefix, program name, and suffix are possible.

Example:

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 157

The subprogram with the program name SUB_PROG can be started using the following
identifiers:

1. SUB_PROG
2. _N_SUB_PROG
3. SUB_PROG_SPF
4. _N_SUB_PROG_SPF

Main programs and subprograms with the same name
If a main program (.MPF) and a subprogram (.SPF) exist with the same program name, the
appropriate file extension for the unique identification must be specified when the program
name in the NC program is used. Otherwise the program found first in the search path with
the specified name is used.

2.24.1.3 Nesting of subprograms
A main program can call subprograms which in turn call more subprograms. As such, the
sequences of the programs are nested within each other. Each program runs on a dedicated
program level.

Nesting depth
The NC language currently provides 16 program levels. The main program always runs at the
uppermost program level, 0. A subprogram always runs at the next lowest program level
following the call. Program level 1 is, therefore, the first subprogram level.

Division of program levels:

● Program level 0: Main program level

● Program level 1 to 15: Subprogram level 1 to 15

...

...

Flexible NC programming
2.24 Subprogram technique

Job Planning
158 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Interrupt routines (ASUB)
If a subprogram is called in the context of an interrupt routine, this will not be executed at the
program level currently active in the channel (n) but at the next lowest program level (n+1). So
that this remains possible even at the lowest program level, 2 additional program levels (16
and 17) are available in conjunction with interrupt routines.

If more than 2 program levels are required, this has to be taken into account explicitly in the
structuring of the part program executed in the channel. In other words, only a maximum of as
many program levels may be used in order to leave sufficient program levels available for
interrupt processing.

If interrupt processing needs 4 program levels for example, the part program must be structured
so that it uses a maximum of up to program level 13. In the event of an interrupt, the 4 program
levels it requires (14 to 17) will be available to it.

Siemens cycles
Siemens cycles need 3 program levels. Therefore, a Siemens cycle must be called at the latest
in:

● Part program processing: program level 12

● interrupt routine: program level 14

2.24.1.4 Search path
When a subprogram without path details is called, the control system searches the available
program memory using a predefined search sequence (see "Search path for subprogram call
(Page 221)").

2.24.1.5 Formal and actual parameters
Formal and actual parameters occur in conjunction with the definition and calling of
subprograms with parameter transfer.

Formal parameter
When a subprogram is defined, the parameters to be transferred to it (known as the formal
parameters) have to be defined with type and parameter name.

The formal parameters define, therefore, the interface of the subprogram.

Example:

Program code Comment
PROC CONTOUR (REAL X, REAL Y) ; Formal parameters: X and Y, both REAL type
N20 X1=X Y1=Y ; Traversing of axis X1 to position X and axis

Y1 to position Y
...
N100 RET

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 159

Actual parameters
When a subprogram is called, absolute values or variables (known as actual parameters) have
to be transferred to it.

As such, the actual parameters assign up-to-date values to the interface of the subprogram
when the latter is called.

Example:

Program code Comment
N10 DEF REAL WIDTH ; Variable definition
N20 WIDTH=20.0 ; Variable assignment
N30 CONTOUR(5.5, WIDTH) ; Subprogram call with actual parameters: 5.5

and WIDTH
...
N100 M30

2.24.1.6 Parameter transfer

Definition of a subprogram with parameter transfer
A subprogram with parameter transfer is defined using the PROC keyword and a complete list
of all the parameters expected by the subprogram.

Incomplete parameter transfer
When the subprogram is called, not all the parameters defined in the subprogram interface
have to be transferred explicitly. If a parameter is omitted, the default value "0" is transferred
for it.

So that the parameter sequence can be uniquely identified, however, the commas used as
parameter separators always have to be included. The last parameter is an exception. If it is
omitted from the call, the last comma can also be left out.

Example:

Subprogram:

Program code Comment
PROC SUB_PROG (REAL X, REAL Y, REAL Z) ; Formal parameters: X, Y, and Z
...
N100 RET

Main program:

Program code Comment
PROC MAIN_PROG
...

Flexible NC programming
2.24 Subprogram technique

Job Planning
160 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N30 SUB_PROG(1.0,2.0,3.0) ; Subprogram call with complete parameter transfer:

X=1.0, Y=2.0, Z=3.0
…
N100 M30

Examples for the subprogram call in N30 with incomplete parameter transfer:

N30 SUB_PROG(,2.0,3.0) ; X=0.0, Y=2.0, Z=3.0
N30 SUB_PROG(1.0, ,3.0) ; X=1.0, Y=0.0, Z=3.0
N30 SUB_PROG(1.0,2.0) ; X=1.0, Y=2.0, Z=0.0
N30 SUB_PROG(, ,3.0) ; X=0.0, Y=0.0, Z=3.0
N30 SUB_PROG(, ,) ; X=0.0, Y=0.0, Z=0.0

NOTICE

Call-by-reference parameter transfer

Parameters transferred using call-by-reference must not be left out of the subprogram call.

NOTICE

AXIS data type

AXIS data type parameters must not be left out of the subprogram call.

Checking the transfer parameters
System variable $P_SUBPAR [n] where n = 1, 2, etc., can be used to check whether a
parameter has been transferred explicitly or left out in the subprogram. The index n refers to
the sequence of the formal parameters. Index n = 1 refers to the first formal parameter, index
n = 2 to the second formal parameter, and so on.

The following program excerpt shows an example of how a check can be performed based on
the first formal parameter:

Programming Comment
PROC SUB_PROG (REAL X, REAL Y, REAL Z) ; Formal parameters: X, Y, and Z
N20 IF $P_SUBPAR[1]==TRUE ; Check of the first formal parameter

X.
... ; These actions are taken if the formal

parameter X has been transferred ex-
plicitly.

N40 ELSE
... ; These actions are taken if the formal

parameter X has not been transferred.
N60 ENDIF
... ; General actions
N100 RET

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 161

2.24.2 Definition of a subprogram

2.24.2.1 Subprogram without parameter transfer
When defining subprograms without parameter transfer, the definition line at the beginning of
the program can be omitted.

Syntax

[PROC <program name>]
...

Meaning

PROC: Definition operation at the beginning of a program
<program name>: Name of the program

Example
Example 1: Subprogram with PROC operation

Program code Comment
PROC SUB_PROG ; Definition line
N10 G01 G90 G64 F1000
N20 X10 Y20
...
N100 RET ; Subprogram return

Example 2: Subprogram without PROC operation

Program code Comment
N10 G01 G90 G64 F1000
N20 X10 Y20
...
N100 RET ; Subprogram return

See also
Subprogram call without parameter transfer (Page 189)

2.24.2.2 Subprogram with call-by-value parameter transfer (PROC)
A subprogram with call-by-value parameter transfer is defined using the PROC keyword
followed by the name of the program and a complete list of all the parameters with their type
and name. The definition operation must appear in the first program line.

Flexible NC programming
2.24 Subprogram technique

Job Planning
162 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Call-by-value
The calling program transfers only the value of a variable to the subprogram on a call-by-value
parameter transfer. Thus the subprogram is not given direct access to the variable. In this way,
only the value visible in the subprogram is modified when the parameter value is changed.
The value of the variables defined in the calling program remains unchanged. As a
consequence, the call-by-value parameter transfer does not affect the calling program.

Syntax
PROC <program name> (<parameter type> <parameter
name>=<init_value>, ...)

Note

Up to 127 parameters can be transferred.

Meaning

PROC: Definition operation at the beginning of a program
<program name>: Name of the program
<parameter type>: Data type of the parameter (e.g. REAL, INT, BOOL)
<parameter name>: Name of the parameter
<init_value>: Optional value for the initialization of the parameter (optional)

If no parameter is specified when calling the subprogram, the param‐
eter is assigned the initialization value.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 163

Examples

Example 1
Definition of a subprogram SUB_PROG with three parameters of type REAL with default
values:

Program code
PROC SUB_PROG(REAL LENGTH=10.0, REAL WIDTH=20.0, REAL HIGHT=30.0)

Example 2
Various call versions

Program code
PROC MAIN_PROG
 REAL PAR_1 = 100
 REAL PAR_2 = 200
 REAL PAR_3 = 300
 ; Call variants
 SUB_PROG
 SUB_PROG(PAR_1, PAR_2, PAR_3)
 SUB_PROG(PAR_1)
 SUB_PROG(PAR_1, , PAR_3)
 SUB_PROG(, , PAR_3)
N100 RET

See also
Subprogram call with parameter transfer (EXTERN) (Page 191)

2.24.2.3 Subprogram with call-by-reference parameter transfer (PROC, VAR)
A subprogram with call-by-reference parameter transfer is defined using the PROC keyword
followed by the name of the program and a complete list of all the parameters with the VAR
keyword, type, and name. The definition operation must appear in the first program line. As
parameters, references to arrays can also be transferred.

Call-by-reference
The calling program transfers not the value of a variable to the subprogram on a call-by-
reference parameter transfer, but a reference (pointer) to the variable. This gives the
subprogram direct access to the variable. In this way, not only the value visible in the
subprogram is modified when a parameter value is changed, but also the value of the variables
defined in the calling program. Call-by-reference parameter transfer therefore affects the
calling program, even after the subprogram has ended.

Flexible NC programming
2.24 Subprogram technique

Job Planning
164 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note

The call-by-reference parameter transfer is then only necessary if the transferred variable was
defined locally in the calling program (LUD). Channel-global or NC-global variables do not
have to be transferred, since these cannot be accessed directly from within the subprogram.

Syntax
PROC <program name> (VAR <parameter type> <parameter name>, etc.)
PROC <program name> (VAR <array type> <array name>, [<m>,<n>,<o>],
etc.)

Note

Up to 127 parameters can be transferred.

Meaning

PROC: Definition operation at the beginning of a program
VAR: Keyword for parameter transfer via reference
<program name>: Name of the program
<parameter type>: Data type of the parameter (e.g. REAL, INT, BOOL)
<parameter name>: Name of the parameter
<array type>: Data type of the array elements (e.g. REAL, INT, BOOL)
<array name>: Name of the array

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 165

[<m>,<n>,<o>]: Array size
Currently, up to 3-dimensional arrays are possible:
<m>: Array size for 1st dimension
<n>: Array size for 2nd dimension
<o>: Array size for 3rd dimension

Note
● The program name specified after the PROC keyword must match the program name

assigned on the user interface.
● With arrays of an undefined array length, subprograms can process arrays of variable length

as formal parameter. When defining a two-dimensional array as a formal parameter, for
example, the length of the 1st dimension is not specified. However, the comma must be
written.
Example: PROC <program name> (VAR REAL ARRAY[,5])

Example
Definition of a subprogram with two parameters as reference to REAL type:

Program code
; Parameter 1: Reference to type: REAL, name: LENGTH
; Parameter 2: Reference to type: REAL, name: WIDTH
PROC SUB_PROG(VAR REAL LENGTH, VAR REAL WIDTH)

See also
Subprogram call with parameter transfer (EXTERN) (Page 191)

2.24.2.4 Save modal G functions (SAVE)
The SAVE attribute means that before the subprogram call, active modal G commands are
saved and are reactivated after the end of the subprogram.

NOTICE

Interrupt continuous-path mode

If, for active continuous-path mode, a subprogram is called with the SAVE attribute, the
continuous-path mode is interrupted at the end of the subprogram (return jump).

Syntax
PROC <subprogram name> SAVE

Flexible NC programming
2.24 Subprogram technique

Job Planning
166 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

SAVE: Saves the modal G commands before the subprogram call and restores after the end of
the subprogram.

Example
In the CONTOUR subroutine, the modal G command G91 incremental dimension applies. The
modal G command G90 is effective in the main program (absolute dimension). G90 is again
effective in the main program after the end of the subprogram due to the subprogram definition
with SAVE.

Subprogram definition:

Program code Comment
PROC CONTOUR (REAL VALUE1) SAVE ; Subprogram definition with the SAVE parame-

ter
N10 G91 ... ; Modal G command G91: Incremental dimension
N100 M17 ; End of subprogram

Main program:

Program code Comment
N10 G0 X... Y... G90 ; Modal G command G90: Absolute dimensions
N20 ...
...
N50 CONTOUR (12.4) ;Subprogram call
N60 X... Y... ; Modal G command G90 reactivated using SAVE

Supplementary conditions

Frames
The behavior of frames regarding subprograms with the SAVE attribute depends on the frame
time and can be set using machine data.

References
Function Manual, Basic Functions; Axes, Coordinate Systems, Frames (K2),
Section: "Subprogram return with SAVE"

2.24.2.5 Suppress single block execution (SBLOF, SBLON)
Single-block suppression for the complete program

Programs designated with SBLOF are completely executed just like a block when single-block
execution is active, i.e. single-block execution is suppressed for the complete program.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 167

SBLOF is in the PROC line and is valid up to the end of the subprogram or until it is interrupted.
At the return command, the decision is made whether to stop at the end of the subprogram:

Return jump with M17: Stop at the end of the subprogram
Return jump with RET: No stop at end of subprogram

Single-block suppression within the program

SBLOF alone must remain in the block. Single block is deactivated after this block until:

● The next SBLON
or

● The end of the active subprogram level

Syntax
Single-block suppression for the complete program:
PROC ... SBLOF
Single-block suppression within the program:

SBLOF
...
SBLON

Meaning

PROC: First operation in a program
SBLOF: Command to deactivate single-block execution

SBLOF can be written in a PROC block or alone in the block.
SBLON: Command to activate single-block execution

SBLON must be in a separate block.

Flexible NC programming
2.24 Subprogram technique

Job Planning
168 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Supplementary conditions
● Single-block suppression and block display

The current block display can be suppressed in cycles/subprograms using DISPLOF. If
DISPLOF is programmed together withSBLOF, then the cycle/subprogram call continues to
be displayed on single-block stops within the cycle/subprogram.

● Single-block suppression in the system ASUB or user ASUB
If the single-block stop in the system or user ASUB is suppressed using the settings in
machine data MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (bit0 = 1 or bit1 = 1), then
the single-block stop can be reactivated by programming SBLON in the ASUB.
If the single-block stop in the user ASUB is suppressed using the setting in machine data
MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP, then the single-block stop cannot be
reactivated by programming SBLON in the ASUB.

● Special features of single-block suppression for various single-block execution types
When single-block execution SBL2 is active (stop after each part program block) there is
no execution stop in the SBLON block if bit 12 is set to "1" in the
MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop).
When single-block execution SBL3 is active (stop after every part program block - also in
the cycle), the SBLOF command is suppressed.

Examples

Example 1: Single-block suppression within a program

Program code Comment
N10 G1 X100 F1000
N20 SBLOF ; Deactivate single block.
N30 Y20
N40 M100
N50 R10=90
N60 SBLON ; Reactivate single block.
N70 M110
N80 ...

The area between N20 and N60 is executed as one step in single-block mode.

Example 2: A cycle is to act like a command for a user
Main program:

Program code
N10 G1 X10 G90 F200
N20 X-4 Y6
N30 CYCLE1
N40 G1 X0
N50 M30

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 169

Cycle CYCLE1:

Program code Comment
N100 PROC CYCLE1 DISPLOF SBLOF ; Suppress single block
N110 R10=3*SIN(R20)+5
N120 IF (R11 <= 0)
N130 SETAL(61000)
N140 ENDIF
N150 G1 G91 Z=R10 F=R11
N160 M17

CYCLE1 is processed for active single-block execution, i.e. the Start key must be pressed
once to process CYCLE1.

Example 3: An ASUB, which is started by the PLC in order to activate a modified zero offset
and tool offsets, is to be executed invisibly.

Program code
N100 PROC ZO SBLOF DISPLOF
N110 CASE $P_UIFRNUM OF 0 GOTOF _G500
 1 GOTOF _G54
 2 GOTOF _G55
 3 GOTOF _G56
 4 GOTOF _G57
 DEFAULT GOTOF END
N120 _G54: G54 D=$P_TOOL T=$P_TOOLNO
N130 RET
N140 _G54: G55 D=$P_TOOL T=$P_TOOLNO
N150 RET
N160 _G56: G56 D=$P_TOOL T=$P_TOOLNO
N170 RET
N180 _G57: G57 D=$P_TOOL T=$P_TOOLNO
N190 RET
N200 END: D=$P_TOOL T=$P_TOOLNO
N210 RET

Example 4: Is not stopped with MD10702 Bit 12 = 1
Initial situation:

● Single-block execution is active.

● MD10702 $MN_IGNORE_SINGLEBLOCK_MASK Bit12 = 1

Flexible NC programming
2.24 Subprogram technique

Job Planning
170 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Main program:

Program code Comment
N10 G0 X0 ; Stop in this part program line.
N20 X10 ; Stop in this part program line.
N30 CYCLE ; Traversing block generated by the cycle.
N50 G90 X20 ; Stop in this part program line.
M30

Cycle CYCLE:

Program code Comment
PROC CYCLE SBLOF ; Suppress single-block stop.
N100 R0 = 1
N110 SBLON ; Execution is not stopped in the part program line due

to the fact that MD10702 bit12=1.
N120 X1 ; Execution is stopped in this part program line.
N140 SBLOF
N150 R0 = 2
RET

Example 5: Single-block suppression for program nesting
Initial situation:

Single-block execution is active.

Program nesting:

Program code Comment
N10 X0 F1000 ; Execution is stopped in this block.
N20 UP1(0)
 PROC UP1(INT _NR) SBLOF ; Suppress single-block stop.
 N100 X10
 N110 UP2(0)
 PROC UP2(INT _NR)
 N200 X20
 N210 SBLON ; Activate single-block stop.
 N220 X22 ; Execution is stopped in this block.
 N230 UP3(0)
 PROC UP3(INT _NR)
 N300 SBLOF ; Suppress single-block stop.
 N305 X30
 N310 SBLON ; Activate single-block stop.
 N320 X32 ; Execution is stopped in this block.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 171

Program code Comment
 N330 SBLOF ; Suppress single-block stop.
 N340 X34
 N350 M17 ; SBLOF is active.
 N240 X24 ; Execution is stopped in this block.

SBLON is active.
 N250 M17 ; Execution is stopped in this block.

SBLON is active.
 N120 X12
 N130 M17 ; Execution is stopped in this return

jump block. SBLOF of the PROC statement
is active.

N30 X0 ; Execution is stopped in this block.
N40 M30 ; Execution is stopped in this block.

Further information

Single-block disable for unsynchronized subprograms
In order to execute an ASUB in one step, a PROC statement must be programmed in the ASUB
with SBLOF. This also applies to the function "Editable system ASUB" (MD11610
$MN_ASUP_EDITABLE).

Example of an editable system ASUB:

Program code Comments
N10 PROC ASUB1 SBLOF DISPLOF
N20 IF $AC_ASUP==’H200’
N30 RET ; No REPOS for mode change.
N40 ELSE
N50 REPOSA ; REPOS in all other cases.
N60 ENDIF

Program control in single-block mode
With the single-block execution function, the user can execute a part program block-by-block.
The following setting types exist:

● SBL1: IPO single block with stop after each machine function block.

● SBL2: Single block with stop after each block.

● SBL3: Stop in the cycle (the SBLOF command is suppressed by selecting SBL3).

Single-block suppression for program nesting
If SBLOF was programmed in the PROC statement in a subprogram, then execution is stopped
at the subprogram return jump with M17. That prevents the next block in the calling program
from already running. If SBLOF, without SBLOF is programmed in the PROC statement in a
subprogram, single-block suppression is activated, execution is only stopped after the next
machine function block of the calling program. If that is not wanted, SBLON must be
programmed in the subprogram before the return (M17). Execution does not stop for a return
jump to a higher-level program with RET.

Flexible NC programming
2.24 Subprogram technique

Job Planning
172 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.24.2.6 Suppress current block display (DISPLOF, DISPLON, ACTBLOCNO)
The current program block is displayed as standard in the block display. The display of the
current block can be suppressed in cycles and subprograms using the DISPLOF command.
Instead of the current block, the call of the cycle or the subprogram is displayed. The
DISPLON command revokes suppression of the block display.

DISPLOF and DISPLON are programmed in the program line with the PROC operation and are
effective for the entire subprogram and implicitly for all subprograms called from it which do
not contain a DISPLON or DISPLOF command. This is true for all ASUBs.

Syntax
PROC … DISPLOF
PROC … DISPLOF ACTBLOCNO
PROC … DISPLON

Meaning

DISPLOF: Command to suppress the current block display.
Location: At the end of the program line with the PROC operation
Effective: Up to the return jump from the subprogram or end of program.
Note:
If further subprograms are called from the subprogram using the DISPLOF com‐
mand, then the current block display is also suppressed in these subprograms
unless DISPLON is explicitly programmed in them.

DISPLON: Command for revoking suppression of the display of the current block
Location: At the end of the program line with the PROC operation
Effective: Up to the return jump from the subprogram or end of program.
Note:
If further subprograms are called from the subprogram using the DISPLON com‐
mand, then the current block will also be displayed in these subprograms unless
DISPLOF is explicitly programmed in them.

ACTBLOCNO: DISPLOF together with the ACTBLOCNO attribute means that in the case of an
alarm, the number of the actual block is output in which the alarm occurred. This
also applies if only DISPLOF is programmed in a lower program level.
On the other hand, for DISPLOF without ACTBLOCNO, the block number of the
cycle or subprogram call from the last program level not designated with
DISPLOF is displayed.

Examples

Example 1: Suppress current block display in the cycle

Program code Comment
PROC CYCLE (AXIS TOMOV, REAL POSITION)
SAVE DISPLOF

; Suppress current block display Instead,
the cycle call should be displayed, e.g.:
CYCLE(X,100.0)

DEF REAL DIFF ;Cycle contents
G01 ...

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 173

Program code Comment
...
RET ; Subprogram return jump. The block follow-

ing the cycle call is displayed in the block
display.

Example 2: Block display for alarm output
Subprogram SUBPROG1 (with ACTBLOCNO):

Program code Comment
PROC SUBPROG1 DISPLOF ACTBLOC-
NO

N8000 R10 = R33 + R44
...
N9040 R10 = 66 X100 ; Trigger alarm 12080
...
N10000 M17

Subprogram SUBPROG2 (without ACTBLOCNO):

Program code Comment
PROC SUBPROG2 DISPLOF
N5000 R10 = R33 + R44
...
N6040 R10 = 66 X100 ; Trigger alarm 12080
...
N7000 M17

Main program:

Program code Comment
N1000 G0 X0 Y0 Z0
N1010 ...
...
N2050 SUBPROG1 ; Alarm output = "12080 channel K1 block N9040 syntax

error for text R10="
N2060 ...
N2350 SUBPROG2 ; Alarm output = "12080 channel K1 block N2350 syntax

error for text R10="
...
N3000 M30

Flexible NC programming
2.24 Subprogram technique

Job Planning
174 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example 3: Revoke suppression of the current block display
Subprogram SUB1 with suppression:

Program code Comment
PROC SUB1 DISPLOF ; Suppress current block display in SUB1 subprogram.

Instead, the block is to be displayed with the SUB1
call.

...
N300 SUB2 ; Call subprogram SUB2.
...
N500 M17

Subprogram SUB2 without suppression:

Program code Comment
PROC SUB2 DISPLON ; Revoke suppression of the current block display in

subprogram SUB2.
...
N200 M17 ; Return to subprogram SUB1. Suppression of the cur-

rent block display is restored in SUB1.

Example 4: Display response for different DISPLON/DISPLOF combinations

① The part program lines from program level 0 are displayed in the current block display.
② The part program lines from program level 3 are displayed in the current block display.
③ The part program lines from program level 3 are displayed in the current block display.
④ The part program lines from program level 7/8 are displayed in the current block display.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 175

2.24.2.7 Identifying subprograms with preparation (PREPRO)
All files can be identified with the PREPRO keyword at the end of the PROC operation line during
power up.

Note

This type of program preparation depends on the relevant set machine data. Please follow the
manufacturer's instructions.

References:
Function Manual, Special Functions, Preprocessing (V2)

Syntax
PROC … PREPRO

Meaning

PREPRO: Keyword for identifying all files (of the NC programs stored in the cycle directories)
prepared during power up

Read subprogram with preparation and subprogram call
The cycle directories are processed in the same order both for subprograms preprocessed
with parameters during power up and during subprogram call.

1. _N_CUS_DIR user cycles

2. _N_CMA_DIR manufacturer cycles

3. _N_CST_DIR standard cycles

In the case of NC programs sharing the same name but having different characteristics, the
first PROC operation found is activated and the other PROC operation is overlooked without an
alarm message.

2.24.2.8 Subprogram return M17
The return command M17 (or the part program end command M30) appears at the end of a
subprogram. It prompts the return to the calling program at the part program block following
the subprogram call.

Note

M17 and M30 are treated as equivalents in the NC language.

Syntax

PROC <program name>

Flexible NC programming
2.24 Subprogram technique

Job Planning
176 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

...
M17/M30

Supplementary conditions
Effect of the subprogram return on continuous-path mode

If M17 (or M30) appears on its own in the part program block, active continuous-path mode in
the channel will be interrupted.

To avoid continuous-path mode being interrupted, M17 (or M30) has to be included in the last
traversing block. Furthermore, the following machine data must be set to "0":

MD20800 $MC_SPF_END_TO_VDI = 0 (no M30/M17 output to the NC/PLC interface)

Example
1. Subprogram with M17 in a separate block

Program code Comment
N10 G64 F2000 G91 X10 Y10
N20 X10 Z10
N30 M17 ; Return jump with interruption of continuous-path

mode.

2. Subprogram with M17 in the last traversing block

Program code Comment
N10 G64 F2000 G91 X10 Y10
N20 X10 Z10 M17 ; Return jump without interruption of continuous-

path mode.

2.24.2.9 RET subprogram return
The RET command can also be used in the subprogram as a substitute for the M17 return jump
command. RET must be programmed in a separate part program block. Like M17, RET prompts
the return to the calling program at the part program block following the subprogram call.

Note

Parameters can be programmed to change the return jump behavior of RET (see
"Parameterizable subprogram return jump (RET ...) (Page 178)").

Application
The RET operation should then be used if a G64 continuous-path mode (G641 to G645) is not
to be interrupted by the return jump.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 177

Requirement
The RET command can only be used in subprograms, which were not defined with the SAVE
attribute.

Syntax

PROC <program name>
...
RET

Example
Main program:

Program code Comment
PROC MAIN_PROGRAM ; Start of the program
...
N50 SUB_PROG ; Subprogram call: SUB_PROG
N60 ...
...
N100 M30 ; End of program

Subprogram:

Program code Comment
PROC SUB_PROG
...
N100 RET ; Return jump to block N60 in the main program.

2.24.2.10 Parameterizable subprogram return jump (RET ...)
Generally, a return jump is made from a subprogram into the calling program using the RET
command. Processing is then continued with the program line following the subprogram call.
The following options are available if program processing is to be continued at another location:

● Resuming program execution after calling the stock removal cycles in the ISO dialect mode
(after describing the contour).

● Return to main program from any subprogram level (even after ASUB) for error handling.

● Return jump through several program levels for special applications in compile cycles and
in the ISO dialect mode.

To achieve this, the RET command should be programmed with additional parameters.

Search direction
When specifying parameter <target block>, a return jump is first made to the block after
the calling block. A search is then made for the target in the direction of the end of the program

Flexible NC programming
2.24 Subprogram technique

Job Planning
178 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

into which a return jump was made. A search is made toward the start of the program if the
search was not successful.

Syntax
RET("<target block>")
RET("<target block>",<block after target block>)
RET("<target block>",<block after target block> <number of return
jump levels>)
RET("<target block>", ,<number of return jump levels>)
RET("<target block>",<block after target block>,<number of return
jump levels>,
<return jump to the beginning of the program>)
RET(, ,<number of return jump levels>,<return jump to the beginning
of the program>)

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 179

Meaning

RET: End of subprogram
<target block>: Declares as jump target the block where program execution

should be resumed.
If parameter < number of return jump levels> is not programmed,
then the jump target is in the program from which the current sub‐
program was called.
Possible data include:
<block number> Number of the target block.

The search for the block number is realized
in the program to which a return jump was
made initially in the direction toward the end
of the program.

<jump marker> Jump marker, which must be available in the
program into which a return jump is made.
The search for the jump marker is realized in
the program to which a return jump was made
initially in the direction toward the end of the
program.

<character
string>

Character string that must be available in the
program into which a return jump is made
(e.g. program or variable name).
The search for the character string is realized
in the program to which a return jump was
made initially in the direction toward the end
of the program.
The following rules apply when programming
the character string:
● Blank at the end (contrary to the jump

marker, which is identified by ":" at the
end).

● Before the character string only one block
number and/or a jump marker may be set,
no program commands.

<block after target
block>:

The parameter specifies as to whether program processing
should be continued in the block specified under parameter <tar‐
get block> or in the following block.
Type: INT
Value: 0 The return jump is made to the block specified

in parameter <target block>.
> 0 The return jump is made to the next block

specified in parameter <target block>.

Flexible NC programming
2.24 Subprogram technique

Job Planning
180 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<number of
return jump levels>:

The parameter specifies the number of program levels that should
be jumped through (return jumps) to search there for the target
block and continue processing the program.
Type: INT
Value: 1 The program is resumed at the "current pro‐

gram level - 1" (like RET without parameter).
2 The program is resumed at the "current pro‐

gram level - 2", i.e. one level is skipped.
3 The program is resumed at the "current pro‐

gram level - 3", i.e. two levels are skipped.
...

Range of
values:

1 ... 15

<return jump to the
beginning of the program>:

The parameter specifies whether, for a return jump into the main
program, the program should be continued at the start of the pro‐
gram in the active ISO dialect mode.
Type: BOOL
Value: 1 If the return jump is made into the main pro‐

gram and an ISO dialect mode is active there,
then the program branches to the beginning of
the program.

Note

For a subprogram return jump with a character string to specify the target block search, initially,
a search is always made for a jump marker in the calling program.

If a jump target is to be uniquely defined using a character string, it is not permissible that the
character string matches the name of a jump marker, as otherwise the subprogram return jump
would always be made to the jump marker and not to the character string (refer to example 2).

Supplementary conditions
When making a return jump through several program levels, the SAVE statements of the
individual program levels are evaluated.

If, for a return jump over several program levels, a modal subprogram is active and if in one
of the skipped programs the deselection command MCALL is programmed for the modal
subprogram, then the modal subprogram remains active.

NOTICE

Programming error

For a return jump through several program levels it is the user's responsibility to ensure that
processing is continued with the necessary modal settings. This can be achieved, e.g. by
programming an appropriate main block.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 181

Examples

Example 1: Resuming in the main program after ASUB execution

Programming Comment
N10010 CALL "UP1" ;Program level 0 (main program)
 N11000 PROC UP1 ; Program level 1
 N11010 CALL "UP2"
 N12000 PROC UP2 ; Program level 2
 ...
 N19000 PROC ASUP ; Program level 3 (ASUB execution)
 ...
 N19100 RET("N10900", ,$P_STACK) ; Subprogram return jump into the main program

; $P_STACK: actual program level
N10900 ; Target block in the main program
N10910 MCALL ; Deactivate the modal subprogram call
N10920 G0 G60 G40 M5 ; Initialize additional modal settings

Example 2: Character string (string>) to specify the target block search
Main program:

Program code Comment
PROC MAIN_PROGRAM
N1000 DEF INT iVar1=1, iVar2=4
N1010 ...
N1200 subProg1 ; Calls subprogram "subProg1"
N1210 M2 S1000 X10 F1000
N1220
N1400 subProg2 ; Calls subprogram "subProg2"
N1410 M3 S500 Y20
N1420 ..
N1500 lab1: iVar1=R10*44
N1510 F500 X5
N1520 ...
N1550 subprog1: G1 X30 ; "subProg1" is defined here as jump marker.
N1560 ...
N1600 subProg3 ; Calls subprogram "subProg3"
N1610 ...
N1900 M30

Subprogram subProg1:

Program code Comment
PROC subProg1

Flexible NC programming
2.24 Subprogram technique

Job Planning
182 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N2000 R10=R20+100
N2010 ...
N2200 RET("subProg2") ; Return jump into the main program at block

N1400

Subprogram subProg2:

Program code Comment
PROC subProg2
N2000 R10=R20+100
N2010 ...
N2200 RET("iVar1") ; Return jump into the main program at block

N1500

Subprogram subProg3:

Program code Comment
PROC subProg3
N2000 R10=R20+100
N2010 ...
N2200 RET("subProg1") ; Return jump into the main program at block

N1550

Additional information
The following diagrams show the different effects of return jump parameters

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 183

1. <target block> = "N200", <block after target block> = 0

After the RET command, program execution is continued with block N200 in the main program.

2. <target block> = "N200", <block after target block> = 1

After the RET command, program execution is continued with the block (N210) that follows
block N200 in the main program.

Flexible NC programming
2.24 Subprogram technique

Job Planning
184 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

3. <target block> = "N220", <number of return jump levels> = 2

After the RET command, two program levels are jumped through and program execution is
continued with block N220.

2.24.2.11 Parameterizable subprogram return jump (RETB ...)
Generally, a return jump is made from a subprogram into the calling program using the RETB
command. Processing is then continued with the program line following the subprogram call.
The following options are available if program processing is to be continued at another location:

● Resume program execution after calling the stock removal cycles in the ISO dialect mode
(after describing the contour).

● Return to main program from any subprogram level (even after ASUB) for error handling.

● Return jump through several program levels for special applications in compile cycles and
in the ISO dialect mode.

To achieve this, the RETB command should be programmed with additional parameters.

Search direction
When specifying parameter <target block>, a return jump is first made to the block after
the calling block. A search is then made for the target in the direction of the beginning of the
program into which a return jump was made. A search is made toward the end of the program
if the search was not successful.

Syntax
RETB("<target block>")
RETB("<target block>",<block after target block>)
RETB("<target block>",<block after target block> <number of return
jump levels>)
RETB("<target block>", ,<number of return jump levels>)

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 185

RETB("<target block>",<block after target block>,<number of return
jump levels>,
<return jump to the beginning of the program>)
RETB(, ,<number of return jump levels>,<return jump to the beginning
of the program>)

Meaning

RETB: End of subprogram
<target block>: Declares as jump target the block where program execution

should be resumed.
If parameter < number of return jump levels> is not programmed,
then the jump target is in the program from which the current sub‐
program was called.
Possible data include:
<block number> Number of the target block.

The search for the block number is realized
in the program to which a return jump was
made initially in the direction toward the be‐
ginning of the program.

<jump marker> Jump marker, which must be available in the
program into which a return jump is made.
The search for the jump marker is realized in
the program to which a return jump was made
initially in the direction toward the beginning
of the program.

<character
string>

Character string that must be available in the
program into which a return jump is made
(e.g. program or variable name).
The search for the character string is realized
in the program to which a return jump was
made initially in the direction toward the be‐
ginning of the program.
The following rules apply when programming
the character string:
● Blank at the end (contrary to the jump

marker, which is identified by ":" at the
end).

● Before the character string only one block
number and/or a jump marker may be set,
no program commands.

<block after target
block>:

The parameter specifies as to whether program processing
should be continued in the block specified under parameter <tar‐
get block> or in the following block.
Type: INT
Value: 0 The return jump is made to the block specified

in parameter <target block>.
> 0 The return jump is made to the next block

specified in parameter <target block>.

Flexible NC programming
2.24 Subprogram technique

Job Planning
186 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<number of
return jump levels>:

The parameter specifies the number of program levels that should
be jumped through (return jumps) to search there for the target
block and continue processing the program.
Type: INT
Value: 1 The program is resumed at the "current pro‐

gram level - 1" (like RET without parameter).
2 The program is resumed at the "current pro‐

gram level - 2", i.e. one level is skipped.
3 The program is resumed at the "current pro‐

gram level - 3", i.e. two levels are skipped.
...

Range of
values:

1 ... 15

<return jump to the
beginning of the program>:

The parameter specifies whether, for a return jump into the main
program, the program should be continued at the start of the pro‐
gram in the active ISO dialect mode.
Type: BOOL
Value: 1 If the return jump is made into the main pro‐

gram and an ISO dialect mode is active there,
then the program branches to the beginning of
the program.

Note

For a subprogram return jump with a character string to specify the target block search, initially,
a search is always made for a jump marker in the calling program.

If a jump target is to be uniquely defined using a character string, it is not permissible that the
character string matches the name of a jump marker, as otherwise the subprogram return jump
would always be made to the jump marker and not to the character string (refer to example 2).

Supplementary conditions
When making a return jump through several program levels, the SAVE statements of the
individual program levels are evaluated.

If, for a return jump over several program levels, a modal subprogram is active and if in one
of the skipped programs the deselection command MCALL is programmed for the modal
subprogram, then the modal subprogram remains active.

NOTICE

Programming error

For a return jump through several program levels it is the user's responsibility to ensure that
processing is continued with the necessary modal settings. This can be achieved, e.g. by
programming an appropriate main block.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 187

Example

Program code Comment
EXAMPLE.MPF
 …
 N3000 START_CYC(parm1, param2, …)
 N3010 TECH_CYC1(param1, param2, …)
 N3020 TECH_CYC2(param1, param2, …)
 N3030 TECH_CYC3(param1, param2, …)
 N3040 END_CYC(param1, param2, …)
 N3040 END_CYC(param1, param2, …)
 N3050 …
 N4500 START_CYC(param11, param12, …)
 N4510 …
 N4590 END_CYC(param11, param12, ..)
 N5000 …
 …
N6000 M30

Program code Comment
PROC END_CYC(…) ; Call in the main program, line N3040
 N10000 …
 N15000 if status == 1
 N15010 RETB(“START_CYC”) ; Return jump to the calling program EXAMPLE.MPF

; Search for character string "START_CYC"
; Search direction: backward in the program start
direction
; Program processing is continued with line N3000

 N15020 endif
 N15030 if status == 0
 N15040 RET ; Return jump to the calling program EXAMPLE.MPF

; Program processing is continued with line N3050
 N15050 endif
 N16000 RET(“START_CYC”) ; Return jump to the calling program EXAMPLE.MPF

; Search for character string "START_CYC"
; Search direction: forward in the program end di-
rection
; Program processing is continued with line N4500

N17060 RETB ; Return jump to the calling program EXAMPLE.MPF
; Program processing is continued with line N3050
; RETB without parameter is identical to RET

Flexible NC programming
2.24 Subprogram technique

Job Planning
188 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.24.3 Subprogram call

2.24.3.1 Subprogram call without parameter transfer
A subprogram is called either with address L and subprogram number or by specifying the
program name.

A main program can also be called as a subprogram. The end of program M2 or M30 set in the
main program is evaluated as M17 in this case (end of program with return to the calling
program).

Note

Accordingly, a subprogram can also be started as a main program.

Search strategy of the control:

Are there any *_MPF?

Are there any *_SPF?

This means, if the name of the subprogram to be called is identical to the name of the main
program, the main program that issued the call is called again. This is generally an undesirable
effect and must be avoided by assigning unique names to subprograms and main programs.

Note

Subprograms not requiring parameter transfer can also be called from an initialization file.

Syntax
L<number>/<program name>

Note

The subprogram call must always be programmed in a separate NC block.

Meaning

L: Address for the subprogram call
<number>: Name of the subprogram

Type: INT
Value: Maximum 7 decimal places

Notice:
Leading zeros are significant in names (⇒ L123, L0123 and
L00123 are three different subprograms).

<program name>: Name of the subprogram (or main program)

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 189

Examples

Example 1: Subprogram call without parameter transfer

Example 2: Calling a main program as a subprogram

See also
Subprogram without parameter transfer (Page 162)

Flexible NC programming
2.24 Subprogram technique

Job Planning
190 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.24.3.2 Subprogram call with parameter transfer (EXTERN)
For a subprogram call with parameter transfer, variables or values can be transferred directly
(but not VAR parameters).

Subprograms with parameter transfer must be declared with EXTERNAL in the main program
before they are called in the main program (e.g. at the beginning of the program). The name
of the subprogram and the variable types are thereby specified in the sequence in which they
are transferred.

NOTICE

Risk of confusion

Both the variable types and the sequence of the transfer must match the definitions declared
under PROC in the subprogram. The parameter names can be different in the main program
and the subprogram.

Syntax

EXTERNAL <program name>(<type_Par1>,<type_Par2>,<type_Par3>)
...
<program name>(<value_Par1>,<value_Par2>,<value_Par3>)

Note

The subprogram call must always be programmed in a separate NC block.

Meaning

<program name>: Name of subprogram
EXTERNAL: Keyword to declare a subprogram with pa‐

rameter transfer.
Note:
You only have to specify EXTERNAL if the
subprogram is in the workpiece or in the
global subprogram directory. Cycles do not
have to be declared as EXTERNAL.

<type_par1>,<type_par2>,<type_par3>: Variable types of the parameters to be trans‐
ferred in the sequence of the transfer

<value_par1>,<value_par2>,<value_par3>: Variable values for the parameters to be
transferred

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 191

Examples

Example 1: Subprogram call preceded by declaration

Program code Comment
N10 EXTERNAL BORDERS(REAL,REAL,REAL) ; Specify the subprogram.
...
N40 BORDER(15.3,20.2,5) ; Call the subprogram with parameter

transfer.

Example 2: Subprogram call without declaration

Program code Comment
N10 DEF REAL LENGTH, WIDTH, DEPTH
N20 …
N30 LENGTH=15.3 WIDTH=20.2 DEPTH=5
N40 BORDER(LENGTH,WIDTH,DEPTH) ; or: N40 BORDER(15.3,20.2,5)

Flexible NC programming
2.24 Subprogram technique

Job Planning
192 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

See also
Subprogram with call-by-value parameter transfer (PROC) (Page 162)

Subprogram with call-by-reference parameter transfer (PROC, VAR) (Page 164)

2.24.3.3 Number of program repetitions (P)
If a subprogram is to be executed several times in succession, the desired number of program
repetitions can be entered at address P in the block with the subprogram call.

CAUTION

Subprogram call with program repetition and parameter transfer

Parameters are transferred only when the program is called, i.e., on the first run. The
parameters remain unchanged for the remaining repetitions. If you want to change the
parameters during program repetitions, you must make the appropriate provision in the
subprogram.

Syntax
<program name> P<value>

Meaning

<program name>: Subprogram call
P: Address to program program repetitions

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 193

<value>: Number of program repetitions
Type: INT
Range of values: 1 … 9999

(unsigned)

Example

Program code Comment
...
N40 FRAME P3 ; The BORDER subprogram is to be executed three times one after

the other.
...

2.24.3.4 Modal subprogram call (MCALL)
The specified subprogram is not immediately called as a result of the modal subprogram call
MCALL(<program name>). Instead, the call is performed as of this time in the part program
after each traversing block with path motion. Also across program levels.

Note

When a program is being executed only the last modal subprogram call MCALL(<program
name>) is effective (this is always the case). The current modal subprogram call replaces the
one that has been active up until then.

If parameters are transferred to the subprogram, the parameters are only transferred with call
MCALL(<program name>(Par1, Par2, ...)).

Flexible NC programming
2.24 Subprogram technique

Job Planning
194 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

NOTICE

Modal subprogram calls without path motion

In the following situations the modal subprogram is also called without programming path
motion:
● Programming addresses S or F if G0 or G1 is active.
● If G0 or G1 were programmed alone in the block or with additional G commands.

Syntax

MCALL <program name>
...
MCALL

Meaning

MCALL <program
name>:

Activate the "Modal subprogram call" function

<program name>: Name of subprogram

MCALL: The "Modal subprogram call" function is deactivated with MCALL without
specification of a program name.

Supplementary conditions

ASUB
If the part program processing is interrupted by an ASUB (see Chapter "Interrupt routine
(ASUB) (Page 125)"), then no modal subprogram calls are executed in this ASUB.

If an ASUB is started in the "Reset" channel state, then it behaves just like a normal part
program with regard to the modal subprogram calls.

Tool change cycle
If the "Modal subprogram call" function is deselected during the tool change cycle, note that
the tool change cycle is called implicitly, even after a block search, via the search ASUB, or
manually via overstore. In this situation, the "Modal subprogram call" function must not be
deselected because otherwise the search result is falsified. It is therefore recommended that
the deselection of the "Modal subprogram call" function in the tool change cycle is programmed
as follows:

Program code Comment
...
 IF $AC_ASUP == 0 ; Call is not performed via search ASUB or overstore.
 MCALL ; Deactivate the "Modal subprogram call" function.
 ENDIF

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 195

Program code Comment
...

Examples

Example 1

Program code Comment
N10 G0 X0 Y0
N20 MCALL L70 ; Activate the modal subprogram call for L70.
N30 X10 Y10 ; X10 Y10 is approached, and then L70 is called.
N40 X20 Y20 ; X20 Y20 is approached, and then L70 is called.
...
N100 MCALL ; Deactivate the "Modal subprogram call" function.
N110 X0 Y0 ; X0 Y0 is approached, L70 is not called.

Example 2

Program code
N10 G0 X0 Y0
N20 MCALL L70
N30 L80

In this example, the following NC blocks with programmed path axes are in subprogram L80.
L70 is called by L80.

2.24.3.5 Indirect subprogram call (CALL)
Depending on the prevailing conditions at a particular point in the program, different
subprograms can be called. The name of the subprogram is stored in a variable of the STRING
type. The subprogram call is realized with CALL and the variable name.

Note

The indirect subprogram call is only possible for subprograms without parameter transfer. For
a direct subprogram call, save the name in a STRING constant.

Syntax
CALL <program name>

Meaning

CALL: Command for the indirect subprogram call.
<program name>: Name of the subprogram (variable or constant)
 Type: STRING

Flexible NC programming
2.24 Subprogram technique

Job Planning
196 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example

Direct call with STRING constant:

Program code Comment
…
CALL "/_N_WKS_DIR/_N_SUBPROG_WPD/_N_PART1_SPF" ; Direct call to subprogram

PART1 with CALL.
…

Indirect call via variable:

Program code Comment
…
DEF STRING[100] PROGNAME : Define variable.
PROGNAME="/_N_WKS_DIR/_N_SUBPROG_WPD/_N_PART1_SPF" ; Assign subprogram PART1 to

the PROGNAME variable.
CALL PROGNAME ; Indirect call to subprogram

PART1 via CALL and the PROG-
NAME variable.

…

2.24.3.6 Indirect subprogram call with specification of the calling program part (CALL BLOCK ...
TO ...)

CALL and the keyword combination BLOCK ... TO is used to call a subprogram indirectly
and execute the program section designated by the start and end labels.

Syntax
CALL <program name> BLOCK <start label> TO <end label>
CALL BLOCK <start label> TO <end label>

Meaning

CALL: Command for the indirect subprogram call.
<program name>:

Name of the subprogram (variable or constant) that contains the pro‐
gram section to be executed (specification optional).
Type: STRING
Note:
If a <program name> has not been programmed, the program section
designated by <start label> and <end label> is searched for
in the current program and executed.

BLOCK ... TO ... : Keyword combination for indirect program section execution
<start label>: Variable that refers to the start of the program section to be executed.

Type: STRING

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 197

<end label>: Variable that refers to the end of the program section to be executed.
Type: STRING

Example

Main program:

Program code Comment
...
DEF STRING[20] STARTLABEL, ENDLABEL ; Variable definition for the start and

end labels.
STARTLABEL="LABEL_1"
ENDLABEL="LABEL_2"
...
CALL "CONTUR_1" BLOCK STARTLABEL TO ENDLA-
BEL

; Indirect subprogram call and identifi-
er associated with the calling program
section.

...

Subprogram:

Program code Comment
PROC CONTUR_1 ...
LABEL_1 ; Start label: Start of program section execution.
N1000 G1 ...
...
LABEL_2 ; End label: End of program section execution.
...

2.24.3.7 Indirect call of a program programmed in ISO language (ISOCALL)
A program programmed in an ISO language can be called using the indirect program call
ISOCALL. The ISO mode set in the machine data is then activated. The original execution
mode becomes effective again at the end of the program. If no ISO mode is set in the machine
data, the subprogram is called in Siemens mode.

For further information about the ISO mode, see
References:
ISO Dialects Functional Description

Syntax
ISOCALL <program_name>

Flexible NC programming
2.24 Subprogram technique

Job Planning
198 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

ISOCALL: Keyword for an indirect subprogram call with which the ISO mode set in
the machine data is activated.

<program name>: Name of the program programmed in an ISO language (variable or con‐
stant, type STRING)

Example: Calling a contour with cycle programming from ISO mode

Program code Comment
0122_SPF ; Contour description in ISO mode
N1010 G1 X10 Z20
N1020 X30 R5
N1030 Z50 C10
N1040 X50
N1050 M99
N0010 DEF STRING[5] PROGNAME = “0122“ ; Siemens part program (cycle)
...
N2000 R11 = $AA_IW[X]
N2010 ISOCALL PROGNAME
N2020 R10 = R10+1 ; Execute program 0122.spf in ISO mode
...
N2400 M30

2.24.3.8 Call subprogram with path specification and parameters (PCALL)
With PCALL, you can call subprograms with the absolute path and parameter transfer.

Syntax
PCALL <path/program name>(<parameter 1>,…,<parameter n>)

Meaning

PCALL: Keyword for subprogram call with absolute path name
<path/program name>: Absolute path data including subprogram names.

Rules regarding path data, see "Addressing program memory
files (Page 217)".
If no absolute path name is specified, PCALL behaves like a
standard subprogram call with a program identifier.
The program name is specified without prefix and without file
identifier. If the program name is to be programmed with prefix
and file identifier, then it must be explicitly declared with prefix
and file identifier using the EXTERN command.

<parameter 1>, ...: Actual parameters in accordance with the PROC operation of the
subprogram.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 199

Example

Program code
PCALL/_N_WKS_DIR/_N_SHAFT_WPD/SHAFT(parameter1,parameter2,…)

2.24.3.9 Extend search path for subprogram calls (CALLPATH)
The search path for subprogram calls can be extended using the CALLPATH command. This
means that also subprograms can be called from a non-selected workpiece directory without
having to specify the complete, absolute path name of the subprogram.

Another application option is possible in the EES mode "EES without GDIR", if another
directory is used on an external program memory to save global subroutines. In this case,
using CALLPATH the search path can be extended by this subprogram directory.

The search path extension is made before the entry for user cycles (_N_CUS_DIR).

The search path extension is deselected again as a result of the following events:

● CALLPATH with blanks

● CALLPATH without parameter

● End of part program

● Reset

Syntax
CALLPATH("<path name>")

Meaning

CALLPATH: Keyword for the programmable search path exten‐
sion.
Is programmed in a separate part program line.

<path name>: Constant or variable, STRING type.
Contains the absolute path name of the directory
by which the search path should be extended.
Rules regarding path data, see "Addressing pro‐
gram memory files (Page 217)".

Example
The search path should be extended by a certain workpiece directory:

Program code
...
CALLPATH ("/_N_WKS_DIR/_N_MYWPD_WPD")
...

Flexible NC programming
2.24 Subprogram technique

Job Planning
200 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

This means that the following search path is set (position 5. is new):

1. Actual directory/name
2. Actual directory/name_SPF
3. Actual directory/name_MPF
4. //NC:/_N_SPF_DIR / name_SPF
5. /_N_WKS_DIR/_N_MYWPD_WPD/name_SPF

6. /N_CUS_DIR/name_SPF
7. /_N_CMA_DIR/name_SPF
8. /_N_CST_DIR/name_SPF

Supplementary conditions
● CALLPATH checks whether the programmed path name actually exists. In the case of an

error, part program execution is interrupted with correction block alarm 14009.

● CALLPATH can also be programmed in INI files. It is only effective for the time it takes to
process the INI file (WPD-INI file or initialization program for NC active data, e.g. frames in
the 1st channel _N_CH1_UFR_INI). The search path is again reset.

2.24.3.10 Execute external subprogram (840D sl) (EXTCALL)
A part program can be loaded from an external memory and executed with the EXTCALL
command.

The following are available as external memory:

● Local drive

● Network drive

● USB drive

Note

Only the USB interfaces on the operator panel front or the TCU can be used as interface
for the processing of an external program on a USB drive.

NOTICE

Tool/workpiece damage when using a USB flash drive

It is recommended that a USB flash drive is not used to execute an external subprogram.
A communication interruption to the USB flash drive when executing the subprogram if
the flash drive has contact problems, drops out, is interrupted because it has been
accidentally knocked or has been inadvertently withdrawn stops the machining
immediately. The tool and/or workpiece could be damaged.

Default setting of the external program path
The path for the external program directory can be preset with the setting data:

SD42700 $SC_EXT_PROG_PATH

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 201

Together with the program path and identifier specified with the EXTCALL call, this forms the
entire path for the subprogram to be called.

Note
Parameter

When calling an external program, none of these parameters can be transferred to it.

Syntax
EXTCALL("<path/><program name>")

Meaning

EXTCALL: Command for calling an external subprogram.
"<path/><program name>": Constant/variable of type STRING

<path>: Absolute or relative path data (op‐
tional)

<program name>: The program name is specified with‐
out prefix "_N_".
The file extension ("MPF", "SPF")
can be attached to program names
using the "_" or "." character (option‐
al).
Example:
"SHAFT"
"SHAFT_SPF"
"SHAFT.SPF"

Path specification: Short designations
The following short designations can be used to specify the path:

● Local drive: "LOCAL_DRIVE:"

● CF card: "CF_CARD:"

● USB drive (operator panel front): "USB:"

Alternatively, the abbreviations "CF_CARD:" and "LOCAL_DRIVE:" can be used.

Example

Execute from local drive
The "MAIN.MPF" main program is stored in NC memory and is selected for execution.

Subprogram "SP_1"
The external subprogram "SP_1.SPF" or "SP_1.MPF" is on the local drive in the directory "/
user/sinumerik/data/prog/WKS.DIR/WST1.WPD".

Flexible NC programming
2.24 Subprogram technique

Job Planning
202 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The path for the external program directory is set with:

SD42700 $SC_EXT_PROG_PATH = LOCAL_DRIVE:WKS.DIR/WST1.WPD

Note

Specification of the path for the call of the external subprogram:
● Without the default setting: "LOCAL_DRIVE:WKS.DIR/WST1.WPD/SP_1"
● With the default setting: "SP_1"

Subprogram "SP_2"
The external subprogram "SP_2.SPF " or "SP_2.MPF " is in the WKS.DIR /WST1.WPD
directory of the USB drive. The default path setting to the external program directory is used
for the path of subprogram "SP_1" and is also not rewritten in the main program. Therefore,
the complete path needs to be specified when subprogram "SP_2" is called.

Main program "MAIN"

Program code
N010 PROC MAIN
N020 ...
N030 EXTCALL("SP_1")
N030 EXTCALL("USB:WKS.DIR/WST1.WPD/SP_2")
N050 ...
N060 M30

Additional information

EXTCALL call with absolute path name
If the subprogram exists under the specified path, it is executed with the EXTCALL call. If the
subprogram does not exist under the specified path, the program execution is aborted with the
EXTCALL call.

EXTCALL call with relative path name / without path name
In the event of an EXTCALL call with a relative path name or without a path name, the available
program memories are searched as follows:

1. If a path name is preset in SD42700 $SC_EXT_PROG_PATH, the data specified in the
EXTCALL call (program name or with relative path name) is searched for first, starting from
this path. The absolute path is obtained from linking the following characters:

– Default path specification in SD42700 $SC_EXT_PROG_PATH

– Separator "/"

– Path specification and subprogram name in the EXTCALL command

2. If the subprogram was not found under 1., the directories of the user memory are searched.

The search ends when the subprogram is found for the first time. If the subprogram is not
found, the program execution is aborted with the EXTCALL call.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 203

Adjustable reload memory (FIFO buffer)
A reload memory is required for the execution of an external subprogram. The size of the
reload memory is preset with 30KB and can only be changed by the machine manufacturer
(using MD18360 MM_EXT_PROG_BUFFER_SIZE).

Note
Subprograms with jump commands

For external subprograms that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP,
WHILE, REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading
memory.

Note
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

A separate reload memory is required for external subprograms executed in parallel.

Reset / end of program / POWER ON
Reset and POWER ON cause external subprogram calls to be interrupted and the associated
load memory to be deleted.

A program selected for "Execution from external source" remains selected for "Execution from
external source" after a reset / end of program. The behavior does not differ from internally
selected programs, assuming that the external program memory is still available.

References
Further information on "Execution from external source" can be found in:

Function Manual, Basic Functions, Mode Group, Channel, Program Operation, Reset Behavior
(K1)

2.24.3.11 Execute external subprogram (828D) (EXTCALL)
A part program can be loaded from an external memory and executed with the EXTCALL
command.

Flexible NC programming
2.24 Subprogram technique

Job Planning
204 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The following are available as external memory:

● User CF card

● Network drive

● USB drive

Note

As the interface for the execution of an external program located on a USB drive, only the
USB interface of the operator panel front (PPU) may be used.

NOTICE

Tool/workpiece damage when using a USB flash drive

It is recommended that a USB flash drive is not used to execute an external subprogram.
A communication interruption to the USB flash drive when executing the subprogram if
the flash drive has contact problems, drops out, is interrupted because it has been
accidentally knocked or has been inadvertently withdrawn stops the machining
immediately. The tool and/or workpiece could be damaged.

Default setting of the external program path
The path for the external program directory can be preset with the setting data:

SD42700 $SC_EXT_PROG_PATH

Together with the program path and identifier specified with the EXTCALL call, this forms the
entire path for the subprogram to be called.

Note
Parameter

When calling an external program, none of these parameters can be transferred to it.

Syntax
EXTCALL("<path/><program name>")

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 205

Meaning

EXTCALL: Command for calling an external subprogram.
"<path/><program name>": Constant/variable of type STRING

<path>: Absolute or relative path data (op‐
tional)

<program name>: The program name is specified with‐
out prefix "_N_".
The file extension ("MPF", "SPF")
can be attached to program names
using the "_" or "." character (option‐
al).
Example:
"SHAFT"
"SHAFT_SPF"
"SHAFT.SPF"

Path specification: Short designations
The following short designations can be used to specify the path:

● User CF card: "CF_CARD:"

● USB drive (operator panel front): "USB:"

Example
The "MAIN.MPF" main program is stored in NC memory and is selected for execution.

Subprogram "SP_1"
The external subprogram "SP_1.SPF " or "SP_1.MPF " is on the user CF card in the "/
WKS.DIR /WST1.WPD" directory.

The path for the external program directory is set with:

SD42700 $SC_EXT_PROG_PATH = CF_CARD:WKS.DIR/WST1.WPD

Note

Specification of the path for the call of the external subprogram:
● Without the default setting: "CF_CARD:WKS.DIR/WST1.WPD/SP_1"
● With the default setting: "SP_1"

Subprogram "SP_2"
The external subprogram "SP_2.SPF " or "SP_2.MPF " is in the WKS.DIR /WST1.WPD
directory of the USB drive. The default path setting to the external program directory is used
for the path of subprogram "SP_1" and is also not rewritten in the main program. Therefore,
the complete path needs to be specified when subprogram "SP_2" is called.

Flexible NC programming
2.24 Subprogram technique

Job Planning
206 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Main program "MAIN"

Program code
N010 PROC MAIN
N020 ...
N030 EXTCALL("SP_1")
N030 EXTCALL("USB:WKS.DIR/WST1.WPD/SP_2")
N050 ...
N060 M30

Additional information

EXTCALL call with absolute path name
If the subprogram exists under the specified path, it is executed with the EXTCALL call. If the
subprogram does not exist under the specified path, the program execution is aborted with the
EXTCALL call.

EXTCALL call with relative path name / without path name
In the event of an EXTCALL call with a relative path name or without a path name, the available
program memories are searched as follows:

1. If a path name is preset in SD42700 $SC_EXT_PROG_PATH, the data specified in the
EXTCALL call (program name or with relative path name) is searched for first, starting from
this path. The absolute path is obtained from linking the following characters:

– Default path specification in SD42700 $SC_EXT_PROG_PATH

– Separator "/"

– Path specification and subprogram name in the EXTCALL command

2. If the subprogram was not found under 1., the directories of the user memory are searched.

The search ends when the subprogram is found for the first time. If the subprogram is not
found, the program execution is aborted with the EXTCALL call.

Adjustable reload memory (FIFO buffer)
A reload memory is required for the execution of an external subprogram. The size of the
reload memory is preset (see MD18360 MM_EXT_PROG_BUFFER_SIZE).

Note
Subprograms with jump commands

For external subprograms that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP,
WHILE, REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading
memory.

Flexible NC programming
2.24 Subprogram technique

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 207

Note
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

A separate reload memory is required for external subprograms executed in parallel.

Reset / end of program / POWER ON
Reset and POWER ON cause external subprogram calls to be interrupted and the associated
load memory to be deleted.

A program selected for "Execution from external source" remains selected for "Execution from
external source" after a reset / end of program. The behavior does not differ from internally
selected programs, assuming that the external program memory is still available.

References
Further information on "Execution from external source" can be found in:

Function Manual, Basic Functions, Mode Group, Channel, Program Operation, Reset Behavior
(K1)

Flexible NC programming
2.24 Subprogram technique

Job Planning
208 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2.25 Macro technique (DEFINE ... AS)

NOTICE

Macros increase the complexity of programming

Macros can significantly alter the control's programming language. Macro technology may
only be used with great care.

A macro is a sequence of individual statements which have together been assigned a name
of their own. When a macro is called during a program run, the statements programmed under
the program name are executed one after the other.

According to the range of validity (in other words, the range in which the macro definition is
active), there are the following macro categories:

● Local macros
Local macros are macros that are defined at the beginning of an NC program, which at the
time of execution is not the main program. They are created when the NC program is called,
and deleted with an end of program reset – or the next time that the control system powers
up. Local macros can only be accessed within the NC program in which they are defined.

● Program-global macros
Program-global macros are macros that are defined at the beginning of an NC program,
which is used as main program. They are created when the NC program is called, and
deleted with an end of program reset – or the next time that the control system powers up.
Program-global macros can be accessed in the main program and in all subprograms.

Note
Availability of program-global macros

Program-global macros defined in the main program are only available in subprograms if
the following machine data is set:

MD11120 $MN_LUD_EXTENDED_SCOPE = 1

If MD11120 = 0, the program-global macros defined in the main program will only be
available in the main program.

● Global macros
Global macros are NC or channel-global macros, which are defined in a definition file
(macro file) – and are kept even after an end of program reset or the next time that the
control system powers up. Global macros can be called in any main program or subprogram
and executed.

Note

In order to use the macros of an external macro file in the NC program, the macro file must
be downloaded to the NC.

Flexible NC programming
2.25 Macro technique (DEFINE ... AS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 209

Macros must have been defined before they can be used. The following rules must be observed
in this context:

● Any identifier, G, M, H functions and L subprogram names can be defined in a macro.

● The macro can be defined at the beginning of the program or in a dedicated definition file
(macro file).

● Local and program-global macros are defined at the beginning of the program.

● Global macros must be defined in a macro file, e.g._N_DEF_DIR/_N_UMAC_DEF.

● G command macros can only be defined as global macros.

● H and L functions can be programmed with 2 digits.

● M and G commands can be programmed with 3 digits.

Note

Keywords and reserved names may not be overwritten with macros.

Syntax
Macro definition:
DEFINE <Macro_name> AS <Operation_1> <Operation_2> ...
Call in the NC program:
<Macro_name>

Meaning

DEFINE ... AS : Keyword combination to define a macro
<Macro_name>: Macro name

Only identifiers are permissible as macro names.
The macro is called from the NC program with the macro name.

<Operation_1>: First programming instruction in the macro
<Operation_2>: Second programming instruction in the macro

Supplementary conditions

Nesting
Nesting of macros is not possible.

Examples

Example 1: Macro definition at the beginning of the program

Program code Comment
DEFINE LINE AS G1 G94 F300 ; Macro definition

Flexible NC programming
2.25 Macro technique (DEFINE ... AS)

Job Planning
210 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
...
N70 LINE X10 Y20 ; Macro call
...

Example 2: Macro definitions in a macro file

Program code Comment
DEFINE M6 AS L6 ; A subprogram is called at tool change to handle

the necessary data transfer. The actual M function
is output in the subprogram (e.g. M106).

DEFINE G81 AS DRILL(81) ; Emulation of the DIN-G command.
DEFINE G33 AS M333 G333 ; During thread cutting, synchronization is reques-

ted with the PLC. The original G command G33 was
renamed to G333 by machine data so that the program-
ming is identical for the user.

Example 3: External macro file
The macro file must be downloaded into the NC after reading the external macro file into the
control. Only then can macros be used in the NC program.

Program code Comment
%_N_UMAC_DEF
;$PATH=/_N_DEF_DIR ; Customer-specific macros
DEFINE PI AS 3.14
DEFINE TC1 AS M3 S1000
DEFINE M13 AS M3 M7 ; Spindle clockwise, coolant on
DEFINE M14 AS M4 M7 ; Spindle counter-clockwise, coolant on
DEFINE M15 AS M5 M9 ; Spindle stop, coolant off
DEFINE M6 AS L6 ; Call tool change program
DEFINE G80 AS MCALL ; Deselect drilling cycle
M30

Flexible NC programming
2.25 Macro technique (DEFINE ... AS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 211

Flexible NC programming
2.25 Macro technique (DEFINE ... AS)

Job Planning
212 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

File and Program Management 3
3.1 Program memory

3.1.1 NC program memory
Files and programs (e.g. main programs and subprograms, macro definitions) are saved in
the non-volatile program memory (→ passive file system).

References:
Function Manual, Extended Functions; Memory Configuration (S7)

A number of file types are also stored here temporarily; these can be transferred to the work
memory as required (e.g. for initialization purposes when machining a specific workpiece).

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 213

Standard directories
The following standard directories are available:

Directory Content
_N_DEF_DIR Data modules and macro modules
_N_CST_DIR Standard cycles
_N_CMA_DIR Manufacturer cycles
_N_CUS_DIR User cycles
_N_WKS_DIR Workpieces
_N_SPF_DIR Global subprograms
_N_MPF_DIR Main programs
_N_COM_DIR Comments

File types
The following file types can be stored in the main memory:

File type Description
<name>_MPF Main program
<name>_SPF Subprogram
<name>_TEA Machine data
<name>_SEA Setting data
<name>_TOA Tool offsets
<name>_UFR Zero offsets/frames
<name>_INI Initialization files
<name>_GUD Global user data
<name>_RPA R-parameters
<name>_COM Comment
<name>_DEF Definitions for global user data and macros

Workpiece main directory (_N_WKS_DIR)
The workpiece main directory exists in the standard setup of the program memory under the
name _N_WKS_DIR. The workpiece main directory contains all the workpiece directories for
the workpieces that you have programmed.

Workpiece directories (..._WPD)
A workpiece directory contains all files required for machining a workpiece. These can be main
programs, subprograms, any initialization programs and comment files.

The first time a part program is started, initialization programs are executed once, depending
on the selected program (in accordance with machine data MD11280 $MN_WPD_INI_MODE).

File and Program Management
3.1 Program memory

Job Planning
214 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example:
The workpiece directory _N_SHAFT_WPD, created for SHAFT workpiece contains the
following files:

File Description
_N_SHAFT_MPF Main program
_N_PART2_MPF Main program
_N_PART1_SPF Subprogram
_N_PART2_SPF Subprogram
_N_SHAFT_INI General initialization program for the data of the workpiece
_N_SHAFT_SEA Setting data initialization program
_N_PART2_INI General initialization program for the data for the Part 2 program
_N_PART2_UFR Initialization program for the frame data for the Part 2 program
_N_SHAFT_COM Comment file

Data can also be stored in the workpiece directory which is not directly required by the NC for
the machining. In addition to ASCII files, this can be binary files, such as images in JPG format
or descriptions in PDF format. In order that these can be interpreted as binary files by the NC,
the file extensions must be known in the NC (setting during commissioning via MD17000 $MN_
EXTENSIONS_OF_BIN_FILES; the following file extensions are preset in the basic setting:
JPG, GIF, PNG, BMP, PDF, ICO, HTM).

Select workpiece for machining
A workpiece directory can be selected for execution in a channel. If a main program with the
same name or only a single main program (_MPF) is stored in this directory, this is automatically
selected for execution.

References:
Operating Manual

3.1.2 External program memory
In addition to the passive file system in the NC, external program memories can also be
available at the machine (e.g. on the local drive or on a network drive).

Using the functions "Execute from external" or "EES (Execution from External Storage)" part
programs can be directly executed from external program memories.

Reference:
Function Manual Basic Functions; K1: Mode Group, Channel, Program Operation, Reset
Response

Global part program memory (GDIR)
When declaring the drives, one of the drives can be designated the global part program
memory (GDIR).

References:
Operating Manual: section: "Manage programs" > "Setting up drives"

File and Program Management
3.1 Program memory

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 215

The system automatically creates the MPF.DIR, SPF.DIR and WKS.DIR directories on the
drive. These three directories form the GDIR.

The GDIR only plays a role for the EES function. Depending on the drive configuration, the
GDIR replaces or extends the NC part program memory. The creation of a GDIR is, however,
not essential for EES operation.

The directories and files of the GDIR can be addressed in the part program in the same way
as in the passive file system. This permits a compatible transfer of an NC program with path
details from the passive file system to the GDIR. The directory SPF.DIR of the GDIR is
contained in the search path for subprograms.

Program organization
The program organization on external program memories is shown in the following diagram:

Case-insensitive file systems

Note

To avoid problems with case-sensitivity for the file addressing (see "Addressing program
memory files (Page 217)"), case-insensitive file systems should be used as external program
memory.

File and Program Management
3.1 Program memory

Job Planning
216 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

3.1.3 Addressing program memory files
A file in the program memory, which is addressed with a file handling command (e.g. WRITE,
DELETE, READ, ISFILE, FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO), is
referenced with an absolute path plus file names or only with the file names. In the second
case, the path of the selected program is used as file path.

Addressing in the NC/EES notation

Addressing files of the passive file system
Files of the passive file system are generally addressed in the NC notation (directory and file
names begin with the domain identifier "_N_", "_" is the separator for the file identifier) without
specifying the drive name. An addressing in EES notation (without domain identification "_N_",
separator for the directory/file extension is ".") is, however, also permitted.

Example:

● NC notation: "/_N_SPF_DIR/_N_SUB1_SPF"

● EES notation: "/SPF.DIR/SUB1.SPF"

Note

The addressing schemes for files of the passive file system in EES notation are converted
internally into NC notation in accordance with the following rules:
● Directory and file names are extended with the domain identification "_N_".
● If the fourth-last character in the directory or file name is a period ("."), it will be converted

into an underscore ("_").

The passive file system can also be explicitly addressed using the predefined drive names "//
NC:".

File and Program Management
3.1 Program memory

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 217

Example:

● NC notation: "//NC:/_N_SPF_DIR/_N_SUB1_SPF"

● EES notation: "//NC:/SPF.DIR/SUB1.SPF"

Addressing files of an external program memory
Files of an external program memory not recorded as GDIR must be addressed in EES
notation. The drive name (e.g. "//DEV1:") must be specified at the start of the addressing path.
All symbolic device names configured in /user/sinumerik/hmi/cfg/logdrive.ini are permissible.

Example:

● EES notation: "//DEV1:/MyProgDir/pp1.xxx"

● NC notation: Not permissible

Addressing files of the global part program memory (GDIR)
When addressing files of the GDIR, in addition to specifying the path in the EES notation, it is
also permissible to specify the path in the NC notation.

Example:

● EES notation: "//DEV2:/MPF.DIR/PROG11.MPF"

● NC notation: "/_N_MPF_DIR/_N_PROG11_MPF"

Note

The addressing schemes for files of the GDIR in NC notation are converted internally into EES
notation in accordance with the following rules:
● The domain identification "_N_" in directory and file names is removed.
● If the fourth-last character in the directory or file name is an underscore ("_"), it will be

converted into a period (".").

Rules for the path specification
A complete path specification consists of drive name, directory path and file name.

Drive name
The following rules govern the specification of the drive name:

● All symbolic device names configured in /user/sinumerik/hmi/cfg/logdrive.ini are
permissible.

● The character "//" is at the beginning, followed by at least one letter or one digit.

● The following characters can be any combination of letters, digits, "_" and spaces.

● The name is ended with a letter or a digit, followed by a ":".

● Other special characters are not permitted.

File and Program Management
3.1 Program memory

Job Planning
218 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note

The drive name "//NC:" is predefined for the passive file system.

Examples:

● External program memory:

– //Drive1:

– //Drive_1:

– //Drive 1:

– //A B:

– //1 B C 2:

Directory path
The following rules govern the specification of the directory path:

● A "/" is located at the start and end of the directory path and as separator for the individual
path sections.

Note

A double slash ("//") within the directory path is not permitted!

● Directory names:

– Directory names must begin with a letter or a digit. Only for addressing in the NC notation
do directory names begin with the domain identification "_N_".

– The following characters can be any combination of letters, digits and "_".

Note

Spaces in directory names are also permitted for external program memories. This is
not true, however, when the external program memory is created as global part program
memory (GDIR).

– Other special characters are not permitted.

● Directory extensions:

– Directory extensions must consist of three letters/digits.

– They are separated with "_" (NC notation) or "." (EES notation) from the directory name.

Note

The passive file system has only the directory extensions _DIR and _WPD.

File and Program Management
3.1 Program memory

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 219

Examples:

● Passive file system or GDIR:

– NC notation: _N_WKS_DIR/_N_MYNCPROGS_WPD/...

– EES notation: WKS.DIR/MYPROGS.WPD/...

● External program memory:

– /abc

– /ab_c.def

– /ab c1.def

– /a b c .d11

– /abc.def/ghi.klm

File name
The following rules apply to the file names:

● Only for addressing in NC notation do file names begin with the domain identification "_N_".

● The next two characters should be either two letters or an underscore followed by a letter.

Note

If this condition is satisfied, then an NC program can be called as subprogram from another
program just by specifying the program name. However, if the program name starts with
digits, the subprogram call is then only possible via the CALL statement.

● The following characters can be any combination of letters, digits and "_".

● File extension:

– The file extension must consist of three letters/digits.

Note

Permitted file extensions in the passive file system, see "NC program memory
(Page 213)".

– They are separated with "_" (NC notation) or "." (EES notation) from the file names.

Examples:

● Passive file system or GDIR:

– NC notation: _N_SUB1_SPF

– EES notation: SUB1.SPF

● External program memory:

– Part 1

– _Part1

– Part_1.spf

– Part1.mpf

File and Program Management
3.1 Program memory

Job Planning
220 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

DIN subprogram name
The following rules apply to DIN subprogram names:

● The first character must be the letter "L".

● The following characters are digits (at least one).

● File extension:

– The file extension must consist of three letters.

– They are separated with "_" (NC notation) or "." (EES notation) from the file names.

Examples:

● L123

● L1_SPF (NC notation) or L1.SPF (EES notation)

Maximum path length
Maximum 128 bytes are available for specifying the drive name and the directory path; the
maximum length of the file name is 31 bytes. The maximum length of the complete path is
159 bytes.

3.1.4 Search path for subprogram call
For subprogram calls without path data, the absolute path is determined by processing a fixed
search path.

A search is then made in the program memory in the following sequence:

 Directory Description
1 current directory / name The current directory is the directory in which the

program is selected.
This can be:
● A workpiece directory or the standard

directory _N_MPF_DIR in the NC part
program memory or global part program
memory

or
● Any directory of an external program memory

2 current directory / name_SPF
3 current directory / name_MPF

4 a //NC:/_N_SPF_DIR / name_SPF Subprogram directory in the NC part program
memory

b //DEV2:/_N_SPF_DIR / name_SPF 1) Subprogram directory in the global part program
memory
Note:
This search step is not executed if a global part
program memory has not been created, or the
program is selected in the NC part program
memory.

File and Program Management
3.1 Program memory

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 221

 Directory Description
5 Search path extension programmed with CALLPATH (see "Extend search path for subprogram

calls (CALLPATH) (Page 200)").
Note:
This search step is not executed if CALLPATH has not been programmed.

6 /_N_CUS_DIR / name_SPF User cycle directory
7 /_N_CMA_DIR / name_SPF Manufacturer cycle directory
8 /_N_CST_DIR / name_SPF Standard cycle directory

1) //DEV2:" For example represents the drive on which the global part program memory has been
created.

The following rules apply for the search:

● The search path is run through for each individual subprogram call, this means that it is
irrelevant where the higher-level program is located.

● Depending on the directory, different file types are taken into account.

● A search is made in a directory, and not in lower-level, i.e. nested directories.

3.1.5 Interrogating the path and file name
The following system variables, which can be read in the part program, are available to
interrogate the path and file name of an NC program:

System variable Type Meaning
$P_STACK INT Supplies the program level in which the current NC program

is executed.
$P_PATH[<n>] STRING Supplies the path of the NC program, which is processed at

the program level selected using field index <n>.
Examples:
$P_PATH[0] supplies the path for the main program, e.g. "/
_N_WKS_DIR/_N_WELLE_WPD/".
$P_PATH[$P_STACK - 1] supplies the path of the calling pro‐
gram.
If the path refers to an NC program, which is saved in the pas‐
sive file system of the NC or in the global part program memory
(GDIR), then the path is supplied in the NC notation.
If the path refers to an NC program, which is executed by an
external program memory other than the global part program
memory then $P_PATH supplies the path in the EES notation.

$P_PROG[<n>] STRING Supplies the name of the NC program, which is processed at
the program level selected using field index <n>.
If the NC program is saved in the passive file system of the NC
or in the global part program memory, then the program name
is supplied in the NC notation.
If the NC program is executed by an external drive other than
the global part program memory, then $P_PROG supplies the
name in the EES notation.

File and Program Management
3.1 Program memory

Job Planning
222 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

System variable Type Meaning
$P_PROGPATH STRING Supplies the path of the NC program that is presently being

processed.
Calling $P_PROGPATH is identical to $P_PATH[$P_STACK].

$P_IS_EES_PATH[<n>] BOOL Interrogates whether the path supplied by $P_PATH[<n>] or
the program name supplied by $P_PROG[<n>] corresponds
to the NC notation or the EES notation.
= FALSE $P_PATH[<n>] and $P_PROG[<n>] supply a NC

notation. This means that each identifier has the
prefix "_N_". The separator for the file identifier is
"_".
Examples:
● Path in the NC notation: "/_N_WKS_DIR/

_N_MYWPD_WPD/"
● Program name in the NC

notation:"_N_MYPROG_MPF"
A path in the NC notation can refer to the passive
file system in the NC as well as also the global part
program memory.

= TRUE $P_PATH[<n>] and $P_PROG[<n>] supply an
EES notation. This means that the identifiers do
not have the "_N_" prefix. The separator for the file
identifier is ".".
Examples:
● Path in the EES notation: "//DEV1:/WKS.DIR/

MYWPD.WPD/"
● Program name in the EES notation:

"MYPROG.MPF"

<n>: Index <n> defines the program level, from which the path information should be read (value range:
0 ... 17)

Note

In the EES mode, outside the global part program memory (GDIR), system variables
$P_PROG, $P_PATH and $P_PROGPATH path names in the EES notation. For the EES
mode, user programs that evaluate and process these path names must be extended so that
they can also process pathnames in the EES notation.

File and Program Management
3.1 Program memory

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 223

3.2 Working memory (CHANDATA, COMPLETE, INITIAL)

Function
The working memory contains the current system and user data with which the control is
operated (active file system), e.g.:

● Active machine data

● Tool offset data

● Zero offsets

● ...

Initialization programs
These are programs with which the working memory data is initialized. The following file types
can be used for this:

File type Description
name_TEA Machine data
name_SEA Setting data
name_TOA Tool offsets
name_UFR Zero offsets/frames
name_INI Initialization files
name_GUD Global user data
name_RPA R-parameters

Data areas
The data can be organized in different areas in which they are to apply. For example, a control
can have several channels or, as is commonly the case, several axes at its disposal.

There are:

Identifier Data areas
NC NC-specific data
CH<n> Channel-specific data (<n> specifies the channel name)
AX<n> Axis-specific data (<n> specifies the number of the machine axis)
TO Tool data
COMPLETE All data

File and Program Management
3.2 Working memory (CHANDATA, COMPLETE, INITIAL)

Job Planning
224 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Create initialization program at an external PC
The data area identifier and the data type identifier can be used to determine the areas which
are to be treated as a unit when the data is saved:

_N_AX5_TEA_INI Machine data for axis 5
_N_CH2_UFR_INI Frames of channel 2
_N_COMPLETE_TEA_INI All machine data

When the control is started up initially, a set of data is automatically loaded to ensure proper
operation of the control.

Procedure for multi-channel controls (CHANDATA)
CHANDATA(<channel number>) for several channels is only permissible in the file
_N_INITIAL_INI. This is the commissioning file with which all data of the control is initialized.

Program code Comment
%_N_INITIAL_INI
CHANDATA(1)
 ; Machine axis assignment, channel 1:
$MC_AXCONF_MACHAX_USED[0]=1
$MC_AXCONF_MACHAX_USED[1]=2
$MC_AXCONF_MACHAX_USED[2]=3
CHANDATA(2)
 ; Machine axis assignment, channel 2:
$MC_AXCONF_MACHAX_USED[0]=4
$MC_AXCONF_MACHAX_USED[1]=5
CHANDATA(1)
 ; Axial machine data:
 ; Exact stop window coarse:
$MA_STOP_LIMIT_COARSE[AX1]=0.2 ; Axis 1
$MA_STOP_LIMIT_COARSE[AX2]=0.2 ; Axis 2
 ; Exact stop window fine:
$MA_STOP_LIMIT_FINE[AX1]=0.01 ; Axis 1
$MA_STOP_LIMIT_FINE[AX1]=0.01 ; Axis 2

NOTICE

CHANDATA statement

In the part program, the CHANDATA statement may only be set for that channel in which the
NC program is executed. This means the statement can be used to protect NC programs so
that they are not executed in the wrong channel.

Program processing is aborted if an error occurs.

File and Program Management
3.2 Working memory (CHANDATA, COMPLETE, INITIAL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 225

Note

INI files in job lists do not contain any CHANDATA statements.

Save initialization program (COMPLETE, INITIAL)
The files of the working memory can be saved on an external PC and then read in again from
there.

● The files are saved with COMPLETE.

● INITIAL is used to create an INI file (_N_INITIAL_INI) over all areas.

Read-in initialization program

NOTICE

Data loss

If the file is read-in with the name "INITIAL_INI", then all data that is not supplied in the file is
initialized using standard data. Only machine data is an exception. This means that setting
data, tool data, ZO, GUD values, ... are supplied with standard data (normally "ZERO").

For example, the file COMPLETE_TEA_INI is suitable for reading-in individual machine data.
The control only expects machine data in this file. This is the reason that the other data areas
remain unaffected in this case.

Loading initialization programs
The INI programs can also be selected and called as part programs if they only use data of
one channel. This means that it is also possible to initialize program-controlled data.

File and Program Management
3.2 Working memory (CHANDATA, COMPLETE, INITIAL)

Job Planning
226 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Protection zones 4
4.1 Defining protection zones (CPROTDEF, NPROTDEF)

Protection zones, which protect machine elements against collisions, are defined in the part
program in blocks. These contain the following elements:

1. Definition of the machining plane
Before the actual protection zone definition, the machining plane must be selected, to which
the contour description of the protection zone refers.

2. Start of the definition
Depending on the particular NC command, either a channel-specific or machine-specific
protection zone is created.

3. Contour description of the protection zone
The contour of a protection zone is defined with traversing motion. These are not executed
and have no connection to previous or subsequent geometry descriptions. They only define
the protection zone.

4. End of definition

Syntax

DEF INT <Var>
G17/G18/G19
CPROTDEF/NPROTDEF(<n>,<t>,<AppLim>,<AppPlus>,<AppMinus>)
G0/G1/... X/Y/Z...
...
EXECUTE(<Var>)

Meaning

DEF INT <Var>: Definition of a local help variable, of the INTEGER data type
<Var>: Name of the Help variable
G17/G18/G19: Machining plane

Note:
It is not permissible to change the machining plane before the
end of the definition. Programming the applicate is not permitted
between start and end of the definition.

CPROTDEF(): Predefined procedure to define a channel-specific protection
zone

NPROTDEF(): Predefined procedure to define a machine-specific protection
zone

<n>: Number of defined protection zone
Data type: INT

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 227

<t>: Type of protection zone
Data type: BOOL
Value: TRUE Tool-related protection zone

FALSE Workpiece-related protection zone
<AppLim>: Type of limitation in the third dimension

Data type: INT
Value: 0 No limitation

1 Limit in plus direction
2 Limit in minus direction
3 Limit in positive and negative direction

<AppPlus>: Value of the limit in the positive direction in the 3rd dimension
Data type: REAL

<AppMinus>: Value of the limit in the negative direction in the 3rd dimension
Data type: REAL

G0/G1/... X/Y/Z... ... : The contour of a protection zone is specified with up to 11 tra‐
versing movements in the selected machining plane. The first
traversing movement is the movement to the contour. The last
point in the contour description must always coincide with the
first point of the contour description.
The valid protection zone is the zone left of the contour:
● Internal protection zone

The contour of an internal protection zone must described
in the counterclockwise direction.

● External protection zones (permitted only for workpiece-
related protection zones)
The contour for an external protection zone must be
described in the clockwise direction.

The following contour elements are permissible:
● G0, G1 for straight contour elements
● G2 for circle segments in the clockwise direction

Permissible only for workpiece-related protection zones.
Not permissible for tool-related protection zones because
they must be convex.

● G3 for circular segments in the counter-clockwise direction
Note:
A protection zone cannot be described by a complete circle. A
complete circle must be divided into two semicircles.
Note:
The sequence G2 → G3 or G3 → G2 is not permissible! A short
G1 block must be inserted between the two circular blocks.

EXECUTE(<Var>): Predefined procedure that marks the end of the definition
A switch is made back to normal program processing with
EXECUTE.

Example
See example under "Activating/deactivating protection zones (CPROT, NPROT) (Page 231)".

Protection zones
4.1 Defining protection zones (CPROTDEF, NPROTDEF)

Job Planning
228 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Additional information

Machine-specific protection zones
A machine-specific protection zone or its contour is defined using the geometry axis, i.e.
referenced to the basic coordinate system (BCS) of a channel. In order that correct protection-
zone monitoring can take place in all channels in which the machine-specific protection zone
is active, the basic coordinate system (BCS) of all of the channels involved must be identical:

● position of the coordinate origin referred to the machine zero

● Orientation of the coordinate axes

Reference point for contour description
● Tool-related protection zones

Coordinates for tool-related protection zones must be specified as absolute values referred
to the tool holder reference point F.

● Workpiece-related protection zones
Coordinates for workpiece-related protection zones must be specified as absolute values
referred to the zero point of the basic coordinate system (BCS).

Protection zones symmetrical around the center of rotation
For protection zones symmetrical around the axis or rotation (e.g. spindle chuck), you must
describe the complete contour and not only the contour up to the center of rotation.

Tool-related protection zones
Tool-related protection zones must always be convex. If a concave protected zone is desired,
this should be subdivided into several convex protection zones.

① Convex protection zones
② Concave protection zones (not permissible!)
F Toolholder reference point

Protection zones
4.1 Defining protection zones (CPROTDEF, NPROTDEF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 229

General conditions
During the definition of a protection zone, the following functions must not be active or used:

● Tool radius compensation (cutter radius compensation, tool nose radius compensation)

● Transformation

● Reference point approach (G74)

● Fixed point approach (G75)

● Dwell time (G4)

● Block search stop (STOPRE)

● End of program (M17, M30)

● M functions: M0, M1, M2

Protection zones
4.1 Defining protection zones (CPROTDEF, NPROTDEF)

Job Planning
230 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

4.2 Activating/deactivating protection zones (CPROT, NPROT)
Protection zones previously defined in the part program can be activated at any time – or can
be preactivated for subsequent activation by the PLC user program. Active protection zones
can be deactivated at any time.

When activating or preactivating, it is also possible to relatively shift the reference point of the
protection zone.

Note

A protection zone is only taken into account after the referencing of all geometry axes of the
channel in which it has been activated.

Note
Monitoring protection zones

If a tool-related protection area is not active, the tool path is checked against the workpiece-
related protection zones.

If no workpiece-oriented protection zone is active, then there is no protection zone monitoring.

Syntax
CPROT(<n>,<Status>,<XMov>,<YMov>,<ZMov>)
NPROT(<n>,<Status>,<XMov>,<YMov>,<ZMov>)

Meaning

CPROT: Predefined procedure to activate a channel-specific protection
zone

NPROT: Predefined procedure to activate a machine-specific protection
zone

<n>: Number of the protection zone
Data type: INT

<Status>: The channel-specific activation status is set using this parameter
Data type: INT
Value: 0 Deactivate protection zone

1 Preactivate protection zone
2 Activate protection zone
3 Preactivate protection zone with conditional

stop
<XMov>,<YMov>,<ZMov>: Additive offset values in the X/Y/Z direction

The offset can take place in 1, 2, or 3 dimensions. The offset values
refer to:
● The machine zero for a workpiece-related protection zone
● The tool carrier reference point F for a tool-specific protection

zone
Data type: REAL

Protection zones
4.2 Activating/deactivating protection zones (CPROT, NPROT)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 231

Example
Possible collision of a milling cutter with the measuring probe is to be monitored on a milling
machine. The position of the measuring probe is to be defined by an offset when the function
is activated.

The following protection zones are defined for this:

● A machine-specific and a workpiece-related protection zone for both the measuring probe
holder (n-PZ1) and the measuring probe itself (n-PZ2).

● A channel-specific and a tool-related protection zone for the milling cutter holder (c-PZ1),
the cutter shank (c-PZ2) and the milling cutter itself (c-PZ3).

The orientation of all protection zones is in the Z direction.

The position of the reference point of the measuring probe on activation of the function must
be X = -120, Y = 60 and Z = 80.

① Name for the protection zone of the probe
F Toolholder reference point

Program code Comment
DEF INT PROTZONE ; Definition of a Help variable
G17 ; machining plane XY

; defining protection zones:
NPROTDEF(1,FALSE,3,10,–10) ; protection zone n–PZ1
G01 X0 Y–10
X40
Y10
X0
Y-10
EXECUTE(PROTZONE)

Protection zones
4.2 Activating/deactivating protection zones (CPROT, NPROT)

Job Planning
232 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
NPROTDEF(2,FALSE,3,5,–5) ; protection zone n–PZ2
G01 X40 Y–5
X70
Y5
X40
Y-5
EXECUTE(PROTZONE)
CPROTDEF(1,TRUE,3,0,–100) ; protection zone c–PZ1
G01 X–20 Y–20
X20
Y20
X-20
Y-20
EXECUTE(PROTZONE)
CPROTDEF(2,TRUE,3,–100,–150) ; protection zone c–PZ2
G01 X0 Y–10
G03 X0 Y10 J10
X0 Y–10 J–10
EXECUTE(PROTZONE)
CPROTDEF(3,TRUE,3,–150,–170) ; protection zone c–PZ3
G01 X0 Y–27.5
G03 X0 Y27.5 J27.5
X0 Y27.5 J–27.5
EXECUTE(PROTZONE)

; activating protection zones:
NPROT(1,2,–120,60,80) ; activate protection zone n–PZ1 with offset
NPROT(2.2,–120,60,80) ; activate protection zone n–PZ2 with offset
CPROT(1,2,0,0,0) ; activate protection zone c–PZ1
CPROT(2,2,0,0,0) ; activate protection zone c–PZ2
CPROT(3,2,0,0,0) ; activate protection zone c–PZ3

Further information

Activation status after the control powers up
A protection zone can already be active after the control system powers up and the axes have
been referenced. This is the case if, for the protection zone, the following system variable is
set to TRUE:

● $SN_PA_ACTIV_IMMED[<n>] (for machine-specific protection zone) or

● $SC_PA_ACTIV_IMMED[<n>] (for channel-specific protection zone)
Index "<n>" corresponds to the number of the protection zone: 0 = 1. Protection zone

The protection zone is activated with status = 2 – and without offset.

Protection zones
4.2 Activating/deactivating protection zones (CPROT, NPROT)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 233

Multiple activation of a protection zone
A machine-specific protection zone can be active simultaneously in several channels (e.g.
protection zone of a tailstock where there are two opposite sides). The protection zones are
only monitored if all geometry axes have been referenced.

A protection zone cannot be activated simultaneously with different offsets in a single channel.

Protection zone monitoring for active tool radius compensation
For active tool radius compensation, a functioning protection zone monitoring is only possible
if the plane of the tool radius compensation is identical to the plane of the protection zone
definitions.

Protection zones
4.2 Activating/deactivating protection zones (CPROT, NPROT)

Job Planning
234 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

4.3 Checking for protection zone violation, working area limitation and
software limit switches (CALCPOSI)

Function
In the workpiece coordinate system (WCS), the CALCPOSI function checks whether, starting
from the starting position, the geometry axes can be traversed a specified distance without
violating active limits. For the case that the distance cannot be fully traversed because of limits,
a positive, decimal-coded status value and the maximum possible traversing distance are
returned.

Definition
INT CALCPOSI(VAR REAL[3] <Start>, VAR REAL[3] <Dist>, VAR REAL[5]
<Limit>, VAR REAL[3] <MaxDist>, BOOL <MeasSys>, INT <TestLim>)

Syntax
<Status> = CALCPOSI(VAR <Start>, VAR <Dist>, VAR <Limit>, VAR
<MaxDist>, <MeasSys>, <TestLim>)

Meaning

CALCPOSI(...): Predefined function for testing limit violations regarding the geometry axes
Preprocessing
stop:

No

Alone in the block: Yes

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 235

<status>:
(Part 1)

Function return value. Negative values indicate error states.
Data type: INT
Value range: -8 ≤ x ≤ 100000
Value: 0 The distance can be traversed completely.

-1 At least one component is negative in <Limit>.
-2 Error in a transformation calculation.

Example: The traversing distance passes through a singu‐
larity so that the axis positions cannot be defined.

-3 The specified traversing distance <Dist> and the maximum
possible traversing distance <MaxDist> are linearly depend‐
ent.
Note
Can only occur in conjunction with <TestLim>, bit 4 == 1.

-4 The projection of the traversing direction contained in <Dist>
on to the limitation surface is the zero vector, or the traversing
direction is perpendicular to the violated limitation surface.
Note
Can only occur in conjunction with <TestLim>, bit 5 == 1.

-5 In <TestLim>, bit 4 == 1 AND bit 5 == 1
-6 At least one machine axis that has to be considered for

checking the traversing limits has not been referenced.
-7 Collision avoidance function: Invalid definition of the kine‐

matic chain or the protection zones.
-8 Collision avoidance function: This command cannot be exe‐

cuted because of insufficient memory.
<status>:

(Part 2)
Units digit

Note
If several limits are violated simultaneously, the limit with the greatest restriction
on the specified traversing distance is signaled.
Value: 1 Software limit switches are limiting the traversing distance

2 Working area limits are limiting the traversing distance
3 Protection zones are limiting the traversing distance
4 Collision avoidance function: Protection zones are limiting

the traversing path
Tens digit

Value: 1x The initial value violates the limit
2x The specified straight line violates the limit.

This value is returned even if the end point does not violate
any limit itself, but the path from the starting point to the end
point would cause a limit value to be violated (e.g. by passing
through a protection zone, curved software limit switches in
the WCS for non-linear transformations, e.g. transmit).

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
236 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<status>:
(Part 3)

Hundreds digit
Value: 1xx AND units digit == 1 or 2:

The positive limit value has been violated.
AND units digit == 3 1):
An NC-specific protection zone has been violated.

2xx AND units digit == 1 or 2:
The negative limit value has been violated.
AND units digit == 3 1):
A channel-specific protection zone is violated.

<status>:
(Part 4)

Thousands digit
Value: 1xxx AND units digit == 1 or 2:

Factor with which the axis number is multiplied that violates
the limit. Numbering of the axes begins with 1.
Reference:
● Software limit switches: Machine axes
● Working area limitation: Geometry axes
AND units digit == 3 1):
Factor with which the number of the violated protection zone
is multiplied.

<status>:
(Part 5)

Hundred thousands digit
Value: 0xxxxx Hundred thousands digit == 0: <Dist> remains unchanged

1xxxxx A direction vector is returned in <Dist>, which defines the
further motion direction on the limitation surface.
Can only occur with the following supplementary conditions:
● Software limit switch or working area limit violated (not in

the starting point)
● A transformation is not active
● <TestID>, bit 4 or bit 5 == 1

<Start>: Reference to a vector with the start positions:
● <Start> [0]: 1st geometry axis
● <Start> [1]: 2nd geometry axis
● <Start> [2]: 3rd geometry axis
Parameter type: Input
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 237

<Dist>: Reference to a vector.
Input: Incremental traversing distance
● <Dist> [0]: 1st geometry axis
● <Dist> [1]: 2nd geometry axis
● <Dist> [2]: 3rd geometry axis
Output (only for set hundred thousands digit in <Status>):
 <Dist> contains a unit vector v as output value which defines the further tra‐

versing direction in the WCS.
Case 1: Formation of vector v for <TestID>, bit 4 == 1
The input vectors <Dist> and <MaxDist> span the motion plane. This plane
is cut by the violated limitation surface. The intersecting line of the two planes
defines the direction of vector v.The orientation (sign) is selected so that the
angle between the input vector <MaxDist> and v is not greater than 90 de‐
grees.
Case 2: Formation of vector v for <TestID>, bit 5 == 1
Vector v is the unit vector in the projection direction of the traversing vector
contained in <Dist> on the limitation surface. If the projection of the traversing
vector on the limitation surface is the zero vector, an error is returned.

Parameter type: Input/output
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

<Limit>: Reference to an array of length 5.
● <Limit> [0 - 2]: Minimum clearance of the geometry axes to the limits:

– <Limit> [0]: 1st geometry axis
– <Limit> [1]: 2nd geometry axis
– <Limit> [2]: 3rd geometry axis
The minimum clearances are observed with:
– Working area limitation: No restrictions
– Software limit switches: If no transformation is active, or a transformation

is active in which a clear assignment of the geometry axes to the linear
machine axes is possible, e.g. 5-axis transformations.

● <Limit> [3]: Contains the minimum clearance for linear machine axes which,
for example, cannot be assigned a geometry axis because of a non-linear
transformation. This value is also used as limit value for the monitoring of the
conventional protection zones and the collision avoidance protection zones.

● <Limit> [4]: Contains the minimum clearance for rotary machine axes which,
for example, cannot be assigned a geometry axis because of a non-linear
transformation.
Note
This value is only active for the monitoring of the software limit switches for
special transformations.

Parameter type: Input
Data type: VAR REAL [5]
Value range: -max. REAL value ≤ x[n] ≤ +max. REAL value

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
238 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<MaxDist>: Reference to a vector with the incremental traversing distance in which the speci‐
fied minimum clearance of an axis limit is not violated by any of the relevant ma‐
chine axes:
● <Dist> [0]: 1st geometry axis
● <Dist> [1]: 2nd geometry axis
● <Dist> [2]: 3rd geometry axis
If the traversing distance is not restricted, the contents of this return parameter
are the same as the contents of <Dist>.
For <TestID>, bit 4 == 1: <Dist> and <MaxDist>
<MaxDist> and <Dist> must contain vectors as input values that span a motion
plane. The two vectors must be mutually linearly independent. The absolute value
of <MaxDist> is arbitrary. For the calculation of the motion direction, see the de‐
scription for <Dist>.
Parameter type: Output
Data type: VAR REAL [3]
Value range: -max. REAL value ≤ x[<n>] ≤ +max. REAL value

<MeasSys>: Measuring system (inch/metric) for position and distance specifications (optional)
Data type: BOOL
Value: FALSE

(De‐
fault)

System of units corresponding to the currently active G com‐
mand from the G group 13 (G70, G71, G700, G710).
Note
If G70 is active and the basic system is metric (or G71 is
active and the basic system is inch), the system variables
$AA_IW and $AA_MW are provided in the basic system and,
if used, must be converted for CALCPOSI.

TRUE System of units according to the set basic system:
MD52806 $MN_ISO_SCALING_SYSTEM

<TestLim>: Bit-coded selection of the limits to be monitored (optional)
Data type: INT
Default value: Bits 0, 1, 2, 3, 6, 7 == 1 (207)
Bit Decimal Meaning
0 1 Software limit switch
1 2 Working area limitation
2 4 Activated conventional protection zones
3 8 Preactivated conventional protection zones
4 16 With violated software limit switches or working area limits in

<Dist>, return the traversing direction as in Case 1 (see
above).

5 32 With violated software limit switches or working area limits in
<Dist>, return the traversing direction as in Case 2 (see
above).

6 64 Activated collision avoidance protection zones
7 128 Preactivated collision avoidance protection zones
8 256 Pairs of activated and preactivated collision avoidance pro‐

tection zones
1) If several protection zones are violated, the protection zone with the greatest restriction on the speci‐
fied traversing distance is returned.

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 239

Example

Limitations

In the example, the active software limit switches and working area limits in the X-Y plane and
the following three protection zones are displayed:

● C2: Tool-related, channel-specific protection zone, active, circular, radius = 2 mm

● C4: Workpiece-related, channel-specific protection zone, preactivated, square, side length
= 10 mm

● N3: Machine-specific protection zone, active, rectangular, side length = 10 mm x 15 mm

NC program
The protection zones and working area limits are defined first in the NC program. The
CALCPOSI() function is then called with different parameter assignments.

Program code
N10 DEF REAL _START[3]
N20 DEF REAL _DIST[3]
N30 DEF REAL _LIMIT[5]
N40 DEF REAL _MAXDIST[3]
N50 DEF INT _PA
N60 DEF INT _STATUS

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
240 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code
: toolrelated protection zone C2
N70 CPROTDEF(2, TRUE, 0)
N80 G17 G1 X-2 Y0
N90 G3 I2 X2
N100 I-2 X-2
N110 EXECUTE(_PA)
; workpiece-related protection zone C4
N120 CPROTDEF(4, FALSE, 0)
N130 G17 G1 X0 Y15
N140 X10
N150 Y25
N160 X0
N170 Y15
N180 EXECUTE(_PA)
; machine-specific protection zone N3
N190 NPROTDEF(3, FALSE, 0)
N200 G17 G1 X10 Y5
N210 X25
N220 Y15
N230 X10
N240 Y5
N250 EXECUTE(_PA)
; activate or preactivate protection zones
N260 CPROT(2, 2, 0, 0, 0)
N270 CPROT(4, 1, 0, 0, 0)
N280 NPROT(3, 2, 0, 0, 0)
; define working area limits
N290 G25 XX=-10 YY=-10
N300 G26 XX=20 YY=21
N310 _START[0] = 0.
N320 _START[1] = 0.
N330 _START[2] = 0.
N340 _DIST[0] = 35.
N350 _DIST[1] = 20.
N360 _DIST[2] = 0.
N370 _LIMIT[0] = 0.
N380 _LIMIT[1] = 0.
N390 _LIMIT[2] = 0.
N400 _LIMIT[3] = 0.
N410 _LIMIT[4] = 0.
N420 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST)
N430 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,3)
N440 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,1)
N450 _START[0] = 5.
N460 _START[1] = 17.
N470 _START[2] = 0.
N480 _DIST[0] = 0.
N490 _DIST[1] =-27.
N500 _DIST[2] = 0.
N510 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,14)
N520 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,, 6)
N530 _LIMIT[1] = 2.

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 241

Program code
N540 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,, 6)
N550 _START[0] = 27.
N560 _START[1] = 17.1
N570 _START[2] = 0.
N580 _DIST[0] =-27.
N590 _DIST[1] = 0.
N600 _DIST[2] = 0.
N610 _LIMIT[3] = 2.
N620 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,12)
N630 _START[0] = 0.
N640 _START[1] = 0.
N650 _START[2] = 0.
N660 _DIST[0] = 0.
N670 _DIST[1] = 30.
N680 _DIST[2] = 0.
N690 TRANS X10
N700 AROT Z45
N710 _STATUS = CALCPOSI(_START,_DIST, _LIMIT, _MAXDIST)
; delete frames from N690 and N700 again
N720 TRANS
N730 _START[0] = 0.
N740 _START[1] = 10.
N750 _START[2] = 0.
; vectors_DIST and _MAXDIST define the motion plane
N760 _DIST[0] = 30.
N770 _DIST[1] = 30.
N780 _DIST[2] = 0.
N790 _MAXDIST[0] = 1.
N800 _MAXDIST[1] = 0.
N810 _MAXDIST[2] = 1.
N820 _STATUS = CALCPOSI(_START, _DIST, _LIMIT, _MAXDIST,,17)
N830 M30

Results of CALCPOSI()

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
420 3123 8.040 4.594 N3 is violated.
430 1122 20.000 11.429 No protection zone monitoring,

working area limitation is violated.
440 1121 30.000 17.143 Only software limit monitoring is still active.
510 4213 0.000 0.000 Starting point violates C4
520 0000 0.000 -27.000 Preactivated C4 is not monitored. The

specified distance can be traversed com‐
pletely.

540 2222 0.000 -25.000 Because _LIMIT[1] = 2, the traversing dis‐
tance is restricted by the working area limi‐
tation.

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
242 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
620 4223 -13.000 0.000 Clearance to C4 is a total of 4 mm due to

C2 and _LIMIT[3]. Clearance C2 → N3 of
0.1 mm does not result in limitation of the
traversing distance.

710 1221 0.000 21.213 Frame with translation and rotation active.
The permissible traversing distance in
_DIST applies in the shifted and rotated
WCS.

820 102121 18.000 18.000 The software limit switch of the Y axis is
violated. The calculation of a further tra‐
versing direction is requested with <_TES‐
TLIM> = 17. This direction is in _DIST
(0.707, 0.0, 0.707). It is valid because the
hundred thousands digit is set in <_STA‐
TUS>.

Additional information

"Referenced" axis status
All machine axes considered by CALCPOSI() must be homed.

Circle-related distance specifications
All circle-related distance specifications are always interpreted as radius specifications. This
must be taken into account particularly for transverse axes with activated diameter
programming (DIAMON/DIAM90).

Traversing distance reduction
If the specified traversing distance of an axis is limited, the traversing distance of the other
axes is also reduced proportionally in the <MaxDist> return value. The resulting end point is
therefore still on the specified path.

Rotary axes
Rotary axes are only monitored when they are not modulo rotary axes.

It is permissible that no software limit switches, working area limits or protection zones are
defined for one or more of the relevant axes.

Software limit switch and working area limitation status
Software limit switches and working area limits are only taken into account if they are active
during the execution of CALCPOSI(). The status can be influenced, for example, via:

● Machine data: MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS

● Setting data: $AC_WORKAREA_CS_...

● NC/PLC interface signals DB31, ... DBX12.2 / 3

● Commands: WALIMON / WALIMOF

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 243

Software limit switches and transformations
With CALCPOSI(), the positions of the machine axes (MCS) cannot always be uniquely
determined from the positions of the geometry axes (WCS) during various kinematic
transformations (e.g. TRANSMIT) because of ambiguities at certain positions of the traversing
distance. In normal traversing operation, the uniqueness generally results from the history and
the condition that a continuous motion in the WCS must correspond to a continuous motion in
the MCS. Therefore, when monitoring the software limit switches, the machine position at the
time when CALCPOSI() is executed is used to resolve the ambiguity in such cases.

Note
Preprocessing stop

When using CALCPOSI() in conjunction with transformations, it is the sole responsibility of
the user to program a preprocessing stop (STOPRE) with the preprocessing before
CALCPOSI() for the synchronization of the machine axis positions.

Protection zone clearance and conventional protection zones
With conventional protection zones, there is no guarantee that the safety clearance set in
parameter <Limit>[3] is maintained for all protection zones during a traversing movement
on the specified path. It is only guaranteed that no protection zone will be violated when the
end point returned in <Dist> is extended by the safety clearance in the traversing direction.
However, the straight line can pass very close to a protection zone.

Protection zone clearance and collision avoidance protection zones
With collision avoidance protection zones, there is a guarantee that the safety clearance set
in parameter <Limit>[3] is maintained for all protection zones during a traversing movement
on the specified traversing path.

The safety clearance specified in parameter <Limit>[3] only takes effect when the following
applies:

<Limit>[3] > (MD10619 $MN_COLLISION_TOLERANCE)

If bit 4 is set in parameter <TestLim> (calculation of the ongoing traversing direction), then
the direction vector received in <DIST> is only valid when the hundred thousands digit is set
in the function return value (<status>). If a direction such as this cannot be determined, either
because protection zones were violated, or because a transformation is active, then the input
value in <DIST> remains unchanged. An additional error message is not output.

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

Job Planning
244 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Special motion commands 5
5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)

You can traverse linear and rotary axes via position numbers to fixed axis positions saved in
machine data tables using the following commands. This type of programming is called
"approach coded positions".

Syntax
CAC(<n>)
CIC(<n>)
CACP(<n>)
CACN(<n>)

Meaning

CAC(<n>): Approach coded position from position number n
CIC(<n>): Starting from the actual position number, approach the coded position n position

locations before (+n) or back (–n)
CDC(<n>): Approach the position from position number n along the shortest path

(only for rotary axes)
CACP(<n>): Approach coded position from position number n in the positive direction

(only for rotary axes)
CACN(<n>): Approach coded position from position number n in the negative direction

(only for rotary axes)
<n>: Position number within the machine data table

Range of values: 0, 1, … (max. number of table locations - 1)

Example: Approach coded positions of a positioning axis

Programming code Comment
N10 FA[B]=300 ; Feedrate for positioning axis B
N20 POS[B]=CAC(10) ; Approach coded position from position number 10
N30 POS[B]=CIC(-4) ; Approach coded position from "current position num-

ber" - 4

References
● Function Manual Expanded Functions; Indexing Axes (T1)

● Function Manual, Synchronized Actions

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 245

5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT,
BTAN, EAUTO, ENAT, ETAN, PW, SD, PL)

Randomly curved workpiece contours cannot be precisely defined in an analytic form. This is
the reason why these type of contours are approximated using a limited number of points along
curves, e.g. when digitizing surfaces. The points along the curve must be connected to define
a contour in order to generate the digitized surface of a workpiece. Spline interpolation permits
this.

A spline defines a curve which is formed from polynomials of 2nd or 3rd degree. The
characteristics of the points along the curve of a spline can be defined depending on the spline
type being used.

For SINUMERIK solution line, the following spline types are available:

● A spline

● B spline

● C spline

Syntax
General:
ASPLINE X... Y... Z... A... B... C...
BSPLINE X... Y... Z... A... B... C...
CSPLINE X... Y... Z... A... B... C...
For a B spline, the following can be additionally programmed:
PW=<n>
SD=2
PL=<value>
For A and C splines, the following can be additionally programmed:

BAUTO / BNAT / BTAN

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,
PL)

Job Planning
246 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

EAUTO / ENAT / ETAN

Meaning

Spline interpolation type:
ASPLINE: Command to activate A spline interpolation
BSPLINE: Command to activate B spline interpolation
CSPLINE: Command to activate C spline interpolation
 The ASPLINE, BSPLINE and CSPLINE commands are modally effective

and belong to the group of motion commands.

Points along a curve and check points:
X... Y... Z...
A... B... C...

Positions in Cartesian coordinates

Point weight (only B spline):
PW: Using the PW command, a so-called "point weight" can be programmed for

every point along the curve.
<n>: "Point weight"

Range of values: 0 ≤ n ≤ 3
Increment: 0.0001
Effect: n > 1 The checkpoint attracts the curve more

significantly.
n < 1 The checkpoint attracts the curve less sig‐

nificantly.

Spline degree (only B spline):
SD: A third degree polygon is used as standard, However, a second degree

polygon can also be used by programming SD=2.

Distance between nodes (only B spline):
PL : The distances between nodes are suitably calculated internally. The control

can also machine pre-defined node clearances that are specified in the so-
called parameter-interval-length using the PL command.

<value>: Parameter interval length
Range of values: As for path dimension

Transitional behavior at the start of the spline curve (only A or C spline):
BAUTO: No specifications for the transitional behavior. The start is determined by

the position of the first point.
BNAT: Zero curvature
BTAN: Tangential transition to the previous block (delete position)

Transitional behavior at the end of the spline curve (only A or C spline):
EAUTO: No specifications for the transitional behavior. The end is determined by

the position of the last point.
ENAT: Zero curvature

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,

PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 247

ETAN: Tangential transition to the previous block (delete position)

Note

The programmable transitional behavior has no influence on the B spline. The B spline is
always tangential to the check polygon at its start and end points.

Supplementary conditions
● Tool radius compensation may be used.

● Collision monitoring is carried out in the projection in the plane.

Examples

Example 1: B spline

Program code 1 (all weights 1)
N10 G1 X0 Y0 F300 G64
N20 BSPLINE
N30 X10 Y20
N40 X20 Y40
N50 X30 Y30
N60 X40 Y45
N70 X50 Y0

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,
PL)

Job Planning
248 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code 2 (different weights)
N10 G1 X0 Y0 F300 G64
N20 BSPLINE
N30 X10 Y20 PW=2
N40 X20 Y40
N50 X30 Y30 PW=0.5
N60 X40 Y45
N70 X50 Y0

Program code 3 (check polygon) Comment
N10 G1 X0 Y0 F300 G64
N20 ; n.a.
N30 X10 Y20
N40 X20 Y40
N50 X30 Y30
N60 X40 Y45
N70 X50 Y0

Example 2: C spline, zero curvature at the start and at the end

Program code
N10 G1 X0 Y0 F300
N15 X10
N20 BNAT ENAT
N30 CSPLINE X20 Y10

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,

PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 249

Program code
N40 X30
N50 X40 Y5
N60 X50 Y15
N70 X55 Y7
N80 X60 Y20
N90 X65 Y20
N100 X70 Y0
N110 X80 Y10
N120 X90 Y0
N130 M30

Example 3: Spline interpolation (A spline) and coordinate transformation (ROT)
Main program:

Program code Comment
N10 G00 X20 Y18 F300 G64 ; Approach starting point.
N20 ASPLINE ; Activate interpolation type A spline.
N30 CONTOUR ; First subprogram call.
N40 ROT Z-45 ; Coordinate transformation: Rotation of the

WCS through -45° around the Z axis.
N50 G00 X20 Y18 ; Approach contour starting point.
N60 CONTOUR ; Second subprogram call.
N70 M30 ; End of program

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,
PL)

Job Planning
250 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Subprogram "contour" (includes the coordinates of the points along the curve):

Program code
N10 X20 Y18
N20 X10 Y21
N30 X6 Y31
N40 X18 Y31
N50 X13 Y43
N60 X22 Y42
N70 X16 Y58
N80 X33 Y51
N90 M1

In addition to the spline curve, resulting from the example program (ASPLINE), the following
diagram also contains the spline curves that would have been obtained when activating either
B or C spline interpolation (BSPLINE, CSPLINE):

Further information

Advantages of spline interpolation
With spline interpolation, the following advantages can be obtained contrary to using straight
line blocks G01:

● The number of part program blocks required to describe the contour are reduced

● Soft, curve characteristics that reduce the stress on the mechanical system at transitions
between part program blocks.

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,

PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 251

Properties and use of the various spline types

Spline type Properties and use

A spline

Properties:
● Passes exactly through the specified intermediate points along the curve.
● The curve characteristic is tangential, but does not have continuous curvature.
● Produces hardly any undesirable oscillations.
● The area of influence of changes to intermediate points along the curve is

local. This means that a change to an intermediate point along the curve only
affects up to max. 6 adjacent intermediate points.

Application:
The A spline is especially suitable for interpolating curves with large changes in
the gradient (e.g. staircase-type curves and characteristics).

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,
PL)

Job Planning
252 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Spline type Properties and use

B spline

Properties:
● Does not run through the specified intermediate points along the curve, but

only close to them. The intermediate points to not attract the curve. The curve
characteristic can be additionally influenced by weighting the intermediate
points using a factor.

● The curve characteristic is tangential with continuous curvature.
● Does not generate any undesirable oscillations.
● The area of influence of changes to intermediate points along the curve is

local. This means that a change to an intermediate point along the curve only
affects up to max. 6 adjacent intermediate points.

Application:
Their B spline is primarily intended as interface to CAD systems.

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,

PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 253

Spline type Properties and use

C spline

Properties:
● Passes exactly through the specified intermediate points along the curve.
● The curve characteristic is tangential with continuous curvature.
● Frequently generates undesirable oscillations, especially at positions where

the gradient changes significantly.
● The area of influence of changes to the intermediate points is global. This

means that if an intermediate point is changed then this influences the
complete curved characteristic.

Application:
The C spline can be well used when the intermediate points lie on a curve defined
analytically (circle, parabola, hyperbola).

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,
PL)

Job Planning
254 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Comparison of three spline types with identical interpolation points

Minimum number of spline blocks
The G codes ASPLINE, BSPLINE and CSPLINE link block end points with splines. For this
purpose, a series of blocks (end points) must be simultaneously calculated. The buffer size
for calculations is ten blocks as standard. Not every piece of block information is a spline end
point. However, the control needs a certain number of spline end-point blocks for every ten
blocks:

Spline type Minimum number of spline blocks
A spline: At least 4 blocks out of every 10 must be spline blocks.

These do not include comment blocks or parameter calculations.
B spline: At least 6 blocks out of every 10 must be spline blocks.

These do not include comment blocks or parameter calculations.
C spline: The required minimum number of spline blocks is the result of the following sum:

Value of MD20160 $MC_CUBIC_SPLINE_BLOCKS + 1
The number of points to calculate the spline segment is entered in MD20160. The
default setting is 8%. At least 9 blocks out of every 10 must be spline blocks.

Note

An alarm is output if the tolerated value is undershot and likewise when one of the axes involved
in the spline is programmed as a positioning axis.

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,

PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 255

Combine short spline blocks
Spline interpolation can result in short spline blocks, which reduce the path velocity
unnecessarily. The "Combine short spline blocks" function allows you to combine these blocks
such that the resulting block length is sufficient and does not reduce the path velocity.

The function is activated via the channel-specific machine data:

MD20488 $MC_SPLINE_MODE (setting for spline interpolation).

References:
Function Manual, Basic Functions; Continuous-Path Mode, Exact Stop, Look Ahead (B1),
Chapter: Combine short spline blocks

Special motion commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD,
PL)

Job Planning
256 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

5.3 Spline group (SPLINEPATH)
The axes to be interpolated in the spline group are selected using the SPLINEPATH command.
Up to eight path axes can be involved in a spline interpolation grouping.

Note

If SPLINEPATH is not explicitly programmed, then the first three axes of the channel are
traversed as spline group.

Syntax
The spline group is defined in a separate block:

SPLINEPATH(n,X,Y,Z,…)

Meaning

SPLINEPATH: Command to define a spline group
n: =1 (fixed value)
X,Y,Z,… : Identifier of the path axes to be interpolated in the spline group

Example: Spline group with three path axes

Program code Comment
N10 G1 X10 Y20 Z30 A40 B50 F350
N11 SPLINEPATH(1,X,Y,Z) ; Spline group
N13 CSPLINE BAUTO EAUTO X20 Y30 Z40 A50 B60 ; C spline
N14 X30 Y40 Z50 A60 B70 ; Intermediate points
…
N100 G1 X… Y… ; Deselect spline interpola-

tion

Special motion commands
5.3 Spline group (SPLINEPATH)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 257

Special motion commands
5.3 Spline group (SPLINEPATH)

Job Planning
258 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

5.4 Activating/deactivating NC block compression (COMPON,
COMPCURV, COMPCAD, COMPSURF, COMPOF)

The functions to compress linear blocks (and dependent on the parameterization, also circular
and/or rapid traverse blocks) are activated/deactivated using G commands of G group 30. The
commands are modal.

Syntax

COMPON / COMPCURV / COMPCAD / COMPSURF
...
COMPOF

Meaning

COMPON: Activating the compressor function COMPON
COMPCURV: Activating the compressor function COMPCURV
COMPCAD: Activating the compressor function COMPCAD
COMPSURF: Activating the compressor function COMPSURF
COMPOF : Deactivating the currently active compressor function

Note

The rounding function G642 and jerk limitation SOFT further improve the surface quality. These
commands must be written at the beginning of the program.

Example: COMPCAD

Program code Comment
N10 G00 X30 Y6 Z40
N20 G1 F10000 G642 ; Activation: Rounding function G642
N30 SOFT ; Activation: Jerk limitation SOFT
N40 COMPCAD ; Activation: Compressor function COMPCAD
N50 STOPFIFO
N24050 Z32.499 ; 1st traversing block
N24051 X41.365 Z32.500 ; 2nd traversing block
...
N99999 X... Z... ; last traversing block
COMPOF ; compressor function off.
...

Special motion commands
5.4 Activating/deactivating NC block compression (COMPON, COMPCURV, COMPCAD, COMPSURF,

COMPOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 259

5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)
It actually involves a polynomial interpolation (POLY) and not a spline interpolation type. Its
main purpose is to act as an interface for programming externally generated spline curves
where the spline sections can be programmed directly.

This mode of interpolation relieves the NC of the task of calculating polynomial coefficients. It
can be optimally applied in cases where the coefficients are supplied directly by a CAD system
or post processor.

Syntax
3rd degree polynomial:
POLY PO[X]=(xe,a2,a3) PO[Y]=(ye,b2,b3) PO[Z]=(ze,c2,c3) PL=n
5th degree polynomial and new polynomial syntax:
POLY X=PO(xe,a2,a3,a4,a5) Y=PO(ye,b2,b3,b4,b5) Z=PO(ze,c2,c3,c4,c5)
PL=n
POLYPATH("AXES","VECT")

Note

The sum of the polynomial coefficients and axes programmed in an NC block must not exceed
the maximum permitted number of axes per block.

Meaning

POLY : Activation of polynomial interpolation with a block
containing POLY.

POLYPATH : Polynomial interpolation can be selected for both
AXIS or VECT axis groups

PO[axis identifier/variable] : End points and polynomial coefficients
X, Y, Z: Axis identifier
xe, ye, ze : Specification of end position for the particular axis;

value range as for path dimension
a2, a3, a4, a5 : The coefficients a2, a3, a4, and a5 are written with

their value; value range as for path dimension. The
last coefficient in each case can be omitted if it
equals zero.

PL : Length of the parameter interval where polynomials
are defined (definition range of the function f(p)).
The interval always starts at 0, p can assume val‐
ues from 0 to PL.
Theoretical value range for PL:
0.0001 … 99 999.9999
Note:
The PL value applies to the block in which it is lo‐
cated. If no PL is programmed, then PL=1 is ap‐
plied.

Special motion commands
5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)

Job Planning
260 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Activating/deactivating polynomial interpolation
The polynomial interpolation is activated in the part program using the POLX G command.

The POLY G command together with G0, G1, G2, G3, ASPLINE, BSPLINE and CSPLINE
belong to the 1st group.

Axes, which are only programmed with name and end point (e.g. X10), are linearly moved. If
all axes of an NC block are programmed in this way, the control behaves the same as for G1.

The polynomial interpolation is implicitly deactivated again by programming another command
of the 1st G group G0, G1).

Polynomial coefficient
The PO value (PO[]=) or ...=PO(...) specifies all polynomial coefficients for an axis.
Several values are specified, separated by commas corresponding the degree of the
polynomial. Different degrees of polynomials are possible for various axes within one block.

POLYPATH subprogram
Using POLYPATH(...), the polynomial interpolation can be selectively released for certain axis
groups:

 Only path axes and supplementary axes: POLYPATH("AXES")
 Only orientation axes:

(when moving with orientation transformation)
POLYPATH("VECT")

The axes that are not released are linearly moved.

Polynomial interpolation is enabled as standard for both axis groups.

Polynomial interpolation is deactivated for all axes by programming without the
POLYPATH() parameter.

Example

Program code Comment
N10 G1 X… Y… Z… F600
N11 POLY PO[X]=(1,2.5,0.7) PO[Y]=(0.3,1,3.2)
PL=1.5

; Polynomial interpolation on

N12 PO[X]=(0,2.5,1.7) PO[Y]=(2.3,1.7) PL=3
...
N20 M8 H126 …
N25 X70 PO[Y]=(9.3,1,7.67) PL=5 ; Mixed data for the axes
N27 PO[X]=(10,2.5) PO[Y]=(2.3) ; No PL programmed; PL=1 applies
N30 G1 X… Y… Z. ; Polynomial interpolation off
…

Special motion commands
5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 261

Example: New polynomial syntax

Polynomial syntax that is still valid New polynomial syntax
PO[axis identifier]=(.. , ..) Axis identifier=PO(.. , ..)
PO[PHI]=(.. , ..) PHI=PO(.. , ..)
PO[PSI]=(.. , ..) PSI=PO(.. , ..)
PO[THT]=(.. , ..) THT=PO(.. , ..)
PO[]=(.. , ..) PO(.. , ..)
PO[variable]=IC(.. , ..) variable=PO IC(.. , ..)

Example: Curve in the X/Y plane.
Programming

Program code
N9 X0 Y0 G90 F100
N10 POLY PO[Y]=(2) PO[X]=(4,0.25) PL=4

Shape of the curves X(p) and Y(p)

Shape of the curve in the XY plane

Special motion commands
5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)

Job Planning
262 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Description
The equation to express the polynomial function is generally as follows:

 f(p)= a0 + a1p + a2p2 + . . . + anpn

 with: ai: constant coefficients (i = 0, 1, ..., n)
p: Parameter

In the control, polynomials up to a maximum of the 5th degree can be programmed:

 f(p)= a0 + a1p + a2p2 + a3p3 + a4p4 + a5p5

By assigning concrete values to these coefficients, it is possible to generate various curve
shapes such as line, parabola and power functions.

A straight line is generated with a2 = a3 = a4 = a5 = 0:

 f(p) = a0 + a1p

The following still applies:

 a0: Axis position at the end of the preceding block
 p = PL
 a1 = (xE - a0 - a2*p2 - a3*p3)/p

It is possible to program polynomials without the polynomial interpolation having been activated
using the G command POLY. In this case, the programmed polynomials are not interpolated,
but instead, all of the programmed end points of the axis are linearly approached (G1). The
programmed polynomials are only moved as such after explicitly activating polynomial
interpolation in the part program (POLY).

Special motion commands
5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 263

Special feature: Denominator polynomial
Command PO[]=(…) can be used to program a common denominator polynomial for the
geometry axes (without specifying an axis name), i.e. the motion of the geometry axes is then
interpolated as the quotient of two polynomials.

With this programming option, it is possible to represent shapes such as conics (circle, ellipse,
parabola, hyperbola) exactly.

Example:

Program code Comment
POLY G90 X10 Y0 F100 ; Geometry axes traverse linearly to po-

sition X10 Y0.
PO[X]=(0,–10) PO[Y]=(10) PO[]=(2,1) ; Geometry axes traverse along the quad-

rant to X0 Y10.

The constant coefficient (a0) of the denominator polynomial is always assumed to be 1. The
programmed end point is independent of G90 / G91.

X(p) and Y(p) are calculated as follows from the programmed values:

 X(p) = (10 - 10 * p2) / (1 + p2)
 Y(p) = 20 * p / (1 + p2)
 with 0 ≤ p ≤ 1

As a result of the programmed start points, end points, coefficient a2 and PL=1, the intermediate
results are as follows:

 Numerator (X) = 10 + 0 * p - 10 * p2

 Numerator (Y) = 0 + 20 * p + 0 * p2

 Denominator = 1 + p2

Special motion commands
5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)

Job Planning
264 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

If polynomial interpolation is active and a denominator polynomial is programmed with zeros
within the interval [0,PL], this is rejected and an alarm is output. Denominator polynomials
have no effect on the motion of special axes.

Note

Tool radius compensation can be activated with G41, G42 in conjunction with polynomial
interpolation and can be applied in the same way as in linear or circular interpolation modes.

Special motion commands
5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 265

5.6 Settable path reference (SPATH, UPATH)
For polynomial interpolation (POLY, ASPLINE, BSPLINE, CSPLINE, COMPON, COMPCURV), the
positions of the path axes i are specified as polynomials pi(U). The curve parameter U moves
from 0 to 1 within an NC block.

FGROUP selects the axes (FGROUP axes) to which the path feedrate F applies. An interpolation
with constant speed on the path S of the FGROUP axes means during the polynomial
interpolation normally a non-constant change of the curve parameter U. Consequently, two
possibilities are available for selecting the axes not contained in FGROUP on how they should
follow the FGROUP axes:

● Synchronous to path S (SPATH)

● Synchronous to curve parameter U (UPATH)

Syntax
SPATH
UPATH

Meaning

SPATH: The axes not contained in FGROUP are traversed with reference to path S
UPATH: The axes not contained in FGROUP are traversed with reference to curve parameter U

Note

UPATH and SPATH also define the interrelationship of the F word polynomial (FPOLY, FCUB,
FLIN) with path motion.

Supplementary conditions
SPATH and UPATH have no meaning for:

● Linear interpolation (G1)

● Circuit interpolation (G2, G3)

● Thread blocks (G33, G34, G35, G33x, G63)

● All path axes are contained in FGROUP

Example
The following example shows the difference between both types of motion control.

Program code
N10 FGROUP(X,Y,Z)
N15 G1 X0 A0 F1000 SPATH ; SPATH
N20 POLY PO[X]=(10,10) A10

Special motion commands
5.6 Settable path reference (SPATH, UPATH)

Job Planning
266 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code
N10 FGROUP(X,Y,Z)
N15 G1 X0 A0 F1000 UPATH ; UPATH
N20 POLY PO[X]=(10,10) A10

In both program sections, the path S of the FGROUP axes in N20 is dependent on the square
of curve parameter U. Therefore, different position arise for synchronized axis A along path X,
according to whether SPATH or UPATH is active.

Further information

Control behavior for reset and machine/option data
The G command, defined with MD20150 $MC_GCODE_RESET_VALUES[44], is effective
after a reset (45th. G group).

The initial state for the type of smoothing is defined with
MD20150 $MC_GCODE_RESET_VALUES[9] (10th G group).

The axis-specific machine data MD33100 $MA_COMPRESS_POS_TOL[<n>] has an
extended significance: It contains the tolerances for the compressor function and for smoothing
with G642.

Special motion commands
5.6 Settable path reference (SPATH, UPATH)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 267

5.7 Measuring with touch-trigger probe (MEAS, MEAW)
The "Measure with touch-trigger probe" is used to approach actual positions on the workpiece.
On the probe's switching edge, the positions for all axes programmed in the measurement
block are measured and written to the appropriate memory cell for each axis.

The following two fixed addresses are available for programming the function:

● MEAS
MEAS deletes the distance-to-go between the actual and setpoint positions.

● MEAW
MEAW is used in the case of measuring tasks where the programmed position always needs
to be approached.

MEAS and MEAW are non-modal; they are programmed together with motion operations. The
feedrate and interpolation type (G0, G1, etc.) as well as the number of axes must be adapted
for the respective measuring task.

Syntax
MEAS=<TE> G... X... Y... Z...
MEAW=<TE> G... X... Y... Z...

Meaning

MEAS: Command: Measurement with delete distance-to-go
Effective: Non-modal

MEAW: Command: Measurement without delete distance-to-go
Effective: Non-modal

Special motion commands
5.7 Measuring with touch-trigger probe (MEAS, MEAW)

Job Planning
268 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<TE>: Trigger event to initiate measurement
Type: INT
Range of val‐
ues:

-2, -1, 1, 2

Meaning:
(+)1 Rising edge of probe 1 (measuring input 1)
-1 Falling edge of probe 1 (measuring input 1)

(+)2 Rising edge of probe 2 (measuring input 2)
-2 Falling edge of probe 2 (measuring input 2)

Note:
There are up to a maximum of 2 probes (dependent on configuration level).

G...: Type of interpolation, e.g. G0, G1, G2 or G3
X... Y... Z... : End points in Cartesian coordinates

Example

Program code Comment
N10 MEAS=1 G1 F1000 X100 Y730 Z40 ; Measurement block with probe at first

measuring input and linear interpola-
tion. A preprocessing stop is automati-
cally generated.

...

Further information

Measuring task status
If an evaluation of whether or not the probe has been triggered is required in the program,
status variable $AC_MEA[<n>] (<n> = number of the measuring probe) can be checked:

Value Meaning
0 Measuring task not completed.
1 Measuring task completed successfully (the probe has been triggered).

Note

If the program is deflected in the program, the variable is set to 1. At the start of a measurement
block, the variable is automatically set to the initial state of the probe.

Special motion commands
5.7 Measuring with touch-trigger probe (MEAS, MEAW)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 269

Reading measured values
The positions of all traversing path and positioning axes of the block are acquired (maximum
number of axes depending on the control configuration). In the case of MEAS, the motion is
decelerated in a defined way following the triggering of the probe.

Note

If a geometry axis is programmed in a measuring block, the measured values are stored for
all current geometry axes.

If an axis participating in a transformation is programmed in a measurement block, the
measured values for all axes participating in this transformation are recorded.

Reading measurement results
The measurement results for the axes measured with probes can be read via the following
system variables:

● $AA_MM[<axis>]
Measurement results in the machine coordinate system

● $AA_MW[<axis>]
Measurement results in the workpiece coordinate system

Special motion commands
5.7 Measuring with touch-trigger probe (MEAS, MEAW)

Job Planning
270 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)
Several probes and several measuring systems can be used for axis-specific measurement.

The keywords MEASA, MEAWE and MEAC are available for programming the function.

With MEASA or MEAWA for the programmed axis, up to four measured values are acquired for
each measurement and are then saved in system variables in accordance with the trigger
event.

Measuring operations can be executed with MEAC. In this case, the measurement results are
stored in FIFO variables.

Syntax
MEASA[<axis>]=(<mode>,<TE1>,...,<TE4>)
MEAWA[<axis>]=(<mode>,<TE1>,...,<TE4>)
MEAC[<axis>]=(<mode>,<measurement memory>,<TE1>,...,<TE4>)

Note

MEASA and MEAWA are non-modal; they can be programmed together in one block. However,
if MEASA/MEAWA is programmed together with MEAS/MEAW in the same block, an error message
is output.

Meaning

MEASA: Keyword: Axis-specific measurement with deletion of distance-to-go
Effective: Non-modal

MEAWA: Keyword: Axis-specific measurement without delete distance-to-go
Effective: Non-modal

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 271

MEAC: Keyword: Axis-specific continuous measurement without deletion of dis‐
tance-to-go
Effective: Non-modal

<axis>: Name of channel axis used for measurement
<mode>: Two-digit number indicating the operating mode (measuring mode and

measuring system)
Units decade (measuring mode):
0 Cancel measuring task.
1 Up to four different trigger events that can be activated at the same

time.
2 Up to four different trigger events that can be activated in succes‐

sion.
3 Up to four different trigger events that can be activated in succes‐

sion, but with no monitoring of trigger event 1 at the start (alarms
21700/21703 are suppressed).
Note:
This mode is not supported by MEAC.

Tens decade (measuring system):
0 (or no data) active measuring system
1 Measuring system 1
2 Measuring system 2
3 Both measuring systems

<TE>: Trigger event to initiate measurement
Type: INT
Range of values: -2, -1, 1, 2
Meaning:

(+)1 Rising edge of probe 1
-1 Falling edge of probe 1

(+)2 Rising edge of probe 2
-2 Falling edge of probe 2

<measurement memory>: Number of FIFO (circulating storage)

Examples

Example 1: Axis-specific measurement with delete distance-to-go in mode 1 (evaluation in
chronological sequence)
a) With one measuring system

Program code Comment
...
N100 MEASA[X]=(1,1,-1) G01 X100 F100 ; Measuring in mode 1 with active measur-

ing system. Wait for measuring signal
with rising/falling edge from probe 1 for
travel path to X=100.

N110 IF $AC_MEA[1]==FALSE GOTOF END ; Check that the measurement was success-
ful.

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
272 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N120 R10=$AA_MM1[X] ; Save measured value acquired at the

first programmed trigger event (rising
edge).

N130 R11=$AA_MM2[X] ; Save measured value acquired at the sec-
ond programmed trigger event (falling
edge).

N140 END:

b) With two measuring systems

Program code Comment
...
N200 MEASA[X]=(31,1,-1) G01 X100 F100 ; Measuring in mode 1 with both measuring

systems. Wait for measuring signal with
rising/falling edge from probe 1 for trav-
el path to X=100.

N210 IF $AC_MEA[1]==FALSE GOTOF END ; Check that the measurement was success-
ful.

N220 R10=$AA_MM1[X] ; Save measured value of measuring system
1 at rising edge.

N230 R11=$AA_MM2[X] ; Save measured value of measuring system
2 at rising edge.

N240 R12=$AA_MM3[X] ; Save measured value of measuring system
1 at falling edge.

N250 R13=$AA_MM4[X] ; Save measured value of measuring system
2 at falling edge.

N260 END:

Example 2: Axis-specific measurement with delete distance-to-go in mode 2 (evaluation in
programmed sequence)

Program code Comment
...
N100 MEASA[X]=(2,1,-1,2,-2) G01 X100 F100 ; Measuring in mode 2 with active measur-

ing system. Wait for measuring signal in
the sequence rising edge probe 1, falling
edge probe 1, rising edge probe 2, fall-
ing edge probe 2 while traversing path to
X=100.

N110 IF $AC_MEA[1]==FALSE GOTOF PROBE2 ; Check that the measurement with probe 1
is successful.

N120 R10=$AA_MM1[X] ; Save measured value acquired at the
first programmed trigger event (rising
edge of probe 1).

N130 R11=$AA_MM2[X] ; Save measured value acquired at the sec-
ond programmed trigger event (rising edge
of probe 1).

N140, PROBE2:

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 273

Program code Comment
N150 IF $AC_MEA[2]==FALSE GOTOF END ; Check that the measurement with probe 2

is successful.
N160 R12=$AA_MM3[X] ; Save measured value acquired at the

third programmed trigger event (rising
edge of probe 2).

N170 R13=$AA_MM4[X] ; Save measured value acquired at the
fourth programmed trigger event (rising
edge of probe 2).

N180 END:

Example 3: Axis-specific continuous measurement in mode 1 (evaluation in chronological
sequence)
a) Measurement of up to 100 measured values

Program code Comment
...
N110 DEF REAL MEASVALUE[100]
N120 DEF INT loop=0
N130 MEAC[X]=(1,1,-1) G01 X1000 F100 ; Measuring in mode with active measuring

system, save measured values; under
$AC_FIFO1, wait for measuring system with
falling edge from probe 1 travel path to
X=1000.

N135 STOPRE
N140 MEAC[X]=(0) ; Terminate measurement when axis posi-

tion is reached.
N150 R1=$AC_FIFO1[4] ; Save number of accumulated measured val-

ues in parameter R1.
N160 FOR loop=0 TO R1-1
N170 MEASURED VALUE[loop]=$AC_FIFO1[0] ; Read-out measured values from $AC_FIFO1

and save.
N180 ENDFOR

b) Measurement with delete distance-to-go after 10 measured values

Program code Comment
...
N10 WHEN $AC_FIFO1[4]>=10 DO MEAC[x]=(0) DELDTG(x) ; Delete distance-to-go.
N20 MEAC[x]=(1,1,1,-1) G01 X100 F500
N30 MEAC [X]=(0)
N40 R1 = $AC_FIFO1[4] ; Number of measured values.
...

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
274 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

c) Measurement of a falling/rising tooth flank with two probes

Program code Comment
...
N110 DEF REAL MEASVALUE[16]
N120 DEF INT loop=0
N130 MEAC[X]=(1,1,-1,2) G01 X100 F100 ; Measurement in mode 1 with active meas-

uring system, save measured values under
$AC_FIFO1, wait for measuring signal in
the sequence falling edge of probe 1, ris-
ing edge of probe 2 while traversing the
path to X=100.

N140 STOPRE ;Preprocessing stop
N150 MEAC[X]=(0) ; Terminate measurement when axis posi-

tion is reached.
N160 R1=$AC_FIFO1[4] ; Save number of accumulated measured val-

ues in parameter R1.
N170 FOR loop=0 TO R1-1
N180 MEASURED VALUE[loop]=$AC_FIFO1[0] ; Read-out measured values from $AC_FIFO1

and save.
N190 ENDFOR

Additional information

Measurement job
A measuring task can be programmed in the part program or from a synchronized action (see
Chapter "Synchronized actions (Page 603)"). Please note that only one measuring job can be
active at any given time for each axis.

Note

The feed must be adjusted to suit the measuring task in hand.

In the case of MEASA and MEAWA, the correctness of results can be only guaranteed for
feedrates at which no more than 1 trigger event of the same type and no more than 4 trigger
events of different types occur in each position control cycle.

In the case of continuous measurement with MEAC, the ratio between interpolator clock cycle
and position control cycle must not exceed 1:8.

Trigger event
A trigger event comprises the number of the probe and the trigger criterion (rising or falling
edge) of the measuring signal.

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 275

Up to 4 trigger events of the addressed probe can be processed for each measurement; in
other words, up to 2 probes with 2 measuring signal edges each. The processing sequence
and the maximum number of trigger events depend on the selected mode.

Note

The following applies for measuring mode 1: The same trigger event may only be programmed
once in one measuring task.

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
276 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

For MEAC, the number of measured values per trigger event can be increased by using
PROFIBUS telegram 395 to a total of 8 measured values for a rising edge and 8 measured
values for a falling edge for each trigger event and position controller cycle.

● One probe: 8 measured values for a rising and 8 for a falling edge

● Two probes: 4 measured values for a rising and 4 for a falling edge for each probe

This means that higher feed rates or higher speeds can be reached by using PROFIBUS
telegram 395.

References:
Function Manual, Extended Functions; Measurements (M5), Section: Axial measurement

Operating mode
The first digit (tens decade) of the operating mode selects the required measuring system. If
only one measuring system is installed, but a second programmed, the installed system is
automatically selected.

The second digit (units decade) selects the required measuring mode. The measuring process
is thus adapted to the options supported by the relevant control:

● Mode 1
Trigger events are evaluated in the chronological sequence in which they occur. When this
mode is selected, only one trigger event can be programmed for six-axis modules. If more
than one trigger event is specified, the mode selection is switched automatically to mode
2 (without message).

● Mode 2
Trigger events are evaluated in the programmed sequence.

● Mode 3
Trigger events are evaluated in the programmed sequence but there is no monitoring of
trigger event 1 at START.

Note

No more than two trigger events can be programmed if two measuring systems are in use.

Measurement with and without delete distance-to-go
When command MEASA is programmed, the distance-to-go is not deleted until all required
measured values have been recorded.

The MEAWA function is used in the case of special measuring tasks where a programmed
position always needs to be approached.

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 277

Note

MEASA cannot be programmed in synchronized actions. As an alternative, MEAWA plus delete
distance-to-go can be programmed as a synchronized action.

If the measuring task with MEAWA is started from synchronized actions, the measured values
will only be available in the machine coordinate system.

Measurement results for MEASA, MEAWA
The results of measurements are available under the following system variables:

● In the machine coordinate system:

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
278 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

$AA_MM1[<axis>] Measured value of programmed measuring system on trigger event
1

... ...
$AA_MM4[<axis>] Measured value of programmed measuring system on trigger event

4

● In the workpiece coordinate system:

$AA_MW1[<axis>] Measured value of programmed measuring system on trigger event
1

... ...
$AA_MW4[<axis>] Measured value of programmed measuring system on trigger event

4

Geometry axes/Transformations
If axial measurement is to be started for a geometry axis, the same measuring job must be
programmed explicitly for all remaining geometry axes. The same applies to axes involved in
a transformation.

Examples:
N10 MEASA[Z]=(1,1) MEASA[Y]=(1,1) MEASA[X]=(1,1) G0 Z100
or
N10 MEASA[Z]=(1,1) POS[Z]=100

Measurement job with two measuring systems
If a measuring job is executed by two measuring systems, each of the two possible trigger
events of both measuring systems of the relevant axis is acquired. The assignment of the
reserved variables is therefore preset:

$AA_MM1[<axis>] or $AA_MW1[<axis>] Measured value from measuring
system 1 on trigger event 1

$AA_MM2[<axis>] or $AA_MW2[<axis>] Measured value from measuring
system 2 on trigger event 1

$AA_MM3[<axis>] or $AA_MW3[<axis>] Measured value from measuring
system 1 on trigger event 2

$AA_MM4[<axis>] or $AA_MW4[<axis>] Measured value from measuring
system 2 on trigger event 2

System variables
The probe status is available in the following system variables:

$A_PROBE[<n>]

Value Meaning
1 Probe deflected
0 Probe not deflected

The probe limitation is available in the following system variables:

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 279

$A_PROBE_LIMITED[<n>]

Value Meaning
1 Probe limitation active
0 Probe limitation inactive

<n> = probe

Reference:
List Manual, System Variables

Measuring job status for MEASA, MEAWA
If an evaluation is required in the program, the measuring task status can be queried via
$AC_MEA[<n>], where <n> = number of the probe. This variable returns a value of "1" once
all the trigger events of probe <n> that are programmed in a block have occurred. Otherwise,
the value is 0.

Note

If measurement is started from synchronized actions, $AC_MEA is no longer updated. In this
case, the new PLC interface signal DB31, … DBX62.3 or the equivalent variable
$AA_MEAACT[<axis>] must be queried.

Meaning:

$AA_MEAACT==1: Measurement active

$AA_MEAACT==0: Measurement not active

Continuous measurement (MEAC)
The measured values for MEAC are available in the machine coordinate system and stored in
the programmed FIFO[n] memory (circular buffer). If two probes are configured for the
measurement, the measured values of the second probe are stored separately in the FIFO[n
+1] memory configured especially for this purpose (defined in machine data).

The FIFO memory is a circular buffer in which measured values are written to $AC_FIFO
variables according to the circular principle, see Section "Synchronized actions (Page 603)".

Note

FIFO contents can be read only once from the circulating storage. If this measured data is to
be used several times, it must be buffered in the user data.

If the number of measured values for the FIFO memory exceeds the maximum value defined
in machine data, the measurement is automatically terminated.

An endless measuring process can be implemented by reading out measured values cyclically.
In this case, data must be read out at the same frequency as new measured values are read
in.

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
280 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

References:

● Function Manual, Synchronized Actions; Detailed Description,
Section: Parameters ($AC_FIFO)

● Function Manual, Extended Functions; Measurements (M5), Section: Axial measurement

Protection against programming errors
The following programming errors are detected and indicated appropriately:

● MEASA/MEAWA programmed with MEAS/MEAW in the same block
Example:
N01 MEAS=1 MEASA[X]=(1,1) G01 F100 POS[X]=100

● MEASA/MEAWA with number of parameters <2 or >5
Example:
N01 MEAWA[X]=(1) G01 F100 POS[X]=100

● MEASA/MEAWA with trigger event not equal to 1/ -1/ 2/ -2
Example:
N01 MEASA[B]=(1,1,3) B100

● MEASA/MEAWA with invalid mode
Example:
N01 MEAWA[B]=(4,1) B100

● MEASA/MEAWA with trigger event programmed twice
Example:
N01 MEASA[B]=(1,1,-1,2,-1) B100

● MEASA/MEAWA and missing geometry axis
Example:
N01 MEASA[X]=(1,1) MEASA[Y]=(1,1) G01 X50 Y50 Z50 F100 ;GEO axis X/
Y/Z

● Inconsistent measuring task with geometry axes
Example:
N01 MEASA[X]=(1,1) MEASA[Y]=(1,1) MEASA[Z]=(1,1,2) G01 X50 Y50 Z50
F100

Special motion commands
5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 281

5.9 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1,
OEMIPO2, G810 ... G829)

OEM addresses
The meaning of OEM addresses is determined by the OEM user. Their functionality is
incorporated by means of compile cycles. Five OEM addresses are reserved (OMA1 ... OMA5).
The address identifiers are settable. OEM addresses can be programmed in any block.

Reserved G command calls
The following G command calls are reserved for OEM users:

● OEMIPO1, OEMIPO2 (from G group 1)

● G810 ... G819 (G group 31)

● G820 ... G829 (G group 32)

Their functionality is incorporated by means of compile cycles.

Functions and subprograms
OEM users can also set up predefined functions and subprograms with parameter transfer.

Note
Workpiece simulation

Up to SW 4.4, no compile cycles were supported, as of SW 4.4, only selected compile cycles
(CC) are supported for the workpiece simulation.

Language commands in the part program of compile cycles that are not supported
(OMA1 ... OMA5, OEMIPO1/2, G810 ... G829, own procedures and functions) - therefore result
in an alarm message and cancellation of the simulation without any individual handling.

Solution: Individually handle the missing CC-specific language elements in the part program
($P_SIM query).
 Example:

N1 G01 X200 F500
IF (1==$P_SIM)
N5 X300 ;not active for CC simulation
ELSE
N5 X300 OMA1=10
ENDIF

Special motion commands
5.9 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1, OEMIPO2, G810 ... G829)

Job Planning
282 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

5.10 Feedrate reduction with corner deceleration (FENDNORM, G62,
G621)

With automatic corner deceleration the feed rate is reduced according to a bell-shaped curve
before reaching the corner. It is also possible to parameterize the extent of the tool behavior
relevant to machining via setting data. These are:

● Start and end of feed rate reduction

● Override with which the feed rate is reduced

● Detection of a relevant corner

Relevant corners are those whose inside angle is less than the corner parameterized in the
setting data.

Default value FENDNORM deactivates the function of the automatic corner override.

References:
/FBFA/ "Function Description ISO Dialects"

Syntax
FENDNORM
G62 G41
G621

Meaning

FENDNORM: Automatic corner deceleration OFF
G62: Corner deceleration at inside corners when tool radius offset is active
G621: Corner deceleration at all corners when tool radius offset is active

G62 only applies to inside corners with

● active tool radius offset G41, G42 and

● active continuous-path mode G64, G641
The corner is approached at a reduced feed rate resulting from:

F * (override for feed rate reduction) * feed rate override

The maximum possible feed rate reduction is attained at the precise point where the tool is to
change directions at the corner, with reference to the center path.

G621 applies analogously with G62 at each corner of the axes defined by FGROUP.

Special motion commands
5.10 Feedrate reduction with corner deceleration (FENDNORM, G62, G621)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 283

5.11 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA,
IPOBRKA, ADISPOSA)

Similar to the block change criterion for path interpolation (G601, G602, and G603) it is also
possible to program the end-of-motion criterion for single-axis interpolation in a part program
or in synchronized actions for command/PLC axes.

The end-of-motion criterion set will affect how quickly or slowly part program blocks and
technology cycle blocks with single-axis movements are completed. The same applies for PLC
via FC15/16/18.

Syntax
FINEA[<axis>]
COARSEA[<axis>]
IPOENDA[<axis>]
IPOBRKA(<axis>[,<instant in time>])
ADISPOSA[<axis>]=(<mode>,<window size>)

Meaning

FINEA: End-of-motion criterion: "Exact stop fine"
 Effective: Modal
COARSEA: End-of-motion criterion: "Exact stop coarse"
 Effective: Modal
IPOENDA: End-of-motion criterion: "Interpolator stop"
 Effective: Modal
IPOBRKA: Block change criterion: Braking ramp
 Effective: Modal
ADISPOSA: Tolerance window for end-of-motion criterion

Effective: Modal
<axis>: Channel axis name (X, Y,)
<instant in time>: Time of the block change, referred to the braking ramp as a %:

● 100% = start of the braking ramp
● 0% = end of the braking ramp, the same significance as IPOENDA
Type: REAL

<mode>: Reference of the tolerance window
Range of values: 0 Tolerance window not active

1 Tolerance window with respect to set posi‐
tion

2 Tolerance window with respect to actual po‐
sition

Type: INT
<window size>: Size of the tolerance window

Type: REAL

Special motion commands
5.11 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

Job Planning
284 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Examples

Example 1: End-of-motion criterion: "Interpolator stop"

Program code
; traverse positioning axis X to 100, velocity 200 m/
min, acceleration 90%,
; end-of-motion criterion: Interpolator stop

N110 G01 POS[X]=100 FA[X]=200 ACC[X]=90 IPOENDA[X]

; Synchronized action:
; ALWAYS IF: Input 1 is set
; THEN traverse positioning axis X to 50, velocity 200
m/min, acceleration 140%,
; end-of-motion criterion: Interpolator stop

N120 EVERY $A_IN[1] DO POS[X]=50 FA[X]=200 ACC[X]=140
IPOENDA[X]

Example 2: Block change criterion: "Braking ramp"

Program code Comment
 ; Default setting is effective
N40 POS[X]=100 ; Positioning motion from X to position 100.

Block change criterion: Exact stop fine
N20 IPOBRKA(X,100) ; Block change criterion: "Braking ramp",

100% = start of the braking ramp
N30 POS[X]=200 ; The block is changed as soon as the X axis starts to brake
N40 POS[X]=250 ; X axis no longer brakes at position 200, but rather contin-

ues to traverse to position 250.
As soon as the axis starts to brake, the block changes.

N50 POS[X]=0 ; Axis X brakes and returns to position 0.
The block change takes place at position 0 and "exact stop
fine"

N60 X10 F100 ; Axis X traverses as path axis to position 10

Further information

System variable for end-of-motion criterion
The effective end-of-motion criterion can be read using the system variable $AA_MOTEND.

References: /LIS2sl/ List Manual, Book 2

Block-change criterion: "Braking ramp" (IPOBRKA)
If, when activating the block change criterion "brake ramp", a value is programmed for the
optional block change instant in time, then this becomes effective for the next positioning
motion and is written into the setting data synchronized to the main run. If no value is specified
for the block change instant in time, then the actual value of the setting data is effective.

Special motion commands
5.11 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 285

SD43600 $SA_IPOBRAKE_BLOCK_EXCHANGE

IPOBRKA is deactivated for the corresponding access when an axis end-of-motion criterion
(FINEA, COARSEA , IPOENDA) is next programmed for the axis.

Additional block-change criterion: "Tolerance window" (ADISPOSA)
Using ADISPOSA, a tolerance window around the end of block (either as actual or setpoint
position) can be defined as additional block change criterion. Then, two conditions must be
fulfilled for the block change:

● Block-change criterion: "Braking ramp"

● Block-change criterion: "Tolerance window"

References
For further information about the block change criterion for positioning axes, see:

● Function Manual, Extended Functions; Positioning Axes (P2)

● Programming Manual, Fundamentals; Chapter "Feedrate control".

Special motion commands
5.11 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

Job Planning
286 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Coordinate transformations (frames) 6
6.1 Coordinate transformation via frame variables

In addition to the commands such as ROT, AROT and SCALE described in the Fundamentals
Programming Manual, "Coordinate transformations (frames)" section, the workpiece
coordinate system (WCS) can also be transformed by the frame variables $P_...FR (data
storage frames) and $P_...FRAME (active frames).

The following diagram provides an overview of structuring frame variables:

● Data management frames

● Active frames

● Active total frame: Chain of all active frames

● NCU global frames

● Channel-specific frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 287

Figure 6-1 Overview of the frame variables

Coordinate transformations (frames)
6.1 Coordinate transformation via frame variables

Job Planning
288 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.1.1 Predefined frame variable ($P_CHBFRAME, $P_IFRAME, $P_PFRAME,
$P_ACTFRAME)

Active: channel-specific base frames $P_CHBFRAME[<n>] ($P_BFRAME)

Note

The current base frame $P_BFRAME and the data storage base frame $P_UBFR are retained
for compatibility reasons.
● $P_BFRAME ≙ $P_CHBFRAME[0]
● $P_UBFR ≙ $P_CHBFR[0].

The frame variables $P_CHBFRAME[<n>] define the reference between the basic coordinate
system (BCS) and the basic origin system (BOS).

If the current channel-specific base frame $P_CHBFRAME[<n>] should be active immediately
in the NC program, the following possibilities are available.

● Commands:

– G500 (deactivate all settable frames, the base frames remain active)

– G54 to G599 (settable zero offsets)

● Assignment of a channel-specific base frames of the data storage to a current channel-
specific base frame:
$P_CHBFRAME[<n>] = $P_CHBFR[<m>]

Active: Channel-specific settable frame $P_IFRAME
The frame variable $P_IFRAME defines the reference between the basic origin system (BOS)
and the settable zero system (SZS).

● $P_IFRAME corresponds to $P_UIFR[$P_IFRNUM]
● After G54 is programmed, for example, $P_IFRAME contains the translation, rotation,

scaling and mirroring defined by G54.

Coordinate transformations (frames)
6.1 Coordinate transformation via frame variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 289

Active: Channel-specific programmable frame $P_PFRAME
The $P_PFRAME frame variable defines the reference between the settable zero system
(SZS) and the workpiece coordinate system (WCS).

$P_PFRAME contains the resulting frame, that results

● From the programming of TRANS/ATRANS, ROT/AROT, SCALE/ASCALE, MIRROR/
AMIRROR or

● From the assignment of CTRANS, CROT, CMIRROR, CSCALE to the programmed FRAME

Active: Total frame $P_ACTFRAME
The total frame active in the channel results from the chaining of all frames acting in the
channel.

$P_ACTFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
$P_ACTBFRAME : $P_IFRAME : $P_GFRAME :
$P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME :
$P_PFRAME : $P_ISO4FRAME : $P_CYCFRAME

$P_ACTFRAME describes the currently valid workpiece coordinate system.

Coordinate transformations (frames)
6.1 Coordinate transformation via frame variables

Job Planning
290 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Figure 6-2 Frame variable $P_ACTFRAME

If one of the following frames $P_BFRAME / $P_CHBFRAME[<n>], $P_IFRAME or
$P_PFRAME is changed, the current total frame $P_ACTFRAME is recalculated.

Basic frame and settable frame are effective after Reset if MD 20110 RESET_MODE_MASK
is set as follows:

Bit0=1, bit14=1 --> $P_UBFR (basic frame) acts

Bit0=1, bit5=1 --> $P_UIFR [$P_UIFRNUM](settable frame) acts

Coordinate transformations (frames)
6.1 Coordinate transformation via frame variables

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 291

Data storage: channel-specific base frames $P_CHBFR[<n>]
The frame variables $P_CHBFR[<n>] read/write the base frames in the data storage. The data
storage frame is not immediately active in the channel when written. The written frame is
activated with:

● Channel reset and MD20110 $MC_RESET_MODE_MASK, Bit0 == 1 and Bit14 == 1

● Command G500, G54 ... G57, G505 ... G599 (activation/deactivation of base frames with
subsequent recalculation of the current total frames)

Data storage: Channel-specific settable frames $P_UIFR[<n>]
The frame variables $P_UIFR[<n>] read/write the settable base frames in the data storage.
The frame is not immediately active in the channel when written. The written frame in the
channel is calculated with:

● G500 command (deactivate all settable frames or zero offsets)

● G54 ... G57, G505 ... G599 command (activate a settable frame or zero offset)

Active settable frame Data storage frame (corresponds to command)
$P_IFRAME = $P_UIFR[0] G500

$P_UIFR[1] G54
$P_UIFR[2] G55
$P_UIFR[3] G56
$P_UIFR[4] G57
$P_UIFR[5] G505
$P_UIFR[6] G506

... ...
$P_UIFR[99] G599

Coordinate transformations (frames)
6.1 Coordinate transformation via frame variables

Job Planning
292 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.2 Value assignments to frames

6.2.1 Assigning direct values (axis value, angle, scale)
You can directly assign values to frames or frame variables in the NC program.

Syntax

Syntax
$P_PFRAME = CTRANS(X, <offset value>, Y, <offset value>, Z, <offset
value>, ...)
$P_PFRAME = ROT(X, <angle>, Y, <angle>, Z, <angle>, ...)
$P_UIFR[..] = CROT(X, <angle>, Y, <angle>, Z, <angle>, ...
$P_PFRAME = CSCALE(X, <scale>, Y, <scale>, Z, <scale>, ...)
$P_PFRAME = CMIRROR(X, Y, Z)
The syntax for $P_CHBFRAME[<n>] is identical to $P_PFRAME.

Meaning

CTRANS: Translation of specified axes
CROT: Rotation around specified axes
CSCALE: Scale change on specified axes
CMIRROR: Direction reversal on specified axis
X, Y, Z: Offset value in the direction of the specified geometry axis
<offset value>: Offset value
<angle>: The angle with the rotation
<scale>: Scale value

Examples

Value assignments to frame components of the current programmable frame
Value assignment to the translation, rotation and mirror frame components of the current
programmable frame:

$P_PFRAME = CTRANS(X,10,Y,20,Z,5) : CROT(Z,45) : CMIRROR(Y)

Coordinate transformations (frames)
6.2 Value assignments to frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 293

Writing the rotation components of a frame
Assignment of values to all three axes of the rotation component of the settable data storage
frame $P_UIFR with CROT :

$P_UIFR[5] = CROT(X, 0, Y, 0, Z, 0)

Alternatively, the direct assignment of the individual values to the associated axis of the rotation
component of the data storage frame:

$P_UIFR[5, Y, RT]=0
$P_UIFR[5, X, RT]=0
$P_UIFR[5, Z, RT]=0

Description
The chaining operator : combines several operations on a frame with each other. The
operations are processed successively from left to right.

Example
Chained operations on $P_PFRAME with offset, rotation and scaling:

$P_PFRAME = CTRANS(...) : CROT(...) : CSCALE...

Coordinate transformations (frames)
6.2 Value assignments to frames

Job Planning
294 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)
This feature allows you to access individual data of a frame, e.g. a specific offset value or angle
of rotation. You can modify these values or assign them to another variable.

Syntax

R10=$P_UIFR[$P_UIFNUM,X,RT] Assign the angle of rotation RT around the X axis
from the currently valid settable zero offset $P_UIFR‐
NUM to the variable R10.

R12=$P_UIFR[25,Z,TR] Assign the offset value TR in Z from the data set of
set frame no. 25 to the variable R12.

R15=$P_PFRAME[Y,TR] Assign the offset value TR in Y of the current pro‐
grammable frame to the variable R15.

$P_PFRAME[X,TR] = 25 Modify the offset value TR in X of the current pro‐
grammable frame. X25 applies immediately.

Meaning

$P_UIFRNUM: This command automatically establishes the reference
to the currently valid settable zero offset.

P_UIFR[n,…,…] : Specify the frame number n to access the settable
frame no. n.

 Specify the component to be read or modified:
TR: TR Translation
FI: FI Translation Fine
RT: RT Rotation
SC: SC Scale scale modification
MI: MI Mirroring
X, Y, Z: The corresponding axis X, Y, Z is also specified (see

examples).

Coordinate transformations (frames)
6.2 Value assignments to frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 295

Value range for RT rotation

Rotation around 1st geometry axis: -180° to +180°
Rotation around 2nd geometry axis: -90° to +90°
Rotation around 3rd geometry axis: -180° to +180°

Description

Calling frame
By specifying the system variable $P_UIFRNUM you can access the current zero offset set
with $P_UIFR or G54, G55, ...
($P_UIFRNUM contains the number of the currently set frame).

All other stored settable $P_UIFR frames are called up by specifying the appropriate number
$P_UIFR[n].

For predefined frame variables and user-defined frames, specify the name, e.g. $P_IFRAME.

Calling data
The axis name and the frame component of the value you want to access or modify are written
in square brackets, e.g. [X, RT] or [Z, MI].

6.2.3 Calculating with frames
A frame can be assigned to another frame or frames can be chained to each other in the NC
program.

Frame chainings are suitable for the description of several workpieces, arranged on a pallet,
which are to be machined in the same process.

Coordinate transformations (frames)
6.2 Value assignments to frames

Job Planning
296 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The frame components can only contain intermediate values for the description of pallet tasks.
These are chained to generate various workpiece zeroes.

Examples

Assignments

Program code Comment
DEF FRAME SETTING_1 ; Definition of a local frame variable
SETTING_1 = CTRANS(X,10) ; Assignment of the function result to the frame

variable
$P_PFRAME = SETTING_1 ; Assignment of the frame variable to the current

frame
DEF FRAME SETTING_4 ; Definition of a local frame variable
SETTING_4 = $P_PFRAME ; Buffer the current frame in the frame variable
...
$P_PFRAME = SETTING_4 ; Fetch the current frame from the frame variable

Chainings
The operator : chains frames with each other in the programmed sequence. The frame
components, such as offsets and rotations, are executed successively additive.

Program code Comment
$P_IFRAME = $P_UIFR[15] :
$P_UIFR[16]

; Assignment of the result frame from the chaining
of the
; two settable data storage frames on the active
; settable total frame.
; Application example:
; $P_UIFR[15]: Offset
; $P_UIFR[16]: Rotation

$P_UIFR[3] = $P_UIFR[4] :
$P_UIFR[5]

; Assignment of the result frame from the chaining
of the
; two settable data storage frames on a
; different settable data storage frame

6.2.4 Definition of frame variables (DEF FRAME)
In addition to the predefined frame variables, user frame variables can also be defined. The
user-defined frame variables are user variables of type FRAME. The name of the frame can
be assigned freely in accordance with the rules for user variables.

The CTRANS, CROT, CSCALE and CMIRROR functions assign values to user-defined frame
variables.

Syntax
DEF FRAME <name>

Coordinate transformations (frames)
6.2 Value assignments to frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 297

Meaning

DEF FRAME: Define user variable of the type FRAME.
<name>: Name of the frame variable

Example
Definition of a "PALETTE" frame variable and the assignment of offset and rotation values:

Program code Comment
DEF FRAME PALETTE ; Define PALETTE frame variable
PALETTE = CTRANS(...) : CROT(...) ; Assignment of the result frame of the chaining

for
; offset and rotation on the PALETTE frame variable

Coordinate transformations (frames)
6.2 Value assignments to frames

Job Planning
298 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.3 Coarse and fine offsets (CTRANS, CFINE)
Fine offset
A fine offset CFINE(...) can be applied to the following frames:

● Settable frames: $P_UIFR or $P_IFRAME

● Basic frames: $P_NCBFR[<n>], $P_CHBFR[<n>], $P_CHBFRAMES[<n>] or
$P_ACTBFRAME

● Programmable frame: $P_PFRAME

The fine offset of a frame is programmed with the CFINE(...) command.

Coarse offset
A coarse offset CTRANS(...) can be applied to all frames.

Total offset
The total offset results from the addition of the coarse and the fine offset.

Machine data

Enable of the fine offset
The fine offset is enabled with the machine data:

MD18600 $MN_MM_FRAME_FINE_TRANS = 1

Syntax

Fine offset
● Complete frame

– <frame> = CFINE(<K_1>,<value>)
– <frame> = CFINE(<K_1>,<value>, <K_2>, <value>)
– <frame> = CFINE(<K_1>,<value>, <K_2>, <value>, <K_3>, <value>)

● Frame component

– <frame>[<n>, <K_1>, FI] = <value>

Coarse offset
● Complete frame

– <frame> = CTRANS(<K_1>,<value>)
– <frame> = CTRANS(<K_1>,<value>, <K_2,<value>)
– <frame> = CTRANS(<K_1>,<value>, <K_2,<value>, <K_3,<value>)

● Frame component

– <frame>[<n>,<K_1>,TR] = <value>

Coordinate transformations (frames)
6.3 Coarse and fine offsets (CTRANS, CFINE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 299

In particular for the programmable frame $P_PFRAME:

● TRANS <K_1> <value>
● TRANS <K_1> <value> <K_2> <value>
● TRANS <K_1> <value> <K_2> <value> <K_3> <value>

Meaning

<Frame>: Frame, e.g. settable frame of the data storage $P_UIFR[<n>]
CFINE: Fine offset, additive offset.
CTRANS: Coarse offset, absolute offset.
TRANS: Only programmable frame: Coarse offset, absolute offset.
<K_n>: Coordinate axes X, Y, Z
<value>: Offset value

Coordinate transformations (frames)
6.3 Coarse and fine offsets (CTRANS, CFINE)

Job Planning
300 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.4 External zero offset ($AA_ETRANS)
The external zero offset is a linear offset between the base coordinate system (BCS) and the
basic origin system (BOS).

The external zero offset with $AA_ETRANS acts in two ways depending on the machine data
parameterization:

1. After activation by the NC/PLC interface signal, the system variable $AA_ETRANS acts
directly as offset value

2. After activation by the NC/PLC interface signal, the value of the system variable
$AA_ETRANS is transferred to the active system frames $P:EXTFRAME and the data
storage frame $P_EXTFR. The active total frame $P_ACTFRAME is then recalculated.

Machine data
In conjunction with the system variable $AA_ETRANS, a differentiation is made between two
procedures selected with the following machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK,Bit1 = <value>

<value> Meaning
0 Function: $AA_ETRANS[<axis>] written directly by PLC, HMI or NC program.

Enable for retraction of the zero offset for $AA_ETRANS[<axis>] in the next possible tra‐
versing block: DB31, ... DBX3.0

1 Function: Activation of the active system frame $P:EXTFRAME and the data storage frame
$P_EXTFR
Enable for retraction of the zero offset for $AA_ETRANS[<axis>] by: DB31, ... DBX3.0. The
following is performed in the channel:
● Stop all traversal movements in the channel (other than command and PLC axes)
● Preprocessing stop with subsequent reorganization (STOPRE)
● Coarse offset of active frame $P_EXTFRAME[<axis>] = $AA_ETRANS[<axis>]
● Coarse offset of data storage frame $P_EXTFR[<axis>] = $AA_ETRANS[<axis>]
● Recalculation of the active total frame $P_ACTFRAME
● Retraction of the offset in the programmed axes.
● Continuation of the interrupted traversing motion or of the NC program

Coordinate transformations (frames)
6.4 External zero offset ($AA_ETRANS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 301

Programming
● Syntax

$AA_ETRANS[<axis>] = <value>
● Meaning

$AA_ETRANS: System variable for buffering the external zero offset
<axis>: Channel axis
<value>: Offset value

NC/PLC interface signal
DB31, ... DBX3.0 = 0 → 1 ⇒ $P_EXTFRAME[<axis>] = $P_EXTFR[<axis>] =
$AA_ETRANS[<axis>]

Coordinate transformations (frames)
6.4 External zero offset ($AA_ETRANS)

Job Planning
302 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.5 Set actual value with loss of the referencing status (PRESETON)
The PRESETON() procedure sets for one or more axes a new actual value in the machine
coordinate system (MCS). This corresponds to a zero offset of the MCS of the axis. This does
not cause the axis to be traversed.

PRESETON initiates a preprocessing stop with synchronization. The actual position is assigned
to the axis only at standstill.

If the axis for PRESETON is not assigned to the channel, the further procedure depends on the
axis-specific configuring of the axis replacement behavior:

MD30552 $MA_AUTO_GET_TYPE

Referencing status
By setting a new actual value in the machine coordinate system, the referencing status of the
machine axis is reset:

DB31, ... DBX60.4/.5 = 0 (referenced / synchronized measuring system 1/2)

For this reason it is recommended that PRESETON only be used for axes that do not require a
reference point.

To restore the original machine coordinate system, the measuring system of the machine axis
must be referenced again, e.g. through active referencing from the part program (G74).

CAUTION

Loss of the referencing status

The setting of a new actual value in the machine coordinate system with PRESETON resets
the referencing status of the machine axis to "not referenced / synchronized".

Programming

Syntax
PRESETON(<axis_1>, <value_1> [, <axis_2>, <value_2>, ... <axis_8>,
<value_8>])

Meaning

PRESETON: Set actual value with loss of the referencing status
Preprocessing
stop:

yes

Alone in the block: yes
<axis_x>: Machine axis name

Type: AXIS
Range of values: Machine axis names defined in the channel

<value_x>: New actual value of the machine axis in the machine coordinate system (MCS)
The input is made in the currently valid measuring system (inch/metric)
An active diameter programming (DIAMON) is considered
Type: REAL

Coordinate transformations (frames)
6.5 Set actual value with loss of the referencing status (PRESETON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 303

References

PRESETONS in NC programs
A detailed description of PRESETON in NC programs is contained in:

Function Manual Basic Functions, Chapter "K2: Axes, coordinate systems, frames" >
"Coordinate systems" > "Machine coordinate system (MCS)" > "Set actual value with loss of
the referencing status (PRESETON)"

PRESETONS in synchronous actions
A detailed description of PRESETON in synchronous actions is contained in:

Function Manual, Synchronized Actions; Section: "Detailed description" > "Actions in
synchronous actions" > "Set actual value with loss of the referencing status (PRESETON)"

Coordinate transformations (frames)
6.5 Set actual value with loss of the referencing status (PRESETON)

Job Planning
304 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.6 Set actual value without loss of the referencing status (PRESETONS)
The PRESETONS() procedure sets for one or more axes a new actual value in the machine
coordinate system (MCS). This corresponds to a zero offset of the MCS of the axis. This does
not cause the axis to be traversed.

PRESETONS initiates a preprocessing stop with synchronization. The actual position is
assigned to the axis only at standstill.

If the axis for PRESETONS is not assigned to the channel, the further procedure depends on
the axis-specific configuring of the axis replacement behavior:

MD30552 $MA_AUTO_GET_TYPE

Referencing status
The setting of a new actual value in the machine coordinate system (MCS) with PRESETONS
does not change the referencing status of the machine axis.

Requirements
● Encoder type

PRESETONS is possible only for the following encoder types of the active measuring system:

– MD30240 $MA_ENC_TYPE[<measuring system>] = 0 (simulated encoder)

– MD30240 $MA_ENC_TYPE[<measuring system>] = 1 (raw signal encoder)

● Referencing mode
PRESETONS is possible only for the following referencing modes of the active measuring
system:

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 0 (no reference point
approach possible)

– MD34200 $MA_ENC_REFP_MODE[<measuring system>] = 1 (referencing for
incremental, rotary or linear measuring systems: Zero pulse on the encoder track)

Programming

Syntax
PRESETONS(<axis_1>, <value_1> [, <axis_2>, <value_2>, ... <axis_8>,
<value_8>])

Meaning

PRESETONS: Set actual value without loss of the referencing status
Preprocessing
stop:

yes

Alone in the block: yes
<axis_x>: Machine axis name

Type: AXIS
Range of values: Machine axis names defined in the channel

Coordinate transformations (frames)
6.6 Set actual value without loss of the referencing status (PRESETONS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 305

<value_x>: New current actual value of the machine axis in the machine coordinate system
(MCS)
The input is made in the active measuring system (inch/metric)
An active diameter programming (DIAMON) is considered
Type: REAL

References

PRESETONS in NC programs
A detailed description of PRESETONS in NC programs is contained in:

Function Manual Basic Functions, Chapter "K2: Axes, coordinate systems, frames" >
"Coordinate systems" > "Machine coordinate system (MCS)" > "Set actual value without loss
of the referencing status (PRESETONS)"

PRESETONS in synchronous actions
A detailed description of PRESETONS in synchronous actions is contained in:

Function Manual, Synchronized Actions; Section: "Detailed description" > "Actions in
synchronous actions" > "Set actual value without loss of the referencing status (PRESETONS)"

Coordinate transformations (frames)
6.6 Set actual value without loss of the referencing status (PRESETONS)

Job Planning
306 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.7 Frame calculation from three measuring points in space
(MEAFRAME)

The MEAFRAME function is used to support measuring cycles. It calculates the frame from
three ideal points and the corresponding measured points.

When a workpiece is positioned for machining, its position relative to the Cartesian machine
coordinate system is generally both offset and rotated in relation to its ideal position. For exact
machining or measuring either a costly physical adjustment of the part is required or the
motions defined in the part program must be changed.

A frame can be defined by sampling three points in space whose ideal positions are known.
A touch-trigger probe or optical sensor is used for sampling that touches special holes precisely
fixed on the supporting plate or probe balls.

Syntax
MEAFRAME(<ideal points>,<measuring points>,<quality>)

Meaning

MEAFRAME: Function call
<ideal points>: 2-dim. REAL array containing the three coordinates of the ideal points
<measuring points>: 2-dim. REAL array containing the three coordinates of the measured points
<quality>:

Variable with which information on the quality of the FRAME calculation is
returned
Type: VAR REAL
Value:

-1 The ideal points are almost on a straight line: The
frame could not be calculated. The returned
FRAME variable contains a neutral frame.

-2 The measuring points are almost on a straight line:
The frame could not be calculated. The returned
FRAME variable contains a neutral frame.

-4 The calculation of the rotation matrix failed for a
different reason.

≥ 0.0 Sum of distortions (distances between the points),
that are required to transform the measured triangle
into a triangle that is congruent to the ideal triangle.

Note
Quality of the measurement

In order to map the measured coordinates onto the ideal coordinates using a rotation and a
translation, the triangle formed by the measured points must be congruent to the ideal triangle.
This is achieved by means of a compensation algorithm that minimizes the sum of squared
deviations needed to reshape the measured triangle into the ideal triangle.

Since the effective distortion can be used to judge the quality of the measurement, MEAFRAME
returns it as an additional variable.

Coordinate transformations (frames)
6.7 Frame calculation from three measuring points in space (MEAFRAME)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 307

Note

The frame created by MEAFRAME can be transformed by the ADDFRAME function into
another frame in the frame chain (see example "Chaining with ADDFRAME").

Examples

Example 1:
Part program 1:

Program code
...
DEF FRAME CORR_FRAME

Setting measuring points:

Program code Comment
DEF REAL IDEAL_POINT[3,3]=
SET(10.0,0.0,0.0,0.0,10.0,0.0,0.0,0.0,10.0)
DEF REAL MEAS_POINT[3,3]=
SET(10.1,0.2,-0.2,-0.2,10.2,0.1,-0.2,0.2,9.8)

; For test.

DEF REAL FIT_QUALITY=0
DEF REAL ROT_FRAME_LIMIT=5 ; Permits max. five degree rota-

tion of the part position.
DEF REAL FIT_QUALITY_LIMIT=3 ; Permits max. three mm offset be-

tween the
ideal and the measured triangle.

DEF REAL SHOW_MCS_POS1[3]
DEF REAL SHOW_MCS_POS2[3]
DEF REAL SHOW_MCS_POS3[3]

Program code Comment
N100 G01 G90 F5000
N110 X0 Y0 Z0
N200 CORR_FRAME=MEAFRAME(IDEAL_POINT,MEAS_POINT,FIT_QUALITY)
N230 IF FIT_QUALITY < 0
SETAL(65000)
GOTOF NO_FRAME
ENDIF

N240 IF FIT_QUALITY > FIT_QUALITY_LIMIT
SETAL(65010)
GOTOF NO_FRAME
ENDIF

Coordinate transformations (frames)
6.7 Frame calculation from three measuring points in space (MEAFRAME)

Job Planning
308 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N250 IF CORR_FRAME[X,RT] > ROT_FRAME_LIMIT ; Limiting the 1st RPY angle.
SETAL(65020)
GOTOF NO_FRAME
ENDIF

N260 IF CORR_FRAME[Y,RT] > ROT_FRAME_LIMIT ; Limiting the 2nd RPY angle.
SETAL(65021)
GOTOF NO_FRAME
ENDIF

N270 IF CORR_FRAME[Z,RT] > ROT_FRAME_LIMIT ; Limiting the 3rd RPY angle.
SETAL(65022)
GOTOF NO_FRAME
ENDIF

N300 $P_IFRAME=CORR_FRAME ; Activate sample frame with setta-
ble frame.

 ; Check frame by positioning the
geometry axes to the ideal point.

N400 X=IDEAL_POINT[0,0] Y=IDEAL_POINT[0,1]
Z=IDEAL_POINT[0,2]

N410 SHOW_MCS_POS1[0]=$AA_IM[X]
N420 SHOW_MCS_POS1[1]=$AA_IM[Y]
N430 SHOW_MCS_POS1[2]=$AA_IM[Z]
N500 X=IDEAL_POINT[1,0] Y=IDEAL_POINT[1,1] Z=IDEAL_POINT[1,2]
N510 SHOW_MCS_POS2[0]=$AA_IM[X]
N520 SHOW_MCS_POS2[1]=$AA_IM[Y]
N530 SHOW_MCS_POS2[2]=$AA_IM[Z]
N600 X=IDEAL_POINT[2,0] Y=IDEAL_POINT[2,1] Z=IDEAL_POINT[2,2]
N610 SHOW_MCS_POS3[0]=$AA_IM[X]
N620 SHOW_MCS_POS3[1]=$AA_IM[Y]
N630 SHOW_MCS_POS3[2]=$AA_IM[Z]
N700 G500 ; Deactivate settable frame as

with zero frame (no value entered,
pre-assigned).

No_FRAME ; Deactivate settable frame, as
pre-assigned with zero frame (no
value entered).

M0
M30

Example 2: Chaining of frames
Chaining of MEAFRAME for offsets

The MEAFRAME function returns an offset frame. If this offset frame is chained to the settable
frame $P_UIFR[1] that was active during the call of the function (e.g. G54), a settable frame
is provided for further conversions for the traversing or machining.

Chaining with ADDFRAME

Coordinate transformations (frames)
6.7 Frame calculation from three measuring points in space (MEAFRAME)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 309

If you want this offset frame in the frame chain to apply at a different position or if other frames
are active before the settable frame, the ADDFRAME function can be used for chaining into
one of the channel basic frames or a system frame.

The following must not be active in the frames:

● Mirroring with MIRROR

● Scaling with SCALE

The input parameters for the setpoints and actual values are the workpiece coordinates. These
coordinates must always be specified metrically or in inches (G71/G70) and radius-related
(DIAMOF) in the basic system of the control.

References:
For further information on ADDFRAME, see:
Function Manual, Basic Functions; K2: Axis Types, Coordinate Systems, Frames

Coordinate transformations (frames)
6.7 Frame calculation from three measuring points in space (MEAFRAME)

Job Planning
310 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6.8 NCU global frames
Only one set of NCU global frames is used for all channels on each NCU. NCU global frames
can be read and written from all channels. The NCU global frames are activated in the
respective channel.

Channel axes and machine axes with offsets can be scaled and mirrored by means of global
frames.

Geometrical relationships and frame chains

With global frames there is no geometrical relationship between the axes. It is therefore not
possible to perform rotations or program geometry axis identifiers.

● Rotations cannot be used on global frames. The programming of a rotation is denied with
alarm: "18310 Channel %1 Block %2 Frame: rotation not allowed" is displayed.

● It is possible to chain global frames and channel-specific frames. The resulting frame
contains all frame components including the rotations for all axes. The assignment of a
frame with rotation components to a global frame is denied with alarm "Frame: rotation not
allowed".

NCU global frames

NCU global basic frames $P_NCBFR[n]
Up to eight NCU global basic frames can be configured:

Channel-specific basic frames can also be available.

Global frames can be read and written from all channels of an NCU. When writing global
frames, the user must ensure channel coordination. This can be implemented, for example,
through wait markers (WAITMC).

Machine manufacturer

The number of global basic frames is configured via the machine data.

References:
Function Manual, Basic Functions; Axes, Coordinate Systems, Frames (K2)

NCU global settable frames $P_UIFR[n]
All settable frames G500, G54...G599 can be configured NCU-globally or channel-specifically.

Machine manufacturer

All settable frames can be reconfigured as global frames with the aid of machine data
MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES.

Channel axis identifiers and machine axis identifiers can be used as axis identifiers in frame
program commands. Programming the geometry identifiers is rejected with an alarm.

6.8.1 Channel-specific frames ($P_CHBFR, $P_UBFR)
Settable frames or basic frames can be read and written via the part program and via the OPI
by the operator and by the PLC.

Coordinate transformations (frames)
6.8 NCU global frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 311

The fine offset can also be used for global frames. Suppression of global frames also takes
place, as is the case with channel-specific frames, via G53, G153, SUPA and G500.

Machine manufacturer

The number of basic frames can be configured in the channel via the machine data MD28081
$MC_MM_NUM_BASE_FRAMES. The standard configuration is designed for at least one
basic frame per channel. A maximum of eight basic frames are supported per channel. In
addition to the eight basic frames, there can also be eight NCU global basic frames in the
channel.

Channel-specific frames

$P_CHBFR[n]
System variable $P_CHBFR[n] can be used to read and write the basic frames. When a basic
frame is written, the chained total basic frame is not activated until the execution of a G500,
G54...G599 statement. The variable is used primarily for storing write operations to the basic
frame on HMI or PLC. These frame variables are saved by the data backup.

First basic frame in the channel
The basic frame with array index 0 is not activated simultaneously when writing to the
predefined $P_UBFR variable, but rather activation only takes place on execution of a G500,
G54...G599 statement. The variable can also be read and written in the program.

$P_UBFR
$P_UBFR is identical to $P_CHBFR[0]. One basic frame always exists in the channel by
default, so that the system variable is compatible with older versions. If there is no channel-
specific basic frame, an alarm is issued at read/write: "Frame: statement not permissible".

6.8.2 Frames active in the channel
Frames active in the channel are entered from the part program via the relevant system
variables of these frames. This also includes system frames. The current system frame can
be read and written in the part program via these system variables.

Frames currently active in the channel
Overview

Current system frames For:
$P_PARTFRAME TCARR and PAROT
$P_SETFRAME Preset actual value memory and scratch‐

ing
$P_EXTFRAME External zero offset
$P_NCBFRAME[n] Current NCU global basic frames
$P_CHBFRAME[n] Current channel basic frames
$P_BFRAME Current first basic frame in the channel

Coordinate transformations (frames)
6.8 NCU global frames

Job Planning
312 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

$P_ACTBFRAME Complete basic frame
$P_CHBFRMASK and $P_NCBFRMASK Complete basic frame
$P_IFRAME Current settable frame
Current system frames For:
$P_TOOLFRAME TOROT and TOFRAME
$P_WPFRAME Workpiece reference points
$P_TRAFRAME Transformations
$P_PFRAME Current programmable frame
Current system frame For:
$P_CYCFRAME Cycles
P_ACTFRAME Current total frame
FRAME chaining Current frame is made up of the complete

basic frame

$P_NCBFRAME [n] Current NCU global basic frames
System variable $P_NCBFRAME[n] can be used to read and write the current global basic
frame field elements. The resulting total basic frame is calculated by means of the write process
in the channel.

The modified frame is activated only in the channel in which the frame was programmed. If
the frame is to be modified for all channels of an NCU, $P_NCBFR[n] and $P_NCBFRAME[n]
must be written simultaneously. The other channels must then activate the frame, e.g. with
G54. Whenever a basic frame is written, the complete basic frame is calculated again.

$P_CHBFRAME[n] Current channel basic frames
System variable $P_CHBFRAME[n] can be used to read and write the current channel basic
frame field elements. The resulting complete basic frame is calculated by means of the write
process in the channel. Whenever a basic frame is written, the complete basic frame is
calculated again.

$P_BFRAME Current first basic frame in the channel
The predefined frame variable $P_BFRAME can be used to read and write the current basic
frame with the array index 0, which is valid in the channel, in the part program. The written
basic frame is immediately included in the calculation.

$P_BFRAME is identical to $P_CHBFRAME[0]. The system variable always has a valid default
value. If there is no channel-specific basic frame, an alarm is issued at read/write: "Frame:
statement not permissible".

$P_ACTBFRAME Complete basic frame
The $P_ACTFRAME variable determines the chained complete basic frame. The variable is
read-only.

$P_ACTFRAME corresponds to:

$P_NCBFRAME[0] : ... : $P_NCBFRAME[n] : $P_CHBFRAME[0] : ... : $P_CHBFRAME[n].

Coordinate transformations (frames)
6.8 NCU global frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 313

$P_CHBFRMASK and $P_NCBFRMASK Complete basic frame
The user can select which basic frames are to be included in the calculation of the "Complete"
basic frame via the system variables $P_CHBFRMASK and $P_NCBFRMASK. The variables
can only be programmed in the program and read via the OPI. The value of the variable is
interpreted as a bit mask and specifies which basic frame field element of $P_ACTFRAME is
to be included in the calculation.

$P_CHBFRMASK can be used to specify which channel-specific basic frames and
$P_NCBFRMASK can be used to specify which NCU global basic frames are to be included
in the calculation.

The complete basic frame and the complete frame are recalculated with the programming of
the variables. After a reset and in the basic setting, the values of $P_CHBFRMASK and
$P_NCBFRMASK are as follows:

$P_CHBFRMASK = $MC_CHBFRAME_RESET_MASK

$P_NCBFRMASK = $MC_CHBFRAME_RESET_MASK

Example:

$P_NCBFRMASK = 'H81' ;$P_NCBFRAME[0] : $P_NCBFRAME[7]

$P_CHBFRMASK = 'H11' ;$P_CHBFRAME[0] : $P_CHBFRAME[4]

$P_IFRAME Current settable frame
The predefined frame variable $P_IFRAME can be used to read and write the current settable
frame, which is valid in the channel, in the part program. The written settable frame is
immediately included in the calculation.

In the case of NCU global settable frames, the modified frame acts only in the channel in which
the frame was programmed. If the frame is to be modified for all channels of an NCU,
$P_UIFR[n] and $P_IFRAME must be written simultaneously. The other channels must then
activate the corresponding frame, e.g. with G54.

Coordinate transformations (frames)
6.8 NCU global frames

Job Planning
314 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

$P_PFRAME Current programmable frame
$P_PFRAME is the programmable frame that results from the programming of TRANS/
ATRANS, G58/G59, ROT/AROT, SCALE/ASCALE, MIRROR/AMIRROR or from the
assignment of CTRANS, CROT, CMIRROR, CSCALE to the programmable frame.

Current, programmable frame variable that establishes the reference between the settable
zero system (SZS) and the workpiece coordinate system (WCS).

P_ACTFRAME Current complete frame
The resulting current complete frame $P_ACTFRAME is now a chain of all basic frames, the
current settable frame and the programmable frame. The current frame is always updated
whenever a frame component is changed.

$P_ACTFRAME corresponds to:

$P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_ACTBFRAME : $P_IFRAME :

$P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME : $P_PFRAME : $P_CYCFRAME

Coordinate transformations (frames)
6.8 NCU global frames

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 315

Frame chaining
The current frame is composed of the complete basic frame, the settable frame, the system
frame and the programmable frame in accordance with the current complete frame specified
above.

Coordinate transformations (frames)
6.8 NCU global frames

Job Planning
316 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Transformations 7
7.1 General programming of transformation types

General function
You can choose to program transformation types with suitable parameters in order to adapt
the controller to various machine kinematics. These parameters can be used to declare both
the orientation of the tool in space and the orientation movements of the rotary axes accordingly
for the selected transformation.

In three-, four-, and five-axis transformations, the programmed positional data always relates
to the tip of the tool, which is tracked orthogonally to the machined surface in space. The
Cartesian coordinates are converted from the basic coordinate system to the machine
coordinate system and relate to the geometry axes. These describe the operating point. Virtual
rotary axes describe the orientations of the tool in space and are programmed with TRAORI.

In the case of kinematic transformation, positions can be programmed in the Cartesian
coordinate system. The controller maps the Cartesian coordinate system traversing
movements programmed with TRANSMIT, TRACYL and TRAANG to the traversing
movements of the real machine axes.

Programming
Three, four and five axis transformations (TRAORI)

The orientation transformation declared is activated with the TRAORI command and the three
possible parameters for transformation number, orientation vector and rotary axis offsets.

TRAORI(transformation number, orientation vector, rotary axis
offsets)
Kinematic transformations

TRANSMIT(transformation number) declared transformations are examples of
kinematic transformation.

TRACYL(working diameter, transformation number)
TRAANG(angle of offset axis, transformation number)
Deactivate active transformation

TRAFOOF can be used to deactivate the currently active transformation.

Orientation transformation
Three, four and five axis transformations (TRAORI)

For the optimum machining of surfaces configured in space in the working area of the machine,
machine tools require other axes in addition to the three linear axes X, Y and Z. The additional

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 317

axes describe the orientation in space and are called orientation axes in subsequent sections.
They are available as rotary axes on four types of machine with varying kinematics.

1. Two-axis swivel head, e.g. cardanic tool head with one rotary axis parallel to a linear axis
on a fixed tool table.

2. Two-axis rotary table, e.g. fixed swivel head with tool table, which can rotate about two
axes.

3. Single-axis swivel head and single-axis rotary table, e.g. one rotatable swivel head with
rotated tool for tool table, which can rotate about one axis.

4. Two-axis swivel head and single-axis rotary table, e.g. on tool table, which can rotate about
one axis, and one rotatable swivel head with tool, which can rotate about itself.

3- and 4-axis transformations are special types of 5-axis transformation and are programmed
in the same way as 5-axis transformations.

The functional scope of "generic 3-/4-/5-/6-axis transformation" is suitable both for
transformations for orthogonal rotary axes and transformations for the universal milling head
and, like all other orientation transformations, can also be activated for these four machine
types with TRAORI. In generic 5-/6-axis transformation, tool orientation has an additional third
degree of freedom, whereby the tool can be rotated about its own axis relative to the tool
direction so that it can be directed as required in space.

References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Initial tool orientation setting regardless of kinematics
ORIRESET

If an orientation transformation is active using TRAORI, then ORIRESET can be used to specify
the initial settings of up to 3 orientation axes with the optional parameters A, B, C. The order
in which the programmed parameters are assigned to the round axes depends on the
orientation axis order defined by the transformation. Programming ORIRESET(A, B, C) results
in the orientation axes moving in linear and synchronous motion from their current position to
the specified initial setting position.

Kinematic transformations
TRANSMIT and TRACYL

For milling on turning machines, either

1. Face machining in the turning clamp with TRANSMIT or

2. Machining of grooves with any path on cylindrical bodies with TRACYL

can be programmed for the transformation declared.

TRAANG

If the option of setting the infeed axis for inclined infeed is required (for grinding technology,
for example), TRAANG can be used to program a configurable angle for the transformation
declared.

Cartesian PTP travel

Transformations
7.1 General programming of transformation types

Job Planning
318 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Kinematic transformation also includes the so-called "Cartesian PTP travel" for which up to 8
different articulated joint positions STAT= can be programmed. Although the positions are
programmed in a Cartesian coordinate system, the movement of the machine occurs in the
machine coordinates.

References:
/FB2/ Function Manual, Extended Functions; Kinematic Transformation (M1)

Chained transformations
Two transformations can be switched one after the other. For the second transformation
chained here, the motion parts for the axes are taken from the first transformation.

The first transformation can be:

● Orientation transformation TRAORI

● Polar transformation TRANSMIT

● Cylinder transformation TRACYL

● Inclined axis transformation TRAANG

The second transformation must be a TRAANG type transformation for an inclined axis.

7.1.1 Orientation movements for transformations

Travel movements and orientation movements
The traversing movements of the programmed orientations are determined primarily by the
type of machine. For three-, four-, and five-axis type transformations with TRAORI, the rotary
axes or pivoting linear axes describe the orientation movements of the tool.

Changes in the position of the rotary axes involved in the orientation transformation will induce
compensating movements on the remaining machine axes. The position of the tool tip remains
unchanged.

Orientation movements of the tool can be programmed using the rotary axis identifiers A…,
B…, C… of the virtual axes as appropriate for the application either by entering Euler or RPY
angles or directional or surface normal vectors, normalized vectors for the rotary axis of a taper
or for intermediate orientation on the peripheral surface of a taper.

In the case of kinematic transformation with TRANSMIT, TRACYL and TRAANG, the controller
maps the programmed Cartesian coordinate system traversing movements to the traversing
movements of the real machine axes.

Transformations
7.1 General programming of transformation types

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 319

Machine kinematics for three, four and five axis transformation (TRAORI)
Either the tool or the tool table can be rotatable with up to two rotary axes. A combination of
swivel head and rotary table (single-axis in each case) is also possible.

Machine type Programming of orientation
Three-axis transformation ma‐
chine types 1 and 2

Programming of tool orientation only in the plane, which is perpendic‐
ular to the rotary axis. There are
two translatory axes (linear axes) and
one axis of rotation (rotary axis).

Four-axis transformation ma‐
chine types 1 and 2

Programming of tool orientation only in the plane, which is perpendic‐
ular to the rotary axis. There are
three translatory axes (linear axes) and
one axis of rotation (rotary axis).

Five-axis transformation ma‐
chine types 3
Single-axis swivel head and
single-axis rotary table

Programming of orientation transformation. Kinematics with
three linear axes and two orthogonal rotary axes.
The rotary axes are parallel to two of the three linear axes. The first
rotary axis is moved by two Cartesian linear axes. It rotates the third
linear axis with the tool. The second rotary axis rotates the workpiece.

Generic 5/6-axis transformations

Machine type Programming of orientation transformation
Generic five/six-axis transfor‐
mation machine types 4
Two-axis swivel head with tool
which rotates around itself and
single-axis rotary table

Programming of orientation transformation. Kinematics with
three linear axes and three orthogonal rotary axes.
The rotary axes are parallel to two of the three linear axes. The first
rotary axis is moved by two Cartesian linear axes. It rotates the third
linear axis with the tool. The second rotary axis rotates the workpiece.
The basic tool orientation can also be programmed with additional ro‐
tation of the tool around itself with the THETA rotary angle.

When calling "generic three-, four-, and five/six-axis transformation", the basic orientation of
the tool can also be transferred. The restrictions in respect of the directions of the rotary axes
no longer apply. If the rotary axes are not exactly vertical to one another or existing rotary axes

Transformations
7.1 General programming of transformation types

Job Planning
320 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

are not exactly parallel with the linear axes, "generic five-/six-axis transformation" can provide
better results in respect of tool orientation.

Kinematic transformations TRANSMIT, TRACYL and TRAANG
For milling on turning machines or an axis that can be set for inclined infeed during grinding,
the following axis arrangements apply by default in accordance with the transformation
declared:

TRANSMIT Activation of polar transformation
Face machining in the turning
clamp

A rotary axis
An infeed axis vertical to the axis of rotation
A longitudinal axis parallel to the axis of rotation

TRACYL Activation of the cylinder surface transformation
Machining of grooves with any
path on cylindrical bodies

A rotary axis
An infeed axis vertical to the axis of rotation
A longitudinal axis parallel to the axis of rotation

TRAANG Activation of the inclined axis transformation
Machining with an oblique in‐
feed axis

A rotary axis
An infeed axis with parameterizable angle
A longitudinal axis parallel to the axis of rotation

Cartesian PTP travel
The machine moves in machine coordinates and is programmed with:

TRAORI Activation of transformation
PTP point-to-point traversing Approach position in Cartesian coordinate system (MCS)
CP Path motion of Cartesian axes in the BCS
STAT Position of the articulated joints is dependent on the transformation
TU The angle at which the axes traverse on the shortest path

PTP transversal with generic 5/6-axis transformation

The machine is moved using machine coordinates and the tool orientation, where the
movements can be programmed both using round axis positions and using Euler and/or RPY
angle vectors irrespective of the kinematics or the direction vectors.

Round axis interpolation, vector interpolation with large circle interpolation or interpolation of
the orientation vector on a peripheral surface of a taper are possible in such cases.

Transformations
7.1 General programming of transformation types

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 321

Example: Three- to five-axis transformation on a universal milling head
The machine tool has at least five axes:

● Three translatory axes for movements in straight lines, which move the operating point to
any position in the working area.

● Two rotary swivel axes arranged at a configurable angle (usually 45 degrees) allow the tool
to swivel to positions in space that are limited to a half sphere in a 45-degree configuration.

Transformations
7.1 General programming of transformation types

Job Planning
322 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.1.2 Overview of orientation transformation TRAORI

Programming types available in conjunction with TRAORI

Machine type Programming with active transformation TRAORI
Machine types 1, 2, or 3 two-
axis swivel head or two-axis
rotary table or a combination
of single-axis swivel head and
single-axis rotary table.

The axis sequence of the orientation axes and the orientation direction
of the tool can either be configured on a
machine-specific basis using machine data
depending on the machine kinematics or on a
workpiece-specific basis with programmable orientation
independently of the machine kinematics.
The directions of rotation of the orientation axes in the reference sys‐
tem are programmed with:
- ORIMKS reference system = machine coordinate system
- ORIWKS reference system = workpiece coordinate system
The default setting is ORIWKS.
Programming of orientation axes with:
A, B, C of the machine axis position direct
A2, B2, C2 angle programming virtual axes with
- ORIEULER via Euler angle (standard)
- ORIRPY via RPY angle
- ORIVIRT1 via virtual orientation axes 1st definition
- ORIVIRT2 via virtual orientation axes 2nd definition
with differentiation between the interpolation type:
linear interpolation
- ORIAXES of orientation axes or machine axes
large radius circle interpolation (interpolation of the orientation vector)
- ORIVECT from orientation axes
Programming orientation axes by specifying
A3, B3, C3 of the vector components (direction/surface normal)
Programming the resulting tool orientation
A4, B4, C4 of the vector surface normal at the beginning of the block
A5, B5, C5 of the vector perpendicular to the surface at the end of the
block
LEAD leading angle for tool orientation
TILT tilt angle for the tool orientation

Transformations
7.1 General programming of transformation types

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 323

Machine type Programming with active transformation TRAORI
 Interpolation of the orientation vector on a taper peripheral surface

Orientation changes to a taper peripheral surface anywhere in space
using
interpolation:
- ORIPLANE in the plane (large radius circle interpolation)
- ORICONCW on a taper peripheral surface in the clockwise direction
- ORICONCCW on a taper peripheral surface in the counter-clockwise
direction
A6, B6, C6 director vector (axis of rotation of the taper)
-OICONIO interpolation on a taper peripheral surface with:
A7, B7, C7 intermediate vectors (initial and ultimate orientation) or
- ORICONTO on the peripheral surface of a taper, tangential transition
Changes in orientation in relation to a path with
- ORICURVE specification of the movement of two contact points using
PO[XH]=(xe, x2, x3, x4, x5) orientation polynomials up to the fifth de‐
gree
PO[YH]=(ye, y2, y3, y4, y5) orientation polynomials up to the fifth de‐
gree
PO[ZH]=(ze, z2, z3, z4, z5) orientation polynomials up to the fifth de‐
gree
- ORIPATHS smoothing of orientation characteristic with
A8, B8, C8 reorientation phase of tool corresponding to: direction and
path length of tool during retraction movement

Machine types 1 and 3

Other machine types with ad‐
ditional tool rotation around it‐
self require a 3rd rotary axis

Orientation transformation,
e.g. generic 6-axis transforma‐
tion. Rotations of orientation
vector.

Programming of rotations for tool orientation with
LEAD angle, angle relative to surface normal vector
PO[PHI] programming of a polynomial up to the fifth degree
TILT angle rotation about path tangent (Z direction)
PO[PSI] programming of a polynomial up to the fifth degree
THETA angle of rotation (rotation about tool direction in Z)
THETA= value reached at end of block
THETA=AC(...) absolute non-modal switching to dimensions
THETA=IC(...) non-modal switching to chain dimensions
THETA=Θe interpolate programmed angle G90/G91
PO[THT]=(..) programming of a polynomial up to the fifth degree
programming of the rotation vector
- ORIROTA rotation, absolute
- ORIROTR relative rotation vector
- ORIROTT tangential rotation vector

Orientation relative to the path
for orientation changes rela‐
tive to the path or rotation of
the rotary vector tangentially
to the path

Changes in orientation relative to the path with
- ORIPATH tool orientation relative to the path
- ORIPATHS also in the event of a blip in the orientation characteristic
programming of rotation vector
- ORIROTC tangential rotation vector, rotation to path tangent

Transformations
7.1 General programming of transformation types

Job Planning
324 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.2 Three, four and five axis transformation (TRAORI)

7.2.1 General relationships of universal tool head
To obtain optimum cutting conditions when machining surfaces with a three-dimensional curve,
it must be possible to vary the setting angle of the tool.

The machine design to achieve this is stored in the axis data.

5-axis transformation

Cardanic tool head
Three linear axes (X, Y, Z) and two orientation axes (C, A) define the setting angle and the
operating point of the tool here. One of the two orientation axes is created as an inclined axis,
in our example A' - in many cases, placed at 45°.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 325

In the examples shown here, you can see the arrangements as illustrated by the CA machine
kinematics with the Cardanic tool head!

Machine manufacturer

The axis sequence of the orientation axes and the orientation direction of the tool can be set
up using the machine data as appropriate for the machine kinematics.

In this example, A' lies below the angle φ to the X axis.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
326 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The following possible relations are generally valid:

A' lies below the angle φ to the X axis
B' lies below the angle φ to the Y axis
C' lies below the angle φ to the Z axis

Angle φ can be configured in the range 0° to +89° using machine data.

With swiveling linear axis
This is an arrangement with a moving workpiece and a moving tool. The kinematics consists
of three linear axes (X, Y, Z) and two orthogonally arranged rotary axes. The first rotary axis
is moved, for example, over a compound slide of two linear axes, the tool standing parallel to
the third linear axis. The second rotary axis turns the workpiece. The third linear axis (swivel
axis) lies in the compound slide plane.

The axis sequence of the rotary axes and the orientation direction of the tool can be set up
using the machine data as appropriate for the machine kinematics.

There are the following possible relationships:

Axes: Axis sequences:
1. rotary axis A A B B C C
2. rotary axis B C A C A B
Swiveled linear axis Z Y Z X Y X

For more detailed information about configurable axis sequences for the orientation direction
of the tool, see

References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformations (F2),
Section Universal milling head, "Parameterization".

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 327

7.2.2 Three, four and five axis transformation (TRAORI)
The user can configure two or three translatory axes and one rotary axis. The transformations
assume that the rotary axis is orthogonal on the orientation plane.

Orientation of the tool is possible only in the plane perpendicular to the rotary axis. The
transformation supports machine types with movable tool and movable workpiece.

Three- and four-axis transformations are configured and programmed in the same way as five-
axis transformations.

Reference:
Function Manual, Special Functions; Multi-Axis Transformations (F2)

Syntax
TRAORI(<n>)
TRAORI(<n>,<X>,<Y>,<Z>,<A>,)
TRAFOOF

Meaning

TRAORI: Activates the first specified orientation transformation
TRAORI(<n>): Activates the orientation transformation specified by n
<n>: Number of the transformation

Value: 1 or 2
Example:
TRAORI(1) activates orientation transformation 1

<X>,<Y>,<Z>: Component of orientation vector to which tool points
<A>,: Programmable offset for the rotary axes
TRAFOOF: Deactivate transformation

Tool orientation
Depending on the orientation direction selected for the tool, the active working plane (G17,
G18, G19) must be set in the NC program in such a way that tool length offset works in the
direction of tool orientation.

Note

When the transformation is enabled, the positional data (X, Y, Z) always relates to the tip of
the tool. Changing the positions of the rotary axes involved in the transformation causes
compensating motion of the remaining machine axes - which means that the position of the
tool tip remains unchanged.

Orientation transformation always points from the tool tip to the tool adapter.

Offset for orientation axes
When orientation transformation is activated an additional offset can be programmed directly
for the orientation axes.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
328 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameters can be omitted if the correct sequence is used in programming.

Example:

TRAORI(, , , ,A,B) ; If only a single offset is to be entered

As an alternative to direct programming, the additional offset for orientation axes can also be
transferred automatically from the zero offset currently active. Transfer is configured in the
machine data.

Examples

TRAORI(1,0,0,1) ; The basic orientation of the tool is in the Z direction
TRAORI(1,0,1,0) ; The basic orientation of the tool is in the Z direction
TRAORI(1,0,1,1) ; The basic orientation of the tool is in the Y/Z direction

(corresponds to the position -45°)

7.2.3 Variants of orientation programming and initial setting (ORIRESET)

Orientation programming of tool orientation with TRAORI
In conjunction with a programmable TRAORI orientation transformation, in addition to the linear
axes X, Y, Z, the rotary axis identifiers A.., B..., C... can also be used to program axis positions
or virtual axes with angles or vector components. Various types of interpolation are possible
for orientation and machine axes. Regardless of which PO[angle] orientation polynomials and
PO[axis] axis polynomials are currently active, a number of different types of polynomial can
be programmed. These include G1, G2, G3, CIP or POLY.

Changes in tool orientation can even be programmed using orientation vectors in some cases.
In such cases, the ultimate orientation of each block can be set either by means of direct
programming of the vector or by programming the rotary axis positions.

Variants of orientation programming for three- to five-axis transformation
The following versions of orientation programming are mutually exclusive.

A, B, C Direct entry of rotary axis positions.
A2, B2, C2 Angle programming of virtual axes via Euler angles or RPY angles
A3, B3, C3 Vector component designation
LEAD, TILT Specification of lead and tilt angles with reference to path and surface
A4, B4, C4
A5, B5, C5

Surface normal vectors at the start of the block and at the end of the
block

A6, B6, C6
A7, B7, C7

Interpolation of the orientation vector on a taper surface transformation.

A8, B8, C8 Redirection of the tool, direction and path length of the retraction move‐
ment

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 329

Approach initial setting of the tool orientation (ORIRESET)
Through ORIRESET(...), the orientation axes of the relevant machine kinematics are
traversed linearly and synchronously from their current positions to the programmed initial
state positions. If a basic position is not programmed for an axis, the position from the
associated machine data $MC_TRAFO5_ROT_AX_OFFSET_1/2 is used.

Active frames of rotary axes are ignored.

Examples of machine kinematics CA (channel axis names C, A)

Commands Description
ORIRESET(90, 45) Axis C: 90°

Axis A: 45°
ORIRESET(, 30) Axis C: $MC_TRAFO5_ROT_AX_OFFSET_1/2[0]

Axis A: 30°
ORIRESET() Axis C: $MC_TRAFO5_ROT_AX_OFFSET_1/2[0]

Axis A: $MC_TRAFO5_ROT_AX_OFFSET_1/2[1]

Examples of machine kinematics CAC (channel axis names C, A, B)

Commands Description
ORIRESET(90, 45, 90) Axis C: 90°

Axis A: 45°
Axis B: 90°

ORIRESET() Axis C: $MC_TRAFO5_ROT_AX_OFFSET_1/2[0]
Axis A: $MC_TRAFO5_ROT_AX_OFFSET_1/2[1]
Axis B: $MC_TRAFO5_ROT_AX_OFFSET_1/2[2]

Note

Travel to the initial state of the tool orientation with ORIRESET...) may only take place with
active orientation transformation TRAORI...).

Programming LEAD, TILT and THETA rotations

Lead angle LEAD and tilt angle TILT.
In respect of three- to five-axis transformation, tool orientation rotations are programmed with
the LEAD and TILT angles.

Angle of rotation THETA
For a transformation with third rotary axis, the rotation of the tool about itself can be
programmed with the THETA rotary angle both for orientation with vector components as well
as for programming the angles LEAD, TILT.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
330 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.2.4 Programming the tool orientation (A..., B..., C..., LEAD, TILT)
The following options are available when programming tool orientation:

1. Direct programming the motion of rotary axes. The change of orientation always occurs in
the basic or machine coordinate system. The orientation axes are traversed as
synchronized axes.

2. Programming in Euler or RPY angles in accordance with angle definition using A2, B2,
C2

3. Programming the direction vector using A3, B3, C3 The direction vector points from the
tool tip toward the tool adapter.

4. Programming the surface normal vector at the start of the block with A4, B4, C4 and at
the end of the block with A5, B5, C5 (face milling).

5. Programming using lead angle LEAD and tilt angle TILT
6. Programming the rotary axis of taper as normalized vector using A6, B6, C6 or of

intermediate orientation on the peripheral surface of a taper using A7, B7, C7,
see "Orientation programming along the peripheral surface of a taper (ORIPLANE,
ORICONxx)".

7. Programming the reorientation, direction and path length of tool during retraction movement
using A8, B8, C8,
see "Smoothing the orientation characteristic (ORIPATHS A8=, B8=, C8=)"

Note

In all cases, orientation programming is only permissible if an orientation transformation is
active.

Advantage: These programs can be transferred to any machine kinematics.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 331

Definition of tool orientation via G command

Note
Machine manufacturer

Machine data can be used to switch between Euler or RPY angles. If the machine data is set
accordingly, changeovers are possible both depending on the active G command of group 50
and irrespective of this. The following setting options can be selected:
1. If both machine data for defining the orientation axes and defining the orientation angle are

set to zero via G command:
The angles programmed using A2, B2, C2 are dependent on machine data The angle
definition of orientation programming is either interpreted as Euler or RPY angles.

2. If the machine data for defining the orientation axes is set to one via G command, the
changeover is
dependent on the active G command of group 50:
The angles programmed using A2, B2, C2 are interpreted in accordance with the active
G commands ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2, ORIAXPOS and
ORIPY2 . The values programmed with the orientation axes are also interpreted as
orientation angles in accordance with the active G command of group 50.

3. If the machine data for defining the orientation angle is set to one via G command and the
machine data for defining the orientation axes is set to zero via G command, the changeover
is
not dependent on the active G command of group 50:
The angles programmed using A2, B2, C2 are interpreted in accordance with one of the
active G commands ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2 ORIAXPOS and
ORIPY2. The values programmed with the orientation axes are always interpreted as round
axis positions irrespective of the active G command of group 50.

Syntax

Rotary axis positions
G1 X<Value> Y<Value> Z<Value> A<Value> B<Value> C<Value>

Euler angles
G1 X<Value> Y<Value> Z<Value> A2<Value> B2<Value> C2<Value>

Direction vector
G1 X<Value> Y<Value> Z<Value> A3<Value> B3<Value> C3<Value>

Surface normal vector at block start
G1 X<Value> Y<Value> Z<Value> A4<Value> B4<Value> C4<Value>

Surface normal vector at the end of the block
G1 X<Value> Y<Value> Z<Value> A5<Value> B5<Value> C5<Value>

Lead angle
LEAD=<Value>

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
332 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Tilt angle
TILT=<Value>

Meaning

G1: Linear interpolation
X, Y, Z: Linear axis positions
A, B, C: Rotary axis positions
A2=, B2=, C2=: Angle programming (Euler or RPY angle)
A3=, B3=, C3=: Directional vectors in the X, Y and Z coordinates of the WCS.
A4=, B4=, C4=: Surface normal vectors at the start of the block in the X, Y and Z coordinates

of the WCS.
A5=, B5=, C5=: Surface normal vectors at the end of the block in the X, Y and Z coordinates

of the WCS.
LEAD= : Leading angle 1)

TILT= : Tilt angle 1)

1) The interpretation of the angle indications depend on the setting in MD21094 $MC_ORIPATH_MODE

Further information
5-axis programs are usually generated by CAD/CAM systems and not entered at the control.
So the following explanations are directed mainly at programmers of postprocessors.

The following commands are available for orientation programming:

Command Meaning
ORIEULER: Euler angle with rotation sequence ZX'Z''
ORIRPY: RPY angle with rotation sequence XY'Z''
ORIRPY2: RPY angle with rotation sequence ZY'X''
ORIVIRT1: Virtual orientation axes with freely definable rotation sequence via:

MD21120 $MC_ORIAX_TURN_TAB_1
ORIVIRT2: Virtual orientation axes with freely definable rotation sequence via:

MD21130 $MC_ORIAX_TURN_TAB_2
ORIAXPOS: Virtual orientation axes with rotary axis positions

Note

The machine manufacturer can use machine data to define various variants. Please refer to
the machine manufacturer's instructions.

Programming in Euler angles ORIEULER, rotation sequence Z X' Z''
The values programmed during ORIEULER orientation programming with A2, B2, C2 are
interpreted as Euler angles (in degrees).

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 333

The new orientation vector results from the following three rotations of the original orientation
vector

1. with the rotary axis A2 about the coordinate axis Z

2. with the rotary axis B2 about the new coordinate axis X'

3. with the rotary axis C2 about the coordinate axis Z"

In this case the value of C2 (rotation around the new Z axis) is meaningless and does not have
to be programmed.

Programming in RPY angles ORIRPY, rotation sequence X Y' Z''
The values programmed during ORIEULER orientation programming with A2, B2, C2 are
interpreted as RPY angles (in degrees) with the rotation sequence X Y' Z''.

Note

In contrast to programming with ORIEULER, with ORIRPY all three values here have an effect
on the orientation vector.

The new orientation vector results from the following three rotations of the original orientation
vector

1. with the rotary axis A2 about the coordinate axis X

2. with the rotary axis B2 about the new coordinate axis Y'

3. with the rotary axis C2 about the coordinate axis Z"

Programming the directional vector
The components of the direction vector are programmed with A3, B3, C3. The vector points
towards the tool adapter; the length of the vector is of no significance.

Vector components that have not been programmed are set equal to zero.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
334 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

X, Y, Z Coordinate axes of the WCS
A3, B3,
C3

Components of the directional vector

O Orientation vector
Figure 7-1 Programming the directional vector

Programming the tool orientation with LEAD and TILT
The resultant tool orientation is determined from:

● Path tangent

● Surface normal vector
At the start of the block A4, B4, C4 and at the end of the block A5, B5, C5

● Lead angle LEAD
Angle in the plane defined by the path tangent and surface normal vector

● Tilt angle TILT at end of block
Angle in the plane, perpendicular to the path tangent relative to the surface normal vector

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 335

T Path tangent
S Perpendicular to path tangent
N Surface normal
B Path
TCP Tool Center Point
O Orientation vector

Figure 7-2 Programming of LEAD TILT

Note
Behavior at inside corners with 3D tool offset

If the block is shortened at an inside corner, the programmed tool orientation is still taken over
at the end of the block.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
336 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.2.5 Face milling (A4, B4, C4, A5, B5, C5)
Face milling is used to machine curved surfaces of any kind.

For this type of 3D milling, you will require the line-by-line description of the 3D paths on the
workpiece surface.

The tool shape and dimensions are taken into account in the calculations, which are normally
performed in CAM. The fully calculated NC blocks are then read into the control via
postprocessors.

Programming the path curvature

Surface description
The path curvature is described by surface normal vectors with the following components:

A4, B4, C4 Start vector at block start

A5, B5, C5 End vector at block end

If a block only contains the start vector, the surface normal vector will remain constant
throughout the block. If a block only contains the end vector, interpolation will run from the end
value of the previous block via large-circle interpolation to the programmed end value.

If the start and end vectors are programmed, interpolation runs between the two directions,
also via large-circle interpolation. This allows continuously smooth paths to be created.

Regardless of the active G17 to G19 level, in the initial setting, surface normal vectors point
in the Z direction.

The length of a vector is meaningless.

Vector components that have not been programmed are set to zero.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 337

When ORIWKS is active (see "Reference of the orientation axes (ORIWKS, ORIMKS):
(Page 338)"), the surface normal vectors refer to the active frame and are also rotated with
frame rotation.

Machine manufacturer
The surface normal vector must be perpendicular to the path tangent, within a limit value set
via machine data, otherwise an alarm will be output.

7.2.6 Reference of the orientation axes (ORIWKS, ORIMKS):
For orientation programming in the workpiece coordinate system using

● Euler or RPY angle or

● Orientation vector

the course of the rotary motion can be set using ORIMKS/ORIWKS.

Note
Machine manufacturer

The type of interpolation for the orientation is specified with machine data:

MD21104 $MC_ORI_IPO_WITH_G_CODE

= FALSE: The reference is provided by the G commands ORIWKS und ORIMKS.

= TRUE: The reference are the G commands of the 51th group (ORIAXES, ORIVECT,
ORIPLANE, ...)

Syntax
ORIMKS=...
ORIWKS=...

Meaning

ORIMKS: Rotation in the machine coordinate system
ORIWKS: Rotation in the workpiece coordinate system

Note

ORIWKS is the basic setting. In the case of a 5-axis program, if it is not immediately obvious
on which machine it is to run, ORIWKS must always be selected. Which movements the
machine actually executes depend on the machine kinematics.

ORIMKS can be used to program actual machine movements (to avoid collisions with devices
or similar, for example).

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
338 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information
With ORIMKS, the movement executed by the tool depends on the machine kinematics. In the
case of a change in orientation of a tool tip at a fixed point in space, linear interpolation takes
place between the rotary axis positions.

With ORIWKS, the movement executed by the tool does not depend on the machine kinematics.
With an orientation change with a fixed tool tip, the tool moves in the plane set up by the start
and end vectors.

Singular positions

Note
ORIWKS

Orientation movements in the singular setting area of the 5-axis machine require vast
movements of the machine axes. (For example, with a rotary swivel head with C as the rotary
axis and A as the swivel axis, all positions with A = 0 are singular.)

Machine manufacturer
To avoid overloading the machine axes, the velocity control vastly reduces the tool path velocity
near the singular positions.

With machine data

$MC_TRAFO5_NON_POLE_LIMIT
$MC_TRAFO5_POLE_LIMIT
the transformation can be parameterized in such a way that orientation movements close to
the pole are put through the pole and rapid machining is possible.

Singular positions are handled only with the MD $MC_TRAFO5_POLE_LIMIT.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 339

References:
/FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2),
"Singular Points and How to Deal with Them" section.

7.2.7 Programming orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY,
ORIRPY2, ORIVIRT1, ORIVIRT2)

The "Orientation axes" function describes the orientation of the tool in space and is achieved
by programming the offset for the rotary axes. An additional, third degree of freedom can be
achieved by also rotating the tool about itself. In this case, the tool is oriented in space via a
third rotary axis for which 6-axis transformation is required. The rotation of the tool about itself
is defined using the THETA angle of rotation in accordance with the type of interpolation of the
rotation vectors (see "Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT,
ORIROTC, THETA) (Page 350)").

Axis identifiers A2, B2 and C2 are used to program the orientation axes.

Syntax

N... ORIAXES/ORIVECT ; Linear or large-circle interpolation
N... G1 X Y Z A B C

N... ORIPLANE ; Orientation interpolation of the plane

N... ORIEULER/ORIRPY/ORIRPY2 : Orientation angle Euler/RPY angle
N... G1 X Y Z A2= B2= C2= ; Angle programming of virtual axes

N... ORIVIRT1/ORIVIRT2 ; Virtual orientation axes def. 1/2
N... G1 X Y Z A3= B3= C3= ; Direction vector programming

Note

Other rotary axis offsets of the orientation axes can be programmed for orientation changes
along the peripheral surface of a taper in space, see "Orientation programming along the
peripheral surface of a taper (ORIPLANE, ORICONCW, ORICONCCW, ORICONTO,
ORICONIO) (Page 342)".

Meaning

ORIAXES: Linear interpolation of machine or orientation axes
ORIVECT: Large-circle interpolation (identical to ORIPLANE)
ORIMKS:
ORIWKS:

Rotation in the machine coordinate system
Rotation in the workpiece coordinate system
For a description, see "Reference of the orientation axes (ORIWKS,
ORIMKS): (Page 338)".

A= B= C=: Programming the machine axis position

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
340 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

ORIEULER: Orientation programming via Euler angle
ORIRPY: Orientation programming via RPY angle

The rotation sequence is XYZ and:
● A2 is the angle of rotation around X
● B2 is the angle of rotation around Y
● C2 is the angle of rotation around Z

ORIRPY2: Orientation programming via RPY angle
The rotation sequence is ZYX and:
● A2 is the angle of rotation around Z
● B2 is the angle of rotation around Y
● C2 is the angle of rotation around X

A2= B2= C2=: Angle programming of virtual axes
ORIVIRT1/ORIVIRT2: Orientation programming using virtual orientation axes

Definition 1:
Definition according to MD21120 $MC_ORIAX_TURN_TAB_1
Definition 2:
Definition according to MD21130 $MC_ORIAX_TURN_TAB_2

A3= B3= C3=: Direction vector programming of direction axis

Further information

Machine manufacturer
MD21102 $MC_ORI_DEF_WITH_G_CODE specifies how the programmed angles A2, B2, C2
are defined:

The definition is according to MD21100 $MC_ORIENTATION_IS_EULER (standard) or the
definition is according to G group 50 (ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2).

MD21104 $MC_ORI_IPO_WITH_G_CODE defines which interpolation mode type is active:
ORIWKS/ORIMKS or ORIAXES/ORIVECT.

JOG mode
Interpolation for orientation angles in this mode of operation is always linear. During continuous
and incremental traversal via the traversing keys, only one orientation axis can be traversed.
Orientation axes can be traversed simultaneously using the handwheels.

When orientation axes are traversed manually, the channel-specific feedrate override switch
or the rapid traverse override switch in rapid traverse override is applied.

A separate velocity setting is possible with the following machine data:

MD21160 $MC_JOG_VELO_RAPID_GEO

MD21165 $MC_JOG_VELO_GEO

MD21150 $MC_JOG_VELO_RAPID_ORI

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 341

MD21155 $MC_JOG_VELO_ORI

Note
SINUMERIK 840D sl with "handling transformation package"

Using the "Cartesian manual traverse" function, the translation of geometry axes in JOG mode
can be set separately from one another in the reference systems MCS, WCS and TCS.

References:
Function Manual Extended Functions; Kinematic Transformation (M1)

7.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE,
ORICONCW, ORICONCCW, ORICONTO, ORICONIO)

With extended orientation it is possible to execute a change in orientation along the peripheral
surface of a taper in space. The orientation vector is interpolated on the peripheral surface of
a taper using the ORICONxx modal command. The end orientation can be programmed with
ORIPLANE for interpolation on a plane. The start orientation is usually defined by the previous
blocks.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
342 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Programming
The end orientation is either defined by specifying the angle programming in the Euler or RPY
angle using A2, B2, C2 or by programming the rotary axis positions using A, B, C. Further
programming details are needed for orientation axes along the peripheral surface of a taper:

● Rotary axis of taper as a vector with A6, B6, C6
● Opening angle PSI with identifier NUT
● Intermediate orientation outside of the taper with A7, B7, C7

Note

Programming direction vector A6, B6, C6 for the rotary axis of the taper

The programming of an end orientation is not absolutely necessary. If no end orientation
is specified, a full outside taper with 360 degrees is interpolated.

Programming the opening angle of the taper with NUT=angle

An end orientation must be specified.

A complete outside taper with 360 degrees cannot be interpolated in this way.

Programming the intermediate orientation A7, B7, C7 on the outside of the taper

An end orientation must be specified. The change in orientation and the direction of rotation
is defined uniquely by the three vectors Start orientation, End orientation and Intermediate
orientation. All three vectors must be different. If the programmed intermediate orientation
is parallel to the start or end orientation, a linear large-circle interpolation of the orientation
is executed in the plane that is defined by the start and end vector.

Extended orientation interpolation on the peripheral surface of a taper
N... ORICONCW or ORICONCCW
N... A6= B6= C6= A3= B3= C3=
or
N... ORICONTO
N... G1 X Y Z A6= B6= C6=
or
N... ORICONIO
N... G1 X Y Z A7= B7= C7=
N... PO[PHI]=(a2, a3, a4, a5)
N... PO[PSI]=(b2, b3, b4, b5)

Interpolation on the outside of a taper with
direction vector in the clockwise/counter-
clockwise direction of the taper and end ori‐
entation or
tangential transition and
specification of end orientation
or
specification of end orientation and
intermediate orientation on the outside of
the taper with
polynomials for angle of rotation and
polynomials for opening angle

Parameters

ORIPLANE: Interpolation in the plane (large-circle interpolation)
ORICONCW: Interpolation on the peripheral surface of a taper in the clockwise di‐

rection
ORICONCCW: Interpolation on the peripheral surface of a taper in the counter-clock‐

wise direction

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 343

ORICONTO: Interpolation on the peripheral surface of a taper with tangential tran‐
sition

A6= B6= C6=: Programming of a rotary axis of the taper (normalized vector)
NUT=angle: Opening angle of taper in degrees
NUT=+179: Traverse angle less than or equal to 180 degrees
NUT=-181: Traverse angle greater than or equal to 180 degrees
ORICONIO: Interpolation on the peripheral surface of a taper
A7= B7= C7=: Intermediate orientation (programming as normalized vector)
PHI: Angle of rotation of the orientation about the direction axis of the taper
PSI: Opening angle of the taper
Possible polynomials
PO[PHI]=(a2, a3, a4, a5)
PO[PSI]=(b2, b3, b4, b5)

Apart from the different angles, polynomials can also be programmed
up to the
5th degree

Example: Different changes to orientation

Program code Comment
…
N10 G1 X0 Y0 F5000
N20 TRAORI(1) ; Orientation transformation ON
N30 ORIVECT ; Interpolate tool orientation as a vec-

tor.
… ; Tool orientation in the plane.
N40 ORIPLANE ; Select large-circle interpolation.
N50 A3=0 B3=0 C3=1
N60 A3=0 B3=1 C3=1 ; Orientation in the Y/Z plane is rota-

ted through 45 degrees, orientation (0,1/
√2,1/√2) is reached at the end of the
block.

…
N70 ORICONCW ; Orientation programming on the outside

of the taper:
N80 A6=0 B6=0 C6=1 A3=0 B3=0 C3=1 The orientation vector is interpolated

on the outside of a taper with the direc-
tion (0,0,1) up to the orientation (1/
√2,0,1/√2) in the clockwise sense, the
angle of rotation is 270 degrees.

N90 A6=0 B6=0 C6=1 ; The tool orientation goes through a
full revolution on the outside of the
same taper.

Further information
If changes of orientation along the peripheral surface of a taper anywhere in space are to be
described, the vector about which the tool orientation is to be rotated must be known. The start
and end orientation must also be specified. The start orientation results from the previous block
and the end orientation has to be programmed or defined via other conditions.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
344 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Programming in the ORIPLANE plane corresponds to ORIVECT
The programming of large-radius circular interpolation together with angle polynomials
corresponds to the linear and polynomial interpolation of contours. The tool orientation is
interpolated in a plane that is defined by the start and end orientation. If additional polynomials
are programmed, the orientation vector can also be tilted out of the plane.

Programming of circles in a plane G2/G3, CIP and CT
The extended orientation corresponds to the interpolation of circles in a plane. For the
corresponding programming options for circles with centers or radii such as G2/G3, circle via
intermediate point CIP and tangential circles CT, see

References: Programming Manual Fundamentals, "Programming motion commands".

Orientation programming
Interpolation of the orientation vector on the peripheral surface of a taper ORICONxx

Four different types of interpolation from G group 51 can be selected for interpolating
orientations on the peripheral surface of a taper:

1. Interpolation on the outside of a taper in the clockwise direction ORICONCW with
specification of end orientation and taper direction, or opening angle. The direction vector
is programmed with identifiers A6, B6, C6 and the opening angle of the taper with
identifier NUT= value range in interval 0 degrees to 180 degrees.

2. Interpolation on the outside of a taper in the counterclockwise direction ORICONCCW with
specification of end orientation and taper direction, or opening angle. The direction vector
is programmed with identifiers A6, B6, C6 and the opening angle of the taper with
identifier NUT= value range in interval 0 degrees to 180 degrees.

3. Interpolation on the outside of a taper ORICONIO with specification of end orientation and
an intermediate orientation, which is programmed with identifiers A7, B7, C7.

4. Interpolation on the outside of a taper ORICONTO with tangential transition and specification
of end orientation. The direction vector is programmed with identifiers A6, B6, C6.

7.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=,
PO[YH]=, PO[ZH]=)

Programming the change in orientation using the second curve in space ORICURVE
Another way to program changes in orientation, besides using the tool tip along a curve in
space, is to program the motion of a second contact point of the tool using ORICURVE. In this
way, changes in tool orientation can be defined uniquely, as when programming the tool vector
itself.

Machine manufacturer
Please refer to the machine manufacturer's notes on axis identifiers that can be set via machine
data for programming the 2nd orientation path of the tool.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 345

Programming
This type of interpolation can be used to program points (using G1) or polynomials (using
POLY) for the two curves in space. Circles and involutes are not permitted. A BSPLINE spline
interpolation and the "Combine short spline blocks" function can also be activated.

References:
Function Manual, Basic Functions; Continuous-Path Mode, Exact Stop, Look Ahead (B1),
Section: Combine short spline blocks

The other spline types, ASPLINE and CSPLINE, and compressor activation using COMPON,
COMPCURV or COMPCAD are not permitted.

The motion of the two contact points of the tool can be predefined up to the 5th degree when
programming the orientation polynomials for coordinates.

Extended orientation interpolation with additional curve in space and polynomials for coordi‐
nates
N... ORICURVE
N... PO[XH]=(xe, x2, x3, x4, x5)
N... PO[YH]=(ye, y2, y3, y4, y5)
N... PO[ZH]=(ze, z2, z3, z4, z5)

Specification of the motion of the second
contact point of the tool and additional pol‐
ynomials of the coordinates in question

Parameters

ORICURVE Interpolation of the orientation specifying a movement
between two contact points of the tool.

XH YH ZH Identifiers of the coordinates of the second contact
point of the tool of the additional contour as a curve in
space

Possible polynomials
PO[XH]=(xe, x2, x3, x4,
x5) PO[YH]=(ye, y2, y3,
y4, y5) PO[ZH]=(ze, z2,
z3, z4, z5)

Apart from using the appropriate end points, the curves
in space can also be programmed using polynomials.

xe, ye, ze End points of the curve in space
xi, yi, zi Coefficients of the polynomials up to the 5th degree

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
346 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note
Identifiers XH YH ZH for programming a 2nd orientation path

The identifiers must be selected such that no conflict arises with the other identifiers or linear
axes

X Y Z axes

and rotary axes such as

A2 B2 C2 Euler angle or RPY angle

A3 B3 C3 direction vectors

A4 B4 C4 or A5 B5 C5 surface normal vectors

A6 B6 C6 rotation vectors or A7 B7 C7 intermediate point coordinates

or other interpolation parameters.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 347

7.3 Orientation polynomials (PO[angle], PO[coordinate])
Irrespective of the polynomial interpolation from G group 1 that is currently active, two different
types of orientation polynomial can be programmed up to the 5th degree for a three-axis to
five-axis transformation.

1. Polynomials for angles: lead angle LEAD, tilt angle TILT
in relation to the plane that is defined by the start and end orientation.

2. Polynomials for coordinates: XH, YH, ZH of the second curve in space for the tool
orientation of a reference point on the tool.

With a 6-axis transformation, the rotation of rotation vector THT can be programmed with
polynomials up to the 5th degree for rotations of the tool itself, in addition to the tool orientation.

Syntax
Type 1 orientation polynomials for angles

N… PO[PHI]=(a2, a3, a4, a5)
N… PO[PSI]=(b2, b3, b4, b5)

3-axis to 5-axis transformation

Type 2 orientation polynomials for coordinates

N… PO[XH]=(xe, x2, x3, x4, x5)
N… PO[YH]=(ye, y2, y3, y4, y5)
N… PO[ZH]=(ze, z2, z3, z4, z5)

Identifiers for the coordinates of the second
orientation path for tool orientation

In both cases, with 6-axis transformations, a polynomial can also be programmed for the
rotation using

N… PO[THT]=(c2, c3, c4, c5)
or
N… PO[THT]=(d2, d3, d4, d5)

Interpolation of the rotation relative to the path

Interpolation absolute, relative and tangential
to the change of orientation

of the orientation vector. This is possible if the transformation supports a rotation vector with
an offset that can be programmed and interpolated using the THETA angle of rotation.

Meaning

PO[PHI] Angle in the plane between start and end orientation
PO[PSI] Angle describing the tilt of the orientation from the plane between start and end orien‐

tation
PO[THT] Angle of rotation created by rotating the rotation vector of one of the G commands of

group 54 that is programmed using THETA
PHI Lead angle LEAD
PSI Tilt angle TILT
THETA Rotation about the tool direction in Z

Transformations
7.3 Orientation polynomials (PO[angle], PO[coordinate])

Job Planning
348 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

PO[XH] X coordinate of the reference point on the tool
PO[YH] Y coordinate of the reference point on the tool
PO[ZH] Z coordinate of the reference point on the tool

Further information
Orientation polynomials cannot be programmed:

● If ASPLINE, BSPLINE, CSPLINE spline interpolations are active.
Type 1 polynomials for orientation angles are possible for every type of interpolation except
spline interpolation, that is, linear interpolation with rapid traverse G00 or with feedrate G01
 with polynomial interpolation using POLY and
circular/involute interpolation G02, G03, CIP, CT, INVCW and INCCCW
.
However, type 2 polynomials for orientation coordinates are only possible if
linear interpolation with rapid traverse G00 or with feedrate G01 or
 polynomial interpolation with POLY is active.

● If the orientation is interpolated using ORIAXES axis interpolation. In this case, polynomials
can be programmed directly with PO[A] and PO[B] for orientation axes A and B.

Type 1 orientation polynomials with ORIVECT, ORIPLANE and ORICONxx
Only type 1 orientation polynomials are possible for large-radius circular interpolation and
interpolation outside of the taper with ORIVECT, ORIPLANE and ORICONxx.

Type 2 orientation polynomials with ORICURVE
If interpolation with the additional curve in space ORICURVE is active, the Cartesian
components of the orientation vector are interpolated and only type 2 orientation polynomials
are possible.

Transformations
7.3 Orientation polynomials (PO[angle], PO[coordinate])

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 349

7.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT,
ORIROTC, THETA)

If you also want to be able to change the orientation of the tools on machine types with movable
tools, program each block with end orientation. Depending on the machine kinematics you can
either program the orientation direction of the orientation axes or the direction of rotation of
orientation vector THETA. Different interpolation types can be programmed for these rotation
vectors:

● ORIROTA: Angle of rotation to an absolute direction of rotation.

● ORIROTR: Angle of rotation relative to the plane between the start and end orientation.

● ORIROTT: Angle of rotation relative to the change in the orientation vector.

● ORIROTC: Tangential angle of rotation to the path tangent.

Syntax
Only if interpolation type ORIROTA is active can the angle of rotation or rotation vector be
programmed in all four modes as follows:

1. Directly as rotary axis positions A, B, C
2. Euler angles (in degrees) with A2, B2, C2
3. RPY angles (in degrees) with A2, B2, C2
4. Direction vector via A3, B3, C3 (angle of rotation using THETA=<value>)

If ORIOTR or ORIOTT is active, the angle of rotation can only be programmed directly with
THETA.

A rotation can also be programmed in a separate block without an orientation change taking
place. In this case, ORIROTR and ORIROTT are irrelevant. In this case, the angle of rotation
is always interpreted with reference to the absolute direction (ORIROTA).

N... ORIROTA
N... ORIROTR
N... ORIROTT
N... ORIROTC

Define the interpolation of the rotation vector

N... A3= B3= C3= THETA=<value> Define the rotation of the orientation vector
N... PO[THT]=(d2, d3, d4, d5) Interpolate angle of rotation with a 5th order polyno‐

mial

Meaning

ORIROTA: Angle of rotation to an absolute direction of rotation
ORIROTR: Angle of rotation relative to the plane between the start and end orientation
ORIROTT: Angle of rotation as a tangential rotation vector to the change of orientation
ORIROTC: Angle of rotation as a tangential rotation vector to the path tangent
THETA: Rotation of the orientation vector

Transformations
7.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)

Job Planning
350 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

THETA=<value>: Angle of rotation in degrees reached by the end of the block
THETA=Θe: Angle of rotation with end angle Θe of rotation vector
THETA=AC(…): Non-modal switchover to absolute dimensions
THETA=AC(…): Non-modal switchover to incremental dimensions
Θe: End angle of rotational vector both absolute with G90 and relative with G91

(incremental dimensioning) is active
PO[THT]=(....): Polynomial for angle of rotation

Example: Rotations of the orientations

Program code Comment
N10 TRAORI ; Activate orientation transformation
N20 G1 X0 Y0 Z0 F5000 ; Tool orientation
N30 A3=0 B3=0 C3=1 THETA=0 ; In Z direction with angle of rotation 0
N40 A3=1 B3=0 C3=0 THETA=90 ;In X direction and rotation about 90 degrees
N50 A3=0 B3=1 C3=0 PO[THT]=(180,90) ;Orientation
N60 A3=0 B3=1 C3=0 THETA=IC(-90) ;In Y direction and rotation about 180 degrees
N70 ORIROTT ;Remains constant and rotation to 90 degrees
N80 A3=1 B3=0 C3=0 THETA=30 ;Angle of rotation relative to change of ori-

entation
 ;Rotation vector in angle 30 degrees to X/Y

plane

When interpolating block N40, the angle of rotation from initial value of 0 degrees to final value
of 90 degrees is interpolated linearly. In block N50, the angle of rotation changes from 90
degrees to 180 degrees, according to parabola θ(u) = +90u2. In N60, a rotation can also be
executed without a change in orientation taking place.

With N80, the tool orientation is rotated from the Y direction toward the X direction. The change
in orientation takes place in the X/Y plane and the rotation vector describes an angle of 30
degrees to this plane.

Further information

ORIROTA
The angle of rotation THETA is interpolated with reference to an absolute direction in space.
The basic direction of rotation is defined in the machine data.

ORIROTR
The angle of rotation THETA is interpreted relative to the plane defined by the start and end
orientation.

ORIROTT
The angle of rotation THETA is interpreted relative to the change in orientation. For THETA=0
the rotation vector is interpolated tangentially to the change in orientation and only differs from
ORIROTR if at least one polynomial has been programmed for "tilt angle PSI" for the orientation.
The result is a change in orientation that is not executed in the plane. An additional angle of

Transformations
7.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 351

rotation THETA can then be used to interpolate the rotation vector such that it always produces
a specific value referred to the change in orientation.

ORIROTC
The rotation vector is interpolated relative to the path tangent with an offset that can be
programmed using the THETA angle. A polynomial PO[THT]=(c2, c3, c4, c5) up to
the 5th degree can also be programmed for the offset angle.

Transformations
7.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)

Job Planning
352 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.5 Orientations relative to the path

7.5.1 Orientation types relative to the path
By using this expanded function, relative orientation is not only achieved at the end of the
block, but across the entire trajectory. The orientation achieved in the previous block is
transferred to the programmed end orientation using large-circle interpolation. There are
basically two ways of programming the desired orientation relative to the path:

1. Like the tool rotation, the tool orientation is interpolated relative to the path using ORIPATH,
ORPATHTS.

2. The orientation vector is programmed and interpolated in the usual manner. The rotation
of the orientation vector is initiated relative to the path tangent using ORIROTC.

Syntax
The type of interpolation of the orientation and the rotation of the tool is programmed using:

N... ORIPATH Orientation relative to the path
N... ORIPATHS Orientation relative to the path with smoothing of orientation

characteristic
N... ORIROTC Interpolation of the rotation vector relative to the path

An orientation blip caused by a corner on the trajectory can be smoothed using ORIPATHS.
The direction and path length of the retracting movement is programmed via the vector using
the components A8=X, B8=Y C8=Z.

ORIPATH/ORIPATHS can be used to program various references to the path tangent via the
three angles

● LEAD= Specification of lead angle relative to the path and surface

● TILT= Specification of tilt angle relative to the path and surface

● THETA= Angle of rotation

for the entire trajectory. Polynomials up to the 5th degree can be programmed in addition to
the THETA angle of rotation using PO[THT]=(...).

Note
Machine manufacturer

Please refer to the machine manufacturer's instructions. Other settings can be made for
orientations relative to the path via configurable machine and setting data. For more detailed
information, please refer to

References:
/FB3/ Function Manual, Special Functions; 3 to 5-Axis Transformation (F2),
Section "Orientation"

Transformations
7.5 Orientations relative to the path

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 353

Meaning
Various settings can be made for the interpolation of angles LEAD and TILT via machine data:

● The tool-orientation reference programmed using LEAD and TILT is retained for the entire
block.

● Lead angle LEAD: rotation about the direction vertical to the tangent and normal vector
TILT: rotation of the orientation about the normal vector.

● Lead angle LEAD: rotation about the direction vertical to the tangent and normal vector Tilt
angle TILT: rotation of the orientation in the direction of the path tangent.

● Angle of rotation THETA: rotation of the tool about itself with an additional third rotary axis
acting as an orientation axis in 6-axis transformation.

Note
Orientation relative to the path not permitted in conjunction with OSC, OSS, OSSE, OSD
and OST

Orientation interpolation relative to the path, that is ORIPATH or ORIPATHS and ORIOTC,
cannot be programmed in conjunction with orientation characteristic smoothing with a G
command from group 34. OSOF has to be active for this.

7.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle
of rotation)

With a 6-axis transformation, the tool can be rotated about itself with a third rotary axis to
orientate the tool as desired in space. With a rotation of the tool orientation relative to the path
using ORIPATH or ORIPATHS, the additional rotation can be programmed via the THETA
angle of rotation. Alternatively, the LEAD and TILT angles can be programmed using a vector,
which is located in the plane vertical to the tool direction.

Machine manufacturer
Please refer to the machine manufacturer's instructions. The interpolation of the LEAD and
TILT angles can be set differently using machine data.

Syntax

Rotation of tool orientation and tool
The type of tool orientation relative to the path is activated using ORIPATH or ORIPATHS.

N... ORIPATH Activate type of orientation relative to the path
N... ORIPATHS Activate type of orientation relative to the path with

smoothing of the orientation characteristic
Activating the three angles that can be rotated:
N... LEAD= Angle for the programmed orientation relative to the

surface normal vector

Transformations
7.5 Orientations relative to the path

Job Planning
354 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

N... TILT= Angle for the programmed orientation in the plane,
vertical to the path tangent relative to the surface
normal vector

N... THETA= Angle of rotation relative to the change of orientation
in the tool direction of the third rotary axis

The values of the angles at the end of block are programmed using LEAD=value,
TILT=value or THETA=value. In addition to the constant angles, polynomials can be
programmed for all three angles up to the 5th degree.

N... PO[PHI]=(a2, a3, a4, a5)
N... PO[PSI]=(b2, b3, b4, b5)
N... PO[THT]=(d2, d3, d4, d5)

Polynomial for the leading angle LEAD
Polynomial for the tilt angle TILT
Polynomial for the angle of rotation THE‐
TA

The higher polynomial coefficients, which are zero, can be omitted when programming.
Example: PO[PHI]=a2 results in a parabola for the LEAD angle.

Meaning

Tool orientation relative to the path

ORIPATH: Tool orientation in relation to path
ORIPATHS
:

Tool orientation in relation to path, blips in the orientation characteristic are smoothed

LEAD: Angle relative to the surface normal vector in the plane that is defined by the path tangent
and the surface normal vector

TILT: Rotation of orientation in the Z direction or rotation about the path tangent
THETA: Rotation about the tool direction toward Z
PO[PHI]: Orientation polynomial for the LEAD angle
PO[PSI]: Orientation polynomial for the TILT angle
PO[THT]: Orientation polynomial for the THETA angle of rotation

Note
Angle of rotation THETA

A 6-axis transformation is required to rotate a tool with a third rotary axis that acts as an
orientation axis about itself.

7.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)

Interpolation with rotation vectors
The rotation vector of the tool rotation, programmed with ORIROTC, relative to the path tangent
can also be interpolated with an offset that can be programmed using the THETA angle of

Transformations
7.5 Orientations relative to the path

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 355

rotation. A polynomial can, therefore, be programmed up to the 5th degree for the offset angle
using PO[THT].

Syntax

N... ORIROTC Initiate the rotation of the tool rela‐
tive to the path tangent

N... A3= B3= C3= THETA=value Define the rotation of the orienta‐
tion vector

N... A3= B3= C3= PO[THT]=(c2, c3, c4, c5) Interpolate offset angle with poly‐
nomial up to 5th degree

A rotation can also be programmed in a separate block without an orientation change taking
place.

Meaning

Interpolation of the rotation of tool relative to the path in 6-axis transformation

ORIROTC: Initiate tangential rotation vector relative to path tangent
THETA=value: Angle of rotation in degrees reached by the end of the block
THETA=θe: Angle of rotation with end angle Θe of rotation vector
THETA=AC(…): Non-modal switchover to absolute dimensions
THETA=IC(…): Non-modal switchover to incremental dimensions
PO[THT]=(c2, c3, c4, c5): Interpolate offset angle with polynomial of 5th degree

Note
Interpolation of the rotation vector ORIROTC

Initiating rotation of the tool relative to the path tangent in the opposite direction to the tool
orientation, is only possible with a 6-axis transformation.
With active ORIROTC

Rotation vector ORIROTA cannot be programmed. If programming is undertaken, ALARM
14128 "Absolute programming of tool rotation with active ORIROTC" is output.

Orientation direction of the tool for 3-axis to 5-axis transformation
The orientation direction of the tool can be programmed via Euler angles, RPY angles or
direction vectors as with 3-axis to 5-axis transformations. Orientation changes of the tool in
space can also be achieved by programming the large-circle interpolation ORIVECT, linear
interpolation of the orientation axes ORIAXES, all interpolations on the peripheral surface of
a taper ORICONxx, and interpolation in addition to the curve in space with two contact points
of the tool ORICURVE.

G....: Details of the rotary axis motion
X, Y, Z: Details of the linear axes

Transformations
7.5 Orientations relative to the path

Job Planning
356 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

ORIAXES: Linear interpolation of machine or orientation axes
ORIVECT: Large-circle interpolation (identical to ORIPLANE)
ORIMKS:
ORIWKS:

Rotation in the machine coordinate system
Rotation in the workpiece coordinate system
Description, see the Rotations of the tool orientation section

A= B= C=: Programming the machine axis position
ORIEULER: Orientation programming via Euler angle
ORIRPY: Orientation programming via RPY angle
A2= B2= C2=: Angle programming of virtual axes
ORIVIRT1:
ORIVIRT2:

Orientation programming using virtual orientation axes
(definition 1), definition according to MD $MC_ORIAX_TURN_TAB_1
(definition 2), definition according to MD $MC_ORIAX_TURN_TAB_2

A3= B3= C3=: Direction vector programming of direction axis
ORIPLANE: Interpolation in the plane (large-circle interpolation)
ORICONCW: Interpolation on the peripheral surface of a taper in the clockwise direc‐

tion
ORICONCCW: Interpolation on the peripheral surface of a taper in the counter-clock‐

wise direction
ORICONTO: Interpolation on the peripheral surface of a taper with tangential transition
A6= B6= C6=: Programming of a rotary axis of the taper (normalized vector)
NUT=angle Opening angle of taper in degrees
NUT=+179 Traverse angle less than or equal to 180 degrees
NUT=-181 Traverse angle greater than or equal to 180 degrees
ORICONIO: Interpolation on the peripheral surface of a taper
A7= B7= C7=: Intermediate orientation (programming as normalized vector)
ORICURVE
XH YH ZH, e.g. with
polynomials
PO[XH]=(xe, x2, x3,
x4, x5)

Interpolation of the orientation specifying a movement between two con‐
tact points of the tool. In addition to the end points, additional curve
polynomials can also be programmed.

Note

If the tool orientation with active ORIAXES is interpolated via the orientation axes, the angle
of rotation is only initiated relative to the path at the end of block.

7.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)
Changes of orientation that take place with constant acceleration on the contour can cause
unwanted interruptions to the path motions, particularly at the corner of a contour. The resulting
blip in the orientation characteristic can be smoothed by inserting a separate intermediate
block. If ORIPATHS is active during reorientation, the change in orientation occurs at a
constant acceleration. The tool can be retracted in this phase.

Transformations
7.5 Orientations relative to the path

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 357

Machine manufacturer
Please refer to the machine manufacturer's notes on any predefined machine and setting data
used to activate this function.

Machine data can be used to set how the retracting vector is interpreted:

1. In the TCS, the Z coordinate is defined by the tool direction.

2. In the WCS, the Z coordinate is defined by the active plane.

For further explanations about the "Orientation relative to the path" function , see
References:
Function Manual, Special Functions; Multi-axis Transformations (F2)

Syntax
Further programming details are needed at the corner of the contour for constant tool
orientations relative to the path as a whole. The direction and path length of this motion is
programmed via the vector using the components A8=X, B8=Y C8=Z.

N... ORIPATHS A8=X B8=Y C8=Z

Meaning

ORIPATHS: Tool orientation relative to the path; blip in orientation characteristic is smoothed
A8= B8= C8=: Vector components for direction and path length
X, Y, Z: Retracting movement in tool direction

Note
Programming direction vectors A8, B8, C8

If the length of this vector is exactly zero, no retracting movement is executed.
ORIPATHS

Tool orientation relative to the path is activated using ORIPATHS. The orientation is otherwise
transferred from the start orientation to the end orientation by means of linear large-circle
interpolation.

Transformations
7.5 Orientations relative to the path

Job Planning
358 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.6 Compression of the orientation (COMPON, COMPCURV,
COMPCAD, COMPSURF)

NC programs, in which orientation transformation (TRAORI) is active and tool orientations are
programmed (no matter what type), can be compressed if kept within specified limits.

Programming

Tool orientation
If orientation transformation (TRAORI) is active, for 5-axis machines, tool orientation can be
programmed in the following way (independent of the kinematics):

● Programming of the direction vectors via:
A3=<...> B3=<...> C3=<...>

● Programming of the Eulerangles or RPY-angles via:
A2=<...> B2=<...> C2=<...>

Rotation of the tool
For 6-axis machines you can program the tool rotation in addition to the tool orientation.

The angle of rotation is programmed with:

THETA=<...>
See " Rotation of tool orientation (Page 350) ".

Note

NC blocks, in which a rotation is also programmed, can only be compressed if the angle of
rotation changes linearly. This means that it is not permissible that a polynomial with
PO[THT]=(...) is programmed for the angle of rotation.

General structure of an NC block that can be compressed
The general structure of an NC block that can be compressed can therefore look like this:

N... X=<...> Y=<...> Z=<...> A3=<...> B3=<...> C3=<...> THETA=<...> F=<...>
or

N... X=<...> Y=<...> Z=<...> A2=<...> B2=<...> C2=<...> THETA=<...> F=<...>

Note

The position values can be entered directly (e.g. X90) or indirectly via parameter settings (e.g.
X=R1*(R2+R3)).

Programming tool orientation using rotary axis positions
Tool orientation can be also specified using rotary axis positions, e.g. with the following
structure:

N... X=<...> Y=<...> Z=<...> A=<...> B=<...> C=<...> THETA=<...> F=<...>

Transformations
7.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 359

In this case, compression is executed in two different ways, dependent on whether large radius
circular interpolation is executed. If no large radius circular interpolation takes place, then the
compressed change in orientation is represented in the usual way by axial polynomials for the
rotary axes.

Contour accuracy
Depending on the selected compression mode (MD20482 $MC_COMPRESSOR_MODE)
either the configured axis-specific tolerances (MD33100 $MA_COMPRESS_POS_TOL) or the
following channel-specific tolerances – set using setting data – are effective for the geometry
axes and orientation axes for compression:

SD42475 $SC_COMPRESS_CONTUR_TOL (maximum contour deviation)

SD42476 $SC_COMPRESS_ORI_TOL (maximum angular deviation for tool orientation)

SD42477 $SC_COMPRESS_ORI_ROT_TOL (maximum angular deviation for the angle of
rotation of the tool) (only available on 6-axis machines)

References:
Function Manual Basic Functions; 3 to 5-Axis Transformation (F2),
Section: "Compression of the orientation"

Activation/deactivation
Compressor functions are activated by modal G commands COMPON, COMPCURV, COMPCAD
or COMPSURF.

COMPOF terminates the compressor function.

See " NC block compression (COMPON, COMPCURV, COMPCAD) (Page 259) ".

Note

Orientation motion is only compressed when large radius circular interpolation is active (i.e.
tool orientation is changed in the plane which is determined by start and end orientation).

Large radius circular interpolation is executed under the following conditions:
● MD21104 $MC_ORI_IPO_WITH_G_CODE = 0,

ORIWKS is active and
the orientation is programmed as a vector (with A3, B3, C3 or A2, B2, C2).

● MD21104 $MC_ORI_IPO_WITH_G_CODE = 1 and
ORIVECT or ORIPLANE is active.
The tool orientation can be programmed either as a direction vector or with rotary axis
positions. No large radius circle interpolation is performed, if one of the G commands
ORICONxx or ORICURVE is active, or if polynomials for orientation angle (PO[PHI] and
PO[PSI]) are programmed.

Transformations
7.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF)

Job Planning
360 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
In the example program below, a circle approached by a polygon definition is compressed.
The tool orientation moves on the outside of the taper at the same time. Although the
programmed orientation changes are executed one after the other, but in an unsteady way,
the compressor function generates a smooth motion of the orientation.

Programming Comment
DEF INT NUMBER=60
DEF REAL RADIUS=20
DEF INT COUNTER
DEF REAL ANGLE
N10 G1 X0 Y0 F5000 G64

$SC_COMPRESS_CONTUR_TOL=0.05 ; Maximum deviation of the contour = 0.05 mm
$SC_COMPRESS_ORI_TOL=5 ; Maximum deviation of the orientation

= 5 degrees

TRAORI
COMPCURV ; The movement describes a circle generated

from polygons. The orientation moves on a
taper around the Z axis with an opening an-
gle of 45 degrees.

N100 X0 Y0 A3=0 B3=-1 C3=1
N110 FOR COUNTER=0 TO NUMBER
N120 ANGLE=360*COUNTER/NUMBER
N130 X=RADIUS*cos(angle) Y=RADIUS*sin(angle)
A3=sin(angle) B3=-cos(angle) C3=1
N140 ENDFOR

Transformations
7.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 361

7.7 Activating/deactivating the orientation characteristic (ORISON,
ORISOF)

The "Smoothing of the orientation characteristic" is activated/deactivated in the part program
using the commands of G group 61. The commands are modal.

Preconditions
● System with 5/6-axis transformation.

● Compressor function COMPCAD is active.

Syntax

ORISON
...
ORISOF

Meaning

ORISON: Activating the orientation characteristic smoothing
ORISOF: Deactivating the orientation characteristic smoothing

Example

Program code Comment
...
TRAORI() ; Activation of orientation transformation.
COMPCAD ; Activating the COMPCAD compressor function.
ORISON ; Activating orientation smoothing.
$SC_ORISON_TOL=1.0 ; Maximum angular deviation of the tool orientation

= 1.0 degrees.
G91
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
X10 A3=1 B3=0 C3=1
X10 A3=–1 B3=0 C3=1
...
ORISOF ; Deactivation of orientation smoothing.
...

Transformations
7.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)

Job Planning
362 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The orientation is pivoted through 90 degrees on the XZ plane from -45 to +45 degrees. Due
to the smoothing of the orientation characteristic the orientation is no longer able to reach the
maximum angle values of -45 or +45 degrees.

Transformations
7.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 363

7.8 Kinematic transformation

7.8.1 Activate face end transformation (TRANSMIT)
The front face transformation (TRANSMIT) is activated in the part program or synchronized
action using the TRANSMIT statement.

Syntax
TRANSMIT
TRANSMIT(<n>)

Meaning

TRANSMIT: Activate TRANSMIT with the first TRANSMIT data set
TRANSMIT(n): Activate TRANSMIT with the nth TRANSMIT data set

Note

A TRANSMIT transformation active in the channel is activated with:
● Deactivate transformation: TRAFOOF
● Activation of another transformation: E.g. TRACYL, TRAANG, TRAORI

7.8.2 Activate cylinder surface transformation (TRACYL)
The cylinder surface transformation (TRACYL) is activated in the part program or synchronized
action using the TRACYL statement.

Syntax
TRACYL(<d>)
TRACYL(<d>,<n>)

TRACYL(<d>,<n>,<k>)

Meaning

TRACYL(<d>): Activate TRACYL with the first TRACYL data set and working diameter
<d>

TRACYL (<d>,<n>): Activate TRACYL with the <n>th TRACYL data set and working diameter
<d>

<d>: Reference or working diameter
The value must be greater than 1.

Transformations
7.8 Kinematic transformation

Job Planning
364 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<n>: TRACYL data set number (optional)
Range of values: 1, 2

<k>: The parameter <k> is only relevant for transformation type 514
k = 0: without groove side correction
k = 1: with groove side correction
If the parameter is not specified, then the parameterized basic position
applies:
$MC_TRACYL_DEFAULT_MODE_<n>
With <n> = TRACYL data set number

Note

A TRACYL transformation active in the channel is switched-off with:
● Deactivate transformation: TRAFOOF
● Activation of another transformation: E.g. TRAANG, TRANSMIT, TRAORI

Example

Program code Comment
...
N40 TRACYL(40.) ; Activate TRACYL with the first TRACYL data set

and working diameter 40 mm.
...

Further information

Program structure
A part program for milling a groove with TRACYL transformation 513 (TRACYL with groove
side offset) generally comprises the following steps:

1. Select tool.

2. Select TRACYL.

3. Select suitable coordinate offset (frame).

4. Positioning.

5. Program OFFN.

6. Select TRC.

7. Approach block (position TRC and approach groove side).

8. Groove center line contour.

9. Deselect TRC.

10.Retraction block (retract TRC and move away from groove side).

11.Positioning.

Transformations
7.8 Kinematic transformation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 365

12.TRAFOOF.

13.Reselect original coordinate shift (frame).

Contour offset (OFFN)
In order to mill grooves using TRACYL transformation 513, the center line of the groove and
half of the groove width via the OFFN address are programmed in the part program.

To avoid damage to the groove side, OFFN acts only when the tool radius compensation is
active.

It is possible to change OFFN within a part program. This allows the groove center line to be
offset from the center:

Note

OFFN should be at least as large as the tool radius to avoid damage occurring to the opposite
side of the groove wall.

Note

OFFN acts differently with TRACYL than it does without TRACYL. Since, even without
TRACYL, OFFN is included when TRC is active, OFFN should be reset to zero after TRAFOOF.

NOTICE

Effect of OFFN depends on the transformation type

For TRACYL transformation 513 (TRACYL with groove side offset), half the groove width is
programmed for OFFN.

For TRACYL transformation 512 (TRACYL with groove side offset), the value of OFFN acts
as an allowance for the TRC.

Transformations
7.8 Kinematic transformation

Job Planning
366 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Tool radius compensation (TRC)
For TRACYL transformation 513, the TRC is not taken into account relative to the groove side,
but to the programmed center of the groove. In order that the tool travels to the left of the
groove side, statement G42 must be programmed instead of G41 or the value of OFFN
specified with a negative sign.

Tool diameter
With TRACYL and a tool whose diameter is less than the groove width, the same groove side
geometry is not generated as with a tool whose diameter is the same as the groove width. To
improve the precision, it is recommended that the tool diameter is selected to be only slightly
less than the groove width.

Axis utilization

Note

The following axes cannot be used as a positioning axis or a reciprocating axis:
● The geometry axis in the peripheral direction of the cylinder peripheral surface (Y axis).
● The additional linear axis for groove side compensation (Z axis).

7.8.3 Activating an oblique angle transformation with programmable angle (TRAANG)
The oblique angle transformation with programmable angle is activated in the part program or
synchronized action using the TRAANG statement.

Syntax
TRAANG
TRAANG()
TRAANG(, <n>)
TRAANG(<α>)
TRAANG(<α>,<n>)

Meaning

TRAANG:
TRAANG():

Activate TRAANG with the first TRAANG data set and last valid angle
<α>

TRAANG(, <n>): Activate TRAANG with the <n>th TRAANG data set and last valid angle
<α>

TRAANG(<α>): Activate TRAANG with the first TRAANG data set and angle <α>
TRAANG(<α>,<n>): Activate TRAANG with the <n>th TRAANG data set and angle <α>
<α>: Angle of the inclined axis (optional)

Range of values: -90° < α < + 90°
The initial state parameterized in the machine data is effective if an
angle is not specified:
MD2xxxx $MC_TRAANG_ANGLE_<n>

Transformations
7.8 Kinematic transformation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 367

<n>: TRAANG data set number (optional)
Range of values: 1, 2

Note

Oblique angle transformation TRAANG active in the channel is deactivated using:
● Deactivate transformation: TRAFOOF
● Activation of another transformation: E.g. TRACYL, TRANSMIT, TRAORI

Example

Program code Comment
N20 TRAANG(45) ; Activate TRAANG with the first TRAANG data set and angle 45°

7.8.4 Oblique plunge-cutting on grinding machines (G5, G7)
The G commands G7 and G5 are used to simplify programming of oblique plunge-cutting on
grinding machines with "inclined axis (TRAANG)", so that when plunge cutting, only the inclined
axis is traversed.

Only the required end position of the plunge-cutting motion has to be programmed in X and
Z. For G7, starting from the actual position of the X axis, the NC calculates and approaches
the programmed end position and angle α of the inclined axis.

The starting position is calculated from the point where the two straight lines intersect:

● Straight line parallel to the Z axis, at a distance from the actual position of the X axis

● Straight line parallel to the inclined axis through the programmed end position

With the subsequent G5, the inclined axis is traversed to the programmed end position.

Syntax

G7 <Endpos_X> <Endpos_Z>
G5 <Endpos_X>

Meaning

G7: Calculate the starting position for the oblique plunge-cutting and approach.
G5: Traverse the inclined axis to the programmed end position
<Endpos_X>: X axis end position
<Endpos_Z>: End position of the Z axis

Transformations
7.8 Kinematic transformation

Job Planning
368 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example

① Parallel to the Z axis, at a distance from the actual position of the X axis
② Parallel to the inclined axis through the programmed end position
③ Starting position
④ Plunge-cutting: Starting position
⑤ Plunge-cutting: End position
X Geometry axis
Z Geometry axis
ZM Machine axis
UM Machine axis

Program code Comment
N... G18 ; Select XZ plane.
N40 TRAANG (45.0) ; Activate TRAANG transformation, angle = 45°
N50 G7 X40 Z70 F4000 ; Calculate the starting position and approach
N60 G5 X40 F100 ; Traverse inclined axis to the end position.
N70 ...

Transformations
7.8 Kinematic transformation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 369

7.9 Activate concatenated transformation (TRACON)
The TRAANG transformation is activated in the part program or synchronized action using the
TRACON statement.

Syntax

TRACON(<Trafo_No>,<Par_1>,<Par_2,...)
...
TRAFOOF

Meaning

TRACON: Activate concatenated transformation
If another transformation was previously activated, it is implicitly deactivated by
TRACON().

<Trafo_No>: Number of the concatenated transformation:
Type: INT
Range of val‐
ues:

0 ... 2

Value: 0, 1 First/only concatenated transformation
2 Second concatenated transformation
Not specified Same meaning as with 0 or 1
Note:
Values not equal to 0, 1, 2 generate an error alarm.

<Par_1>,<Par_
2,...:

Parameters for the concatenated transformations (e.g. angle of the inclined axis)
If parameters are not set, the defaults or the parameters last used take effect.
Commas must be used to ensure that the specified parameters are evaluated in
the sequence in which they are expected, if default settings are to be effective for
previous parameters. In particular, a comma is required before at least one pa‐
rameter, even though it is not necessary to specify <Trafo_No>. For example
TRACON(, 3.7).
For TRACON with Transmit or TRAORI (5th axis machining) the second
parameter Par_2 does not act as angle for the inclined axis.
For TRACON with TRACYL (peripheral surface machining), Par is used for the
unit diameter.

TRAFOOF: Deactivate the last activated (concatenated) transformation

Example

Program code Comment
...
N230 TRACON(1,45.) ; Activate first concatenated transformation.

; The previously active transformation is automatical-
ly deselected.
; The parameter for the inclined axis is 45°.

Transformations
7.9 Activate concatenated transformation (TRACON)

Job Planning
370 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
...
N330 TRACON(2,40.) ; Activate second concatenated transformation.

; The parameter for the inclined axis is 40°.
...
N380 TRAFOOF ; Deactivate second concatenated transformation.
...

Transformations
7.9 Activate concatenated transformation (TRACON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 371

7.10 Cartesian PTP travel

7.10.1 Activating/deactivating Cartesian PTP travel (PTP, PTPG0, PTPWOC, CP)
The Cartesian point-to-point or PTP travel is activated/deactivated in the NC program using
G group 49 commands.

The commands are modal. The default setting is travel with Cartesian path motion (CP).

Contrary to CP, for active PTP travel, only the Cartesian target point is transformed, and the
machine axes are traversed in synchronism.

In order that the Cartesian target point can be uniquely converted into machine axis values,
in addition to position and angular data, information is also necessary that identifies the axis
positions. This data is retrieved from the adjustable addresses STAT (Page 373) andTU
(Page 377).

Precondition
Transformation TRAORI, TRANSMIT, RCTRA or ROBX is active.

Syntax

PTP / PTPG0 / PTPWOC
...
CP

Meaning

PTP: Activating point-to-point motion PTP
The programmed Cartesian position in G0 and G1 blocks is approached with synchro‐
nous axis motion.

PTPG0: Activating point-to-point motion PTPG0
Only in G0 blocks is the programmed Cartesian position approached with synchronous
axis motion. In G1 blocks, a switchover is made to CP path motion.

PTPWOC: Activate point-to-point movement PTPWOC (only possible if orientation transformation
is active)
Just the same as PTP, however, without any compensatory motion, which is caused
by motion of rotary axes and orientation axes.

CP: Deactivating point-to-point motion and activating path motion CP
Cartesian path motion is executed with CP.

Note
PTPWOC

It does not make any sense to use PTPWOC in combination with a RCTRA or ROBX
transformation!

Transformations
7.10 Cartesian PTP travel

Job Planning
372 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Examples
See:

● Example 1: PTP travel of a 6-axis robot with ROBX transformation (Page 380)

● Example 2: PTP travel for generic 5-axis transformation (Page 381)

● Example 3: PTPG0 and TRANSMIT (Page 381)

7.10.2 Specify the position of the joints (STAT)
Position data with Cartesian coordinates and specification of the tool orientation is not sufficient
in order to uniquely identify the machine position, as for the same tool orientation, several joint
positions are possible. Depending on the kinematics involved, there can be as many as 8
different joint positions. These different joint positions are transformation-specific.

In an order to avoid any ambiguity, the joint positions are specified under the STAT address.

Note

The control only takes into account programmed STAT values for PTP motion. CP motion is
ignored because when traversing with active transformation, a position change is normally not
possible. When traversing with active CP, the position for the target point is taken from the
starting point.

Syntax
STAT=<Value>

Meaning

STAT: Adjustable address to specify joint positions
<Value>: Binary or decimal value

Contains one bit for each possible position. The significance of the bits is defined by
the particular transformation.

The use of STAT is to be explained using a 6-axis articulated robot with milling spindle. The
kinematic transformation is to be realized using the ROBX robot transformation (precondition:
compile cycle "RMCC/ROBX Transformation Extended Robotics" is loaded and active).

Transformations
7.10 Cartesian PTP travel

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 373

Axes A1, A2 and A3 are the main axes of the articulated robot. With the main axes, axes A4,
A5 and A6 - which are also designated as head or hand/wrist axes, are positioned in the
machining space. As a result of the additional hand/wrist axis motion, the milling spindle can
be orientated in space as required for the particular machining task. Various articulated joint
positions are possible to achieve the same tool orientation.

The articulated joint positions required for machining are selected by programming bit 0 ... 2
of the adjustable STAT address:

Bit 0 Position of the intersection points of the manual axes (A4, A5, A6)
= 0 Basic range (shoulder right)

The robot is in the basic range if the X value
of the intersection point of the manual axes
is positive referred to the A1 coordinate sys‐
tem.

Example: The intersection point of
the hand/wrist axes is located in the
basic range

= 1 Overhead range (shoulder left)
The robot is in the overhead range if the X
value of the intersection point of the manual
axes is negative referred to the A1 coordinate
system.

Transformations
7.10 Cartesian PTP travel

Job Planning
374 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Bit 1 Position of axis 3
The angle where the value of bit 1 changes depends on the particular robot type. The fol‐
lowing applies for robots whose axes 3 and 4 intersect:
= 0 A3 < 0° (elbow down)
= 1 A3 ≥ 0° (elbow up)
Note:
For robots with an offset between axes 3 and 4, the
angle where the value of bit 1 changes is dependent
on the magnitude of this offset.

Offset between A3 and A4
Bit 2 Position of axis 5

= 0 A5 ≤ 0° (no handflip)
= 1 A5 > 0° (handflip)

Program example:

Program code Comment
...
N14 T="T8MILLD20" D1 ; $TC_DP3[1,1]=132.95
N16 ORIMKS
N17 G1 PTP X1665.67 Y0 Z1377.405 A=0 B=0 C=0 STAT=... F2000 ; The STAT value defines

the articulated joint
positions (see below)

...

STAT=1 ('B001') → Shoulder Left
→ Elbow Down
→ No Handflip

Transformations
7.10 Cartesian PTP travel

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 375

STAT=2 ('B010') → Shoulder Right
→ Elbow Up
→ No Handflip

STAT=5 ('B101') → Shoulder Left
→ Elbow Down
→ Handflip

STAT=6 ('B110') → Shoulder Right
→ Elbow Up
→ Handflip

TRANSMIT
For TRANSMIT, the STAT address is used to initiate the equivocality regarding the pole.

Transformations
7.10 Cartesian PTP travel

Job Planning
376 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

If the rotary axis must rotate through 180º or for CP, the contour would go through the pole,
the following applies:

Bit 0 Only relevant for $MC_TRANSMIT_POLE_SIDE_FIX_1/2 = 1 or 2:
= 0 Rotary axis traverses through +180º or rotates clockwise.
= 1 Rotary axis rotates through -180º or rotates counterclockwise.

Bit 1 Only relevant for $MC_TRANSMIT_POLE_SIDE_FIX_1/2 = 0:
= 0 The axis traverses through the pole. The rotary axis does not rotate.
= 1 The axis rotates around the pole. Bit 0 of STAT is relevant.

7.10.3 Specify the sign of the axis angle (TU)
In order that rotary axes can also approach axis angles exceeding +180° or less than -180°
without requiring a special traversing strategy (e.g. intermediate point), the sign of the axis
angle must be specified under the adjustable address TU.

Note

The control only takes into account programmed TU values for PTP motion. CP motion is
ignored.

Syntax
TU=<Value>

Meaning

TU: Adjustable address to specify axis angle signs
<Value>: Binary or decimal value

For each axis that is involved in the transformation, there is a bit that indicates the sign
of the axis angle (θ), and therefore the traversing direction.
Bit = 0 Axis angle sign: + Axis angular range: 0° ≤ θ < 360°

= 1 Axis angle sign: - Axis angular range: - 360° < θ < 0°

Example: 6-axis articulated robot

Transformations
7.10 Cartesian PTP travel

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 377

Bit Meaning Value Axis angle
sign

Axis angle

Bit 0 1) Sign for the axis angle of A1 = 0 + ≥ 0°
= 1 - < 0°

Bit 1 1) Sign for the axis angle of A2 = 0 + ≥ 0°
= 1 - < 0°

Bit 2 1) Sign for the axis angle of A3 = 0 + ≥ 0°
= 1 - < 0°

Bit 3 1) Sign for the axis angle of A4 = 0 + ≥ 0°
= 1 - < 0°

Bit 4 1) Sign for the axis angle of A5 = 0 + ≥ 0°
= 1 - < 0°

Bit 5 1) Sign for the axis angle of A6 = 0 + ≥ 0°
= 1 - < 0°

1) The actual TU bit numbers obtained from the channel axis numbers of the robot axes! In the example,
robot axes (A1 to A6) are the first six axes in the channel; as a consequence, TU bits 0 ... 5 are used.
For another channel axis assignment of the robot axes, the TU bit numbers of the robot axes would
correspondingly change (e.g.: robot axes are the 3rd to 8th channel axis, i.e. TU bits 2 ... 7 are used
for the robot axes).

TU=19 (corresponds to TU='B010011) would therefore signify:

Bit Value Axis angle
0 = 1 ① θA1 < 0°
1 = 1 ① θA2 < 0°

Transformations
7.10 Cartesian PTP travel

Job Planning
378 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

2 = 0 ① θA3 ≥ 0°
3 = 0 ① θA4 ≥ 0°
4 = 1 ① θA5 < 0°
5 = 0 ① θA6 ≥ 0°

Note

In the case of axes with a traversing range > ±360°, the axis always moves along the shortest
path because the axis position cannot be specified uniquely by the TU information.

If no TU is programmed for a position, then depending on MD30455
$MA_MISC_FUNCTION_MASK, the shorter or longer path is traversed (see Chapter "Taking
into account the software limits for PTP travel" in the Extended Functions Function Manual).

TRANSMIT
For PTP travel with TRANSMIT active, the address of TU has no meaning!

Example
The rotary axis position shown in the following diagram can be approached in the negative or
positive direction. The angular position is programmed under address A1. The traversing
direction is only absolutely clear when TU is specified.

Transformations
7.10 Cartesian PTP travel

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 379

7.10.4 Example 1: PTP travel of a 6-axis robot with ROBX transformation
In the following application example, Cartesian PTP travel and the associated NC commands
are shown in the form of an example.

Figure 7-3 6-axis articulated robot with milling spindle

N1 G90
N2 T=“T8MILLD20“ D1 M6
N3 TRAORI
;$P_UIFR[1]=CTRANS(X,1500,Y,0,Z,400):CROT(X,0,Y,0,Z,-90)
N4 G54
N5 M3 S20000
N6 ORIWKS
N7 ORIVIRT1
N8 CYCLE832(0.01,_FINISH,1)
;HOME
N9 TRAFOOF
N10 G0 RA1=0.0000 RA2=-90.0000 RA3=90.0000 A=0.0000 B=90.0000 C=0.0000
N11 TRAORI
N12 G54
N13 G0 PTP X1369.2426 Y956.7528 Z502.5517 A=135.5761 B=-33.2223 C=161.1435
STAT='B010' TU='B001011'
N14 G0 X1355.1242 Y1014.9394 Z424.9695 A=135.8491 B=-33.1439 C=160.9941
STAT='B010' TU='B001011'
N15 G1 CP X1354.8361 Y1016.1269 Z423.3862 A=136.0635 B=-33.0819 C=160.8770
F1000
N16 G1 X1336.4283 Y1016.1269 Z426.6311 A=136.0484 B=-32.2151 C=160.9643
F2000
N17 G1 X1317.9831 Y1016.1269 Z429.6730 A=136.0175 B=-31.3394 C=161.0655
;HOME
N18 TRAFOOF
N19 G0 RA1=0.0000 RA2=-90.0000 RA3=90.0000 A=0.0000 B=90.0000 C=0.0000
N20 M30

Transformations
7.10 Cartesian PTP travel

Job Planning
380 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.10.5 Example 2: PTP travel for generic 5-axis transformation
Assumption: Right-angled CA kinematics used as basis.

Program code Comment
TRAORI ;Transformation CA kinematics ON
PTP ; Activate PTP traversal
N10 A3=0 B3=0 C3=1 ; rotary axis positions C=0 A=0
N20 A3=1 B3=0 C3=1 ; rotary axis positions C=90 A=45
N30 A3=1 B3=0 C3=0 ; rotary axis positions C=90 A=90
N40 A3=1 B3=0 C3=1 STAT=1 ; rotary axis positions C=270 A=–45

Select clear approach position of rotary axis position:

In block N40, the rotary axes – as a result of the programming of STAT=1 – travel the longer
distance from their start point (C=90, A=90) to the end point (C=270, A=–45). On the other
hand, with STAT=0, the rotary axes would travel along the shortest path to the end point (C=90,
A=45).

7.10.6 Example 3: PTPG0 and TRANSMIT

Traversing around the pole with PTPG0 and TRANSMIT

PTP

CP

Program code Comment
N001 G0 X30 Z0 F10000 T1 D1 G90 ;Initial setting absolute dimension
N002 SPOS=0
N003 TRANSMIT ;TRANSMIT transformation
N010 PTPG0 ; for each G0 block, automatically PTP –

and then CP again.

Transformations
7.10 Cartesian PTP travel

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 381

Program code Comment
N020 G0 X30 Y20
N030 X-30 Y-20
N120 G1 X30 Y20
N110 X30 Y0
M30

Traversing from the pole with PTPG0 and TRANSMIT

N070 X20 Y2

10

10

20

20-10-20-30

-10

-20

-30

N060 X0 Y0

N050 X10 Y0

PTP

CP 30

30

Programming Comment
N001 G0 X90 Z0 F10000 T1 D1 G90 ;Initial setting
N002 SPOS=0
N003 TRANSMIT ;TRANSMIT transformation
N010 PTPG0 ; for each G0 block, automatically PTP –

and then CP again.
N020 G0 X90 Y60
N030 X-90 Y-60
N040 X-30 Y-20
N050 X10 Y0
N060 X0 Y0
N070 X-20 Y2
N170 G1 X0 Y0
N160 X10 Y0
N150 X-30 Y-20
M30

Transformations
7.10 Cartesian PTP travel

Job Planning
382 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

7.11 Constraints when selecting a transformation

Function
Transformations can be selected via a part program or MDA. Please note:

● No intermediate movement block is inserted (chamfer/radii).

● Spline block sequences must be excluded; if not, a message is displayed.

● Fine tool compensation must be deselected (FTOCOF); if not a message is displayed.

● Tool radius compensation must be deselected (G40); if not a message is displayed.

● An activated tool length offset is included in the transformation by the control.

● The control deselects the current frame active before the transformation.

● The control deselects an active operating range limit for axes affected by the transformation
(corresponds to WALIMOF).

● Protection zone monitoring is deselected.

● Continuous path control and rounding are interrupted.

● All the axes specified in the machine data must be synchronized relative to a block.

● Axes that are exchanged are exchanged back; if not, a message is displayed.

● A message is output for dependent axes.

Tool change
Tools may only be changed when the tool radius compensation function is deselected.

A change in tool length offset and tool radius compensation selection/deselection must not be
programmed in the same block.

Frame change
All statements, which refer exclusively to the base coordinate system, are permissible
(FRAME, tool radius compensation). However, a frame change with G91 (incremental
dimension) – unlike with an inactive transformation – is not handled separately. The increment
to be traveled is evaluated in the workpiece coordinate system of the new frame – regardless
of which frame was effective in the previous block.

Exceptions
Axes affected by the transformation cannot be used

● as a preset axis (alarm),

● for approaching a checkpoint (alarm),

● for referencing (alarm).

Transformations
7.11 Constraints when selecting a transformation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 383

7.12 Deselecting a transformation (TRAFOOF)
The predefined TRAFOOF procedure deactivates all active transformations and frames.

Note

For deselecting the transformation, the same secondary conditions (Page 383) apply as for
selecting.

Frames required after this must be activated by renewed programming.

Syntax

...
TRAFOOF

Meaning

TRAFOOF: Deactivating all active transformations/frames

Transformations
7.12 Deselecting a transformation (TRAFOOF)

Job Planning
384 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Kinematic chains 8
8.1 Deletion of components (DELOBJ)

The DELOBJ() function "deletes" components by resetting the assigned system variables to
their default values:

● Elements from kinematic chains

● Protection areas, protection area elements and collision pairs

● Transformation data

Syntax
[<RetVal>=] DELOBJ(<CompType>[,,,<NoAlarm>)])
[<RetVal>=] DELOBJ(<CompType>,<Index1>[,,<NoAlarm>])
[<RetVal>=] DELOBJ(<CompType>[,<Index1>][,<Index2>][,<NoAlarm>])

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 385

Meaning

DELOBJ: Deletion of elements from kinematic chains, protection areas, protection area ele‐
ments, collision pairs and transformation data

<CompType>: Component type to be deleted
Data type: STRING
Value: "KIN_CHAIN_ELEM"
Meaning: System variables of all kinematic elements: $NK_...
Value: "KIN_CHAIN_SWITCH"
Meaning: System variable $NK_SWITCH[<i>]
Value: "KIN_CHAIN_ALL"
Meaning: All kinematic elements and switches.
Is the same as the successive call of DELOBJ with "KIN_CHAIN_ELEM" and
"KIN_CHAIN_SWITCH"
Value: "PROT_AREA"
Meaning: System variables of the protection areas:
● $NP_PROT_NAME
● $NP_CHAIN_NAME
● $NP_CHAIN_ELEM
● $NP_1ST_PROT
Value: "PROT_AREA_ELEM"
Meaning: System variables of the protection area elements of machine protection
areas and/or automatic tool protection areas:
● $NP_NAME
● $NP_NEXT
● $NP_NEXTP
● $NP_COLOR
● $NP_D_LEVEL
● $NP_USAGE
● $NP_TYPE
● $NP_FILENAME
● $NP_PARA
● $NP_OFF
● $NP_DIR
● $NP_ANG
Value: "PROT_AREA_COLL_PAIRS"
Meaning: System variables of the collision pairs:
● $NP_COLL_PAIR
● $NP_SAFETY_DIST
Value: "PROT_AREA_ALL"
Meaning: All protection areas, protection area elements and collision pairs (system
variable $NP_...)
Is the same as the successive call of DELOBJ with "PROT_AREA,"
"PROT_AREA_ELEM," and "PROT_AREA_COLL_PAIRS"
Value: "TRAFO_DATA"
Meaning: System variables of all transformations $NT_...

Kinematic chains
8.1 Deletion of components (DELOBJ)

Job Planning
386 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<Index1>: Index of the first component to be deleted (optional)
Data type: INT
Default value: -1
Range of val‐
ues:

-1 ≤ x ≤ (maximum number of configured components -1)

Value Meaning
0, 1, 2, Index of the component to be deleted.

-1 All components of the specified type are deleted. <Index2> is not
evaluated.

<Index2>: Index of the last components to be deleted (optional)
If <Index2> is not programmed, only the system variables of the component refer‐
enced in <Index1> are deleted.
Data type: INT
Default value: Only the system variables of the component referenced in <In‐

dex1> are deleted.
Range of val‐
ues:

<Index1> < x ≤ (max. number of configured components -1)

<NoAlarm>: Alarm suppression (optional)
Data type: BOOL
Default value: FALSE

Value Meaning
FALSE In the event of an error (<RetVal> < 0), program processing is

stopped and an alarm displayed.
TRUE In the event of an error, the program processing is not stopped

and no alarm displayed.
Application: User-specific reaction corresponding to the return
value

<RetVal>: Function return value
Data type: INT
Range of val‐
ues:

0, -1, -2, ... -7

Value Meaning
0 No error occurred.
-1 Call of the function without parameters. At least parameter

<CompType> must be specified.
-2 <CompType> identifies an unknown component
-3 <Index1> is less than -1
-4 <Index1> is greater than the configured number of components
-5 <Index1> has a value not equal to -1 when deleting a component

group
-6 <Index2> is less than <Index1>
-7 <Index2> is greater than the configured number of components

Kinematic chains
8.1 Deletion of components (DELOBJ)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 387

8.2 Index determination by means of names (NAMETOINT)
User-specific names are entered in the system variable arrays of type STRING. Based on the
identifier of the system variables and the name, the NAMETOINT() function determines the
index value belonging to the name under which it is stored in the system variable array.

Syntax
<RetVal> = NAMETOINT(<SysVar>,<Name>[,<NoAlarm>])

Meaning

NAMETOINT: Determining the system variable index
<SysVar>: Name of the system variable array of typeSTRING

Data type: STRING
Range of val‐
ues:

Name of all NC system variable arrays of type STRING

<Name>: Character string or name for which the system variable index is to be determined.
Data type: STRING

<NoAlarm>: Alarm suppression (optional)
Data type: BOOL
Default value: FALSE

Value Meaning
TRUE In the event of an error, the program processing is not stopped

and no alarm displayed.
Application: User-specific reaction corresponding to the return
value

FALSE In the event of an error (<RetVal> < 0), program processing is
stopped and an alarm displayed.

<RetVal>: System variable index or error message

Data type: INT
Range of val‐
ues:

 -1 ≤ x ≤ (max. number of configured components -1)

Value Meaning
≥ 0 The sought name has been found under the specified system

variable index.
-1 The sought name has not been found or an error has occurred.

Example

Program code Comment
DEF INT INDEX
$NP_PROT_NAME[27]="Cover"
...
INDEX = NAMETOINT("$NP_PROT_NAME","Cover") ; INDEX == 27

Kinematic chains
8.2 Index determination by means of names (NAMETOINT)

Job Planning
388 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Collision avoidance with kinematic chains 9
Note
Protection areas

The protection areas specified in the following chapters refer to the "Geometric machine
modeling" function

References:
Function Manual, Special Functions, Chapter "Geometric machine modeling"

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 389

9.1 Check for collision pair (COLLPAIR)
The COLLPAIR() function determines whether two protection areas form a collision pair.

Syntax
[<RetVal> =] COLLPAIR(<Name_1>,<Name_2>[,<NoAlarm>)])

Meaning

COLLPAIR: Check whether part of a collision pair
<RetVal>: Function return value

Data type: INT
Value:

≥ 0 The two protection zones form a collision pair.
Return value == collision pair index m (see
$NP_COLL_PAIR)

-1 Either two strings have not been specified or at least
one of the two is the zero string.

-2 The protection zone specified in the first parameter has
not been found.

-3 The protection zone specified in the second parameter
has not been found.

-4 Neither of the two specified protection zones has been
found.

-5 Both specified protection zones have been found, but
not together in a collision pair.

<Name_1>: Name of the first protection zone
Data type: STRING
Range of val‐
ues:

Parameterized protection zone names

<Name_2>: Name of the second protection area
Data type: STRING
Range of val‐
ues:

Parameterized protection zone names

<NoAlarm>: Alarm suppression (optional)
Data type: BOOL
Value: FALSE (Default)

In the event of an error (<RetVal> < 0), the
program processing is stopped and an alarm
displayed.

TRUE In the event of an error, the program process‐
ing is not stopped and no alarm displayed.
Application: User-specific reaction corre‐
sponding to the return value

Collision avoidance with kinematic chains
9.1 Check for collision pair (COLLPAIR)

Job Planning
390 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

9.2 Request recalculation of the machine model of the collision avoidance
(PROTA)

If system variables of the kinematic chain $NK_..., the geometric machine modeling or the
collision avoidance $NP_... are written in the part program, the PROTA procedure must
subsequently be called so that the change becomes effective in the NC-internal machine model
of the collision avoidance.

Syntax
PROTA[(<Par>)]

Meaning

PROTA: Request recalculation of the machine model of the collision avoidance
● Triggers a preprocessing stop.
● Must be alone in the block.

<Par>: Parameter (optional)
Data type: STRING
Value: --- No parameters.

The machine model is recalculated. The states of the pro‐
tection areas are retained.

"R" The machine model is recalculated. The protection areas
are set to their initialization status corresponding to
$NP_INIT_STAT.

Supplementary conditions

Simulation
The PROTA procedure must not be used in part programs in conjunction with the simulation
(simNC).

Example: Avoiding the PROTA call while the simulation is active.

Program code Comment
...
IF $P_SIM == FALSE ; IF simulation not active
 PROTA THEN recalculate collision model
ENDIF ; ENDIF
...

See also
Setting the protection zone status (PROTS) (Page 392)

Collision avoidance with kinematic chains
9.2 Request recalculation of the machine model of the collision avoidance (PROTA)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 391

9.3 Setting the protection zone status (PROTS)
The PROTS() procedure sets the state of protection areas to the specified value.

Syntax
PROTS(<State>[,<Name_1>,...,<Name_n>])

Meaning

PROTS: Sets the state of protection areas
● Must be alone in the block.

<State>: Status to which the specified protection zones are to be set
Data type: CHAR
Value: "A"or "a" Status: Active

"I"or "i" Status: Inactive
"P"or "p" Status: Preactivated or PLC-controlled 1)

"R"or "r" Status: NC-internal value of the initialization
status 2)

<Name_1> ...
<Name_n>:

Name of one or more protection areas that are to be set to the specified status
(optional)
If no name is specified, the specified status is set for all defined protection zones.
Data type: STRING
Range of values: Parameterized protection zone names
Note
The maximum number of protection areas that can be specified as parameters
depends only on the maximum possible number of characters per program line.

1) The activation/deactivation is performed via: DB10.DBX234.0 - DBX241.7
2) The status is set to the NC-internal value of the initialization status, i.e. to the value that the system
variable $NP_INIT_STAT had at the time of the last PROTA() (Page 391) call.

Collision avoidance with kinematic chains
9.3 Setting the protection zone status (PROTS)

Job Planning
392 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

9.4 Determining the clearance of two protection zones (PROTD)
The PROTD() function calculates the clearance of two protection areas.

Function properties:

● The clearance calculation is performed independent of the protection area status (activated,
deactivated, preactivated).

● To calculate the clearance of two protection areas, only protection area elements are used,
which are marked with $NP_USAGE = "C" or "A". Protection area elements of the protection
area, which are marked with $NP_USAGE = "V", are not taken into consideration.

● Protection areas, where all protection area elements of the protection area are marked with
$NP_USAGE = "V", cannot be used for the clearance calculation.

● The clearance calculation is performed with the positions valid at the end of the previous
block.

● Overlays that are included in the main run calculation (e.g. DRF offset or external zero
offset) are included in the clearance calculation with the values valid at the function
interpretation time.

Note
Synchronization

When using the PROTD() function, it is the sole responsibility of the user to synchronize
the main run and preprocessing, if required, with the STOPRE preprocessing stop.

Collision
If there is a collision between the specified protection areas, the function returns a clearance
of 0.0. There is a collision if both the protection areas touch or intersect each other.

The safety clearance for the collision check (MD10622 $MN_COLLISION_SAFETY_DIST) is
not taken into account in the clearance calculation.

Syntax
[<RetVal> =] PROTD([<Name_1>],[<Name_2>],VAR <Vector>[,<System>])

Meaning

PROTD: Calculates the clearance of the two specified protection areas.
● Must be alone in the block.

<RetVal>: Function return value: Absolute clearance value of the two protection areas or 0.0
with collision (see above: Collision paragraph)
Data type: REAL
Range of values: 0.0 ≤ x ≤ +max. REAL value

Collision avoidance with kinematic chains
9.4 Determining the clearance of two protection zones (PROTD)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 393

<Name_1>,
<Name_2>:

Names of the two protection areas whose clearance is to be calculated (optional)
Data type: STRING
Range of values: Parameterized protection area names
Default value: "" (empty string)

If no protection areas have been specified, the function calcu‐
lates the current smallest clearance from all the activated and
preactivated protection areas in the collision model.

<Vector>: Return value: 3-dimensional clearance vector from protection area <Name_2> to
protection area <Name_1> with:
● <Vector>[0]: X coordinate in the world coordinate system
● <Vector>[1]: Y coordinate in the world coordinate system
● <Vector>[2]: Z coordinate in the world coordinate system
For collision: <Vector> == zero vector
Data type: VAR REAL [3]
Range of values: <Vector> [n]: 0.0 ≤ x ≤ ±max. REAL value

<System>: Measuring system (inch/metric) for clearance and clearance vector (optional)
Data type: BOOL
Value: FALSE (Default) Measuring system corresponding to the cur‐

rently active G command from G group 13
(G70, G71, G700, G710).

TRUE Measuring system corresponding to the set
basic system:
MD52806 $MN_ISO_SCALING_SYSTEM

Collision avoidance with kinematic chains
9.4 Determining the clearance of two protection zones (PROTD)

Job Planning
394 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Transformation with kinematic chains 10
10.1 Activating a transformation (TRAFOON)

A transformation defined with kinematic chains is activated with the predefined TRAFOON
procedure. The call must be alone in a block.

Note

Alternatively, a transformation defined with kinematic chains can also be activated via
conventional NC commands, such as TRAORI or TRANSMIT. For this purpose, an appropriate
value, not equal to zero, must be entered in the $NT_TRAFO_INDEX system variable.

For further information on $NT_TRAFO_INDEX see "System Variables List Manual".

Syntax
TRAFOON(<Trafoname>,<Diameter>,<k>)

Meaning

TRAFOON: Procedure for activating a transformation defined with kinematic chains
<Trafoname>: Name of the transformation data set

Data type: STRING
Range of val‐
ues:

All names of transformation data sets defined via $NK_NAME

Note:
The name of the transformation data set must be unique. It must only occur once
in $NT_NAME.

<Diameter>: Reference or working diameter (TRACYL only)
Data type: REAL
The value must be > 1.

<k>: Defines the use of the groove side offset (TRACYL only).
Data type: BOOL
Value:

FALSE Without groove side offset
TRUE With groove side offset

Corresponds to the TRACYL transformation type 514 (groove side offset can be
programmed). If <k> is not specified, the parameterized setting of bit 10 in
$NT_CNTRL[<n>] applies.

Example

Program code Comment
TRAFOON["Trans_1"] Activates the transformation with the name Trans_1.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 395

10.2 Modifying the orientation transformation after the machine
measurement (CORRTRAFO)

For machines with orientation transformations that were defined by means of kinematic chains,
the user can use the predefined CORRTRAFO function in order to modify the offset vectors
or the direction vectors of the orientation axes in the kinematic model of the machine after a
machine measurement.

Syntax
<Corr_Status> = CORRTRAFO(<Corr_Vect>, <Corr_Index>, <Corr_Mode> [,
<No_Alarm>])

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
396 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

CORRTRAFO: Function call

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 397

<Corr_Status>: Function return value
Data type: INT
Values: 0 The function was executed without an error.
 1 No transformation is active.
 2 The currently active transformation is not an orientation trans‐

formation.
 3 The active orientation transformation was not defined with kin‐

ematic chains.
 10 The <Corr_Index> call parameter is negative.
 11 The <Corr_Mode> call parameter is negative.
 12 Invalid reference to a section of a subchain (unit position of

<Corr_Index>). The value must not be greater than the num‐
ber of orientation axes in the subchain.

 13 Invalid reference to the orientation axis of a subchain (unit po‐
sition of <Corr_Index>). The value must be less than the
number of orientation axes in the subchain.

 14 Invalid reference to a subchain (tens position of
<Corr_Index>). Only the values 0 and 1 are permissible (ref‐
erence to part or tool chain). This error number occurs if the
subchain to which <Corr_Index> refers does not exist.

 15 There is no correction element in the section referred to with
the <Corr_Index> parameter ($NT_CORR_ELEM_P or
$NT_CORR_ELEM_T).

 20 Invalid correction mode (unit position of <Corr_Mode>). Only
the values 0 and 1 are permissible.

 21 Invalid correction mode (tens and/or hundreds position of
<Corr_Mode>). Only the unit position can be not equal to zero
when writing an axis direction.

 30 The hundreds position of <Corr_Mode> is invalid. Only the
values 0 and 1 are permissible.

 31 The thousands position of <Corr_Mode> is invalid. Only the
values 0 and 1 are permissible.

 40 The direction vector that is to be taken as axis direction is the
zero vector. This error can only happen if the thousands posi‐
tion of <Corr_Mode> is equal to 0. If the thousands position
of this parameter is equal to 1 (monitoring of the maximum
correction deactivated), the zero vector can also be written.

 41 For the correction of an offset vector, the difference to the cur‐
rent value in at least one coordinate is greater than the maxi‐
mum value specified by the setting data SD41610
$SN_CORR_TRAFO_LIN_MAX. The <Corr_Vect> parame‐
ter will be overwritten by an error vector. This also applies when
the processing is aborted with alarm (see <No_Alarm> pa‐
rameter).
In the components whose correction value has exceeded the
permissible limit, the error vector has the difference, with the
correct sign, between the determined correction value and the
limit.
The content of the components that have not exceeded their
limit is zero.

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
398 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

 42 For the correction of a direction vector, the angular displace‐
ment compared to the current direction is greater than the
maximum value specified by the setting data SD41611
$SN_CORR_TRAFO_DIR_MAX.

 43 The attempt to write a system variable was rejected because
of missing write rights.

<Corr_Vect>: Correction vector
The content of the correction vector is defined by the following parameters
<Corr_Index> and <Corr_Mode>.
If <Corr_Status> = 41, the content of the vector is overwritten (see above).
Data type: REAL

<Corr_Index>: Section whose correction element is to be modified /
index of the orientation axis whose direction vector is to be modified
Data type: INT
The <Corr_Index> parameter is decimal coded (unit to tens position):
Unit
position:

Contains the index of the section or the orientation axis in the sub‐
chain.

Tens
position:

Refers to the subchain.
0x Workpiece chain
1x Tool chain

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 399

<Corr_Mode>: Correction mode
Data type: INT
The <Corr_Index> parameter is decimal coded (unit to thousands position):
Unit
position:

Specifies which element is to be corrected.
xxx0 Correction of a linear offset vector
xxx1 Correction of the direction vector of an orientation axis

Tens
position:

Specifies how the correction element to which the content of
<Corr_Index> refers, is to be modified.

xx0x The correction vector is written immediately to the correc‐
tion element.
This variant can be used to immediately write the correction
element without the index <n> of the relevant system data
($NK_OFF_DIR[<n>, ...]) having to be known.

xx1x As 0, but with the difference that the transferred correction
value is interpreted in world coordinates.
A difference between variants 0 and 1 can always occur
when the kinematic chain in the initial state (positions of all
orientation axes equal to 0) contains other rotations.

xx2x As 1, but with the difference that the correction value refers
to the entire section, i.e. a value is entered in the correction
element so that the entire section reaches the length de‐
fined by the correction value.

Note:
The values 1 and 2 are not permissible when writing the direction
vector of an orientation axis.

Hundreds
position:

Specifies how the content of the <Corr_Vect> parameter is to be
interpreted.

x0xx The transferred correction vector <Corr_Vect> contains
the entire new length of the correction element or the sec‐
tion to which the <Corr_Index> in conjunction with the
tens position of <Corr_Mode> refers (absolute correction).

x1xx The transferred correction vector <Corr_Vect> only con‐
tains the difference compared to the current length of the
correction element or the section to which the
<Corr_Index> in conjunction with the tens position of
<Corr_Mode> refers (incremental correction).

Note:
For the correction of the direction vector of an orientation axis, the
content of the hundreds position must be 0.

Thou‐
sands
position:

Specifies whether the correction is to be limited by the following
maximum value:
● SD41610 $SN_CORR_TRAFO_LIN_MAX

or
● SD41611 $SN_CORR_TRAFO_DIR_MAX

0xxx Monitoring of the maximum correction is active.
1xxx Monitoring of the maximum correction is not active.

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
400 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<No_Alarm>: Behavior in the event of an error (return value > 0) (optional)
Data type: BOOL
Value: FALSE

(default)
In the event of an error, the program processing is stop‐
ped and alarm 14103 is displayed.

TRUE In the event of an error, the program processing is not
stopped and no alarm is displayed.
Application: User-specific reaction corresponding to the
return value

Note

In the event of an error when the function is called, either an alarm is output or an error number
returned (see <No_Alarm> parameter), so that the user can respond in a suitable way to the
error state. The cause of the error is described in more detail through an alarm parameter. An
error number returned instead of an alarm is identical to the alarm parameter.

Further information on CORRTRAFO
The kinematic structure of a machine with orientation transformation is described by one or
two kinematic chains (subchains), starting from the zero point of the world coordinate system.
One of the two chains, the tool chain, ends at the reference point of the tool, the other chain,
the workpiece chain ends in the zero point of the basic coordinate system.

The CORRTRAFO function measures lever arm lengths and axis directions on machines with
orientation transformation and writes these values into special correction elements. A
kinematic chain is described, for example, with elements of the type OFFSET, which are
defined via $ NK_TYPE.

CORRTRAFO works with sections
The two subchains can each be divided into a maximum of four sections:

● Section 1 begins at the starting point of the chain and ends at the first orientation axis.

● Section 2 is the section between orientation axis 1 and orientation axis 2.

● Section 3 is the section between orientation axis 2 and orientation axis 3.

● Section 4 is the section between orientation axis 3 and the end of the tool or workpiece
chain.

Each section may contain constant chain elements of the type OFFSET or ROT_CONST.

The following figure shows an orientation transformation with 2 orientation axes.

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 401

Figure 10-1 CORRTRAFO example

The sections are clearly defined: If you run through the kinematic subchain from the starting
point to the end point, the first section has the index 0, the next the index 1, and so on. The
index of the last section is then always equal to the number of orientation axes.

Correction elements
A reference can be made to a constant kinematic chain element (chain element of the type
$NK_TYPE[<n>] = "OFFSET") in each section with the $NT_CORR_ELEM_T[<n>, 0 ... 3] or
$NT_CORR_ELEM_P[<n>, 0 ... 3] system variables. The correction values that were
determined during the machine measurement are written to these elements with the
CORRTRAFO function.

Example with transformation index = 1:
● $NT_CORR_ELEM_T[1,0] = "C_AXIS_OFFSET"; Offset of the C axis (orientation axis 1)

in section 1 is defined as correction element.

● $NT_CORR_ELEM_T[1,1] = "B_AXIS_OFFSET"; Offset of the B axis (orientation axis 2) in
section 2 is defined as correction element.

● $NT_CORR_ELEM_T[1,2] = "BASE_TOOL_OFFSET"; Offset of the B axis from the tool
reference point in section 3 is defined as correction element.

The sequence of the references in $NT_CORR_ELEM_T/P[<n>, 0 ... 3] must correspond to
the sections described above, i.e. only one chain element can be in $NT_CORR_ELEM_T/P
[<n>, 0] which is before the first orientation axis, etc.

The CORRTRAFO function writes the values determined by measuring the machine into the
correction elements defined in this way. The modification of the correction values is defined
in CORRTRAFO via the <Corr_Mode> parameter.

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
402 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Closing a chain
If bit 7 or bit 8 are set in the $NT_CNTRL[<n>] system variable, additional constant chain
elements that establish a connection from the end point of the chain to the machine zero point
are automatically inserted internally at the end of the workpiece chain (bit 7) or before the
starting point of the tool chain (bit 8) ("close chain").

These automatically inserted elements cannot be written externally, only read (see the
$AC_TRAFO_CORR_ELEM_P/T system variables).

Point to close the tool chain
If the $NT_CLOSE_CHAIN_T system variable is not empty, the tool chain is not closed at the
end point of the chain, but rather at the end point of the designated chain element. Other chain
elements that are behind this point result in a corresponding work offset when the
transformation is activated.

Index of an orientation axis
In addition to the constants offsets between the orientation axes, the direction vectors of the
orientation axes can also be written with the CORRTRAFO function. The index of an orientation
axis is the index that results when the kinematic subchain is run through from the origin to the
end, where the count starts at zero. The index of an orientation axis is therefore always the
same as the index of the preceding section.

The index of an orientation axis can also be determined with the $AC_TRAFO_ORIAX_LOC
system variable.

Maximum permissible change of a chain element
The maximum permissible change of a chain element can be limited by the two setting data
SD41610 $SN_CORR_TRAFO_LIN_MAX for offset vectors and SD41611
$SN_CORR_TRAFO_DIR_MAX for direction vectors of the orientation axes. SD41610
$SN_CORR_TRAFO_LIN_MAX specifies the maximum amount by which each individual
vector component can be changed with regard to its reference value. SD41611
$SN_CORR_TRAFO_DIR_MAX specifies the maximum angle by which the direction of the
axis vector can be changed with regard to its reference value. The reference value is always
the corresponding value that is active in the transformation that is active when CORRTRAFO
is called. This means that the changed content of the kinematic data may have no effect on
the method of operation of the CORRTRAFO function after the activation of the transformation.

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 403

Transformation with kinematic chains
10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

Job Planning
404 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Tool offsets 11
11.1 Offset memory

Structure of the offset memory
Every data field can be invoked with a T and D number (except "Flat D No."); in addition to the
geometrical data for the tool, it contains other information such as the tool type.

Flat D number structure
The "Flat D No. structure" is used if tool management takes place outside the NC. In this case,
the D numbers are created with the corresponding tool compensation blocks without
assignment to tools.

T can continue to be programmed in the part program. However, this T has no reference to
the programmed D number.

User cutting edge data
User cutting edge data can be configured via machine data. Please refer to the machine
manufacturer's instructions.

Tool parameters

Note
Individual values in the offset memory

The individual values of the offset memory P1 to P25 can be read and written by the program
via system variables. All other parameters are reserved.

The tool parameters $TC_DP6 to $TC_DP8, $TC_DP10 and $TC_DP11 as well as $TC_DP15
to $TC_DP17, $TC_DP19 and $TC_DP20 have another meaning depending on tool type.

Tool parameter number (DP) Meaning of system variables Remark
$TC_DP1 Tool type For overview see list
$TC_DP2 Cutting edge position Only for turning tools
Geometry Length compensation
$TC_DP3 Length 1 Allocation to
$TC_DP4 Length 2 Type and level
$TC_DP5 Length 3
Geometry Radius
$TC_DP6 1)

$TC_DP6 2)
Radius 1 / length 1
diameter d

Milling/turning/grinding tool
Slotting saw

$TC_DP7 1)

$TC_DP7 2)
Length 2 / corner radius, tapered milling tool
Slot width b corner radius

Milling tools
Slotting saw

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 405

Tool parameter number (DP) Meaning of system variables Remark
$TC_DP8 1)

$TC_DP8 2)
Rounding radius 1 for milling tools
projecting length k

Milling tools
Slotting saw

$TC_DP9 1) 3) Rounding radius 2 Reserved
$TC_DP10 1) Angle 1 face end of tool Tapered milling tools
$TC_DP11 1) Angle 2 tool longitudinal axis Tapered milling tools
Wear Length and radius compensation
$TC_DP12 Length 1
$TC_DP13 Length 2
$TC_DP14 Length 3
$TC_DP15 1)

$TC_DP15 2)
Radius 1 / length 1
diameter d

Milling/turning/grinding tool
Slotting saw

$TC_DP16 1)

$TC_DP16 3)
Length 2 / corner radius, tapered milling tool, slot width
b corner radius

Milling tools
Slotting saw

$TC_DP17 1)

$TC_DP17 2)
Rounding radius 1 for milling tools
projecting length k

Milling / 3D face milling
Slotting saw

$TC_DP18 1) 3) Rounding radius 2 Reserved
$TC_DP191) Angle 1 face end of tool Tapered milling tools
$TC_DP201) Angle 2 tool longitudinal axis Tapered milling tools
Tool base dimension/ adapt‐
er

Length offsets

$TC_DP21 Length 1
$TC_DP22 Length 2
$TC_DP23 Length 3
Technology
$TC_DP24 Clearance angle Only for turning tools
$TC_DP25 Reserved

1) Also applies with milling tools for 3D face milling
2) For slotting saw tool type
3) Reserved (is not used by SINUMERIK 840D sl)

Remarks
Several entry components are available for geometric variables (e.g. length 1 or radius). These
are added together to produce a value (e.g. total length 1, total radius), which is then used for
the calculations.

Offset values not required must be assigned the value zero.

Tool parameters $TC-DP1 to $TC-DP23 with contour tools

Note

The tool parameters not listed in the table, such as $TC_DP7, are not evaluated, i.e. their
content is meaningless.

Tool offsets
11.1 Offset memory

Job Planning
406 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Tool parameter number
(DP)

Meaning Cutting Dn Remark

$TC_DP1 Tool type 400 to 599
$TC_DP2 Cutting edge position
Geometry Length compensation
$TC_DP3 Length 1
$TC_DP4 Length 2
$TC_DP5 Length 3
Geometry Radius
$TC_DP6 Radius
Geometry Limit angle
$TC_DP10 Minimum limit angle
$TC_DP11 Maximum limit angle
Wear Length and radius compensation
$TC_DP12 Wear length 1
$TC_DP13 Wear length 2
$TC_DP14 Wear length 3
$TC_DP15 Wear radius
Wear Limit angle
$TC_DP19 Wear min. limit angle
$TC_DP20 Wear max. limit angle
Tool base dimension/
adapter

Length offsets

$TC_DP21 Length 1
$TC_DP22 Length 2
$TC_DP23 Length 3

Basic value and wear value
The resultant values are each a total of the basic value and wear value (e.g. $TC_DP6 +
$TC_DP15 for the radius). The basic measurement ($TC_DP21 – $TC_DP23) is also added
to the tool length of the first cutting edge. All the other parameters, which may also impact on
effective tool length for a standard tool, also affect this tool length (adapter, orientational
toolholder, setting data).

Limit angles 1 and 2
Limit angles 1 and 2 each relate to the vector of the cutting edge center point to the cutting
edge reference point and are counted clockwise.

Tool offsets
11.1 Offset memory

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 407

11.2 Additive offsets

11.2.1 Selecting additive offsets (DL)
Additive offsets can be considered as process offsets that can be programmed in the
machining. They refer to the geometrical data of a cutting edge and are therefore a component
of tool cutting data.

Data of an additive offset is addressed using a DL number (DL: Locationdependent; offsets
regarding the location of use) and entered via the user interface.

Application
Dimension errors caused be the location of use can be compensated using additive offsets.

Syntax
DL=<number>

Meaning

DL: Command to activate an additive offset
<number>: The additive tool offset data to be activated is specified using the <number> param‐

eter

Note

The machine data is used to define the number of additive offsets and also activate them
(→ carefully observe the machine OEM's data!).

Tool offsets
11.2 Additive offsets

Job Planning
408 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
The same cutting edge is used for two bearing seats:

Program code Comment
N110 T7 D7 ; The revolver is positioned to location 7. D7 and DL=1

are activated and moved through in the next block.
N120 G0 X10 Z1
N130 G1 Z-6
N140 G0 DL=2 Z-14 ; DL=2 is activated in addition to D7 and is moved through

in the next block.
N150 G1 Z-21
N160 G0 X200 Z200 ; Approach tool change point.
...

11.2.2 Specify wear and setup values ($TC_SCPxy[t,d], $TC_ECPxy[t,d])
Wear and setting-up values can be read and written to using system variables. The logic is
based on the logic of the corresponding system variables for tools and tool noses.

System variables

$TC_SCPxy[<t>,<d>]: Wear values that are assigned to the particular geometry parameters
via xy, whereby x corresponds to the number of the wear value and y
establishes the reference to the geometry parameter.

$TC_ECPxy[<t>,<d>]: Setting-up values that are assigned to the particular geometry param‐
eter via xy, whereby x corresponds to the number of the setting-up
value and y establishes the reference to the geometry parameter.

<t>: T number of the tool
<d>: D number of the tool cutting edge

Tool offsets
11.2 Additive offsets

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 409

Note

The defined wear and setup values are added to the geometry parameters and the other offset
parameters (D numbers).

Example
The wear value of length 1 is set to the value of 1.0 for the cutting edge <d> of tool <t>.

Parameter: $TC_DP3 (length 1, with turning tools)

Wear values: $TC_SCP13 to $TC_SCP63

Setup values: $TC_ECP13 to $TC_ECP63

$TC_SCP43 [<t>,<d>] = 1.0

11.2.3 Delete additive offsets (DELDL)
The DELDL command deletes the additive offsets for the cutting edge of a tool (to release
memory space). Both the defined wear values and the setup values are deleted.

Syntax
DELDL[<t>,<d>]
DELDL[<t>]
DELDL
<Status>=DELDL[<t>,<d>]

Meaning

DELDL: Command to delete additive offsets
<t>: T number of the tool
<d>: D number of the tool cutting edge
DELDL[<t>,<d>]: All additive offsets of the cutting edges <d> of the tool <t> are deleted.
DELDL[<t>]: All additive offsets of all cutting edges of tool <t> are deleted.
DELDL: All additive offsets of all cutting edges of all tools of the TO unit are deleted

(for the channel in which the command is programmed).
<Status>: Delete status

Value: Meaning:
0 Deletion was successfully completed.
- Offsets have not been deleted (if the parameter settings specify ex‐

actly one tool edge), or not deleted completely (if the parameter
settings specify several cutting edges).

Tool offsets
11.2 Additive offsets

Job Planning
410 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note

Wear and setting-up values of active tools cannot be deleted (essentially the same as the
delete behavior of D or tool data).

Tool offsets
11.2 Additive offsets

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 411

11.3 Special handling of tool offsets
The evaluation of the sign for tool length and wear can be controlled using setting data
SD42900 to SD42960.

The same applies to the behavior of the wear components when mirroring geometry axes or
changing the machining plane, and also to temperature compensation in tool direction.

Wear values:
If reference is made to wear values in the following, then this should be understood as the sum
of the actual wear values ($TC_DP12 to $TC_DP20) and the sum offsets with the wear values
($SCPX3 to $SCPX11) and setting-up values ($ECPX3 to $ECPX11).

For more information about summed offsets, refer to:
References:
Function Manual, Tool Management

Setting data

SD42900 $SC_MIRROR_TOOL_LENGTH Mirroring of tool-length components and compo‐
nents of the tool base dimension.

SD42910 $SC_MIRROR_TOOL_WEAR Mirroring of wear values of the tool-length compo‐
nents.

SD42920 $SC_WEAR_SIGN_CUTPOS Evaluating the sign of the wear components as a
function of the cutting edge position.

SD42930 $SC_WEAR_SIGN Inverts the sign of wear dimensions.
SD42935 $SC_WEAR_TRANSFORM Transformation of wear values.
SD42940 $SC_TOOL_LENGTH_CONST Assignment of tool length components to geome‐

try axes.
SD42950 $SC_TOOL_LENGTH_TYPE Assignment of the tool length components inde‐

pendent of tool type.
SD42960 $SC_TOOL_TEMP_COMP Temperature compensation value in tool direction.

Also operative when tool orientation is program‐
med.

References
Function Manual Basic Functions; Tool Offset (W1)

Further information

Activation of modified setting data
When the setting data described above is modified, the tool components are not reevaluated
until the next time a tool edge is selected. If a tool is already active and the data of this tool is
to be reevaluated, the tool must be selected again.

Tool offsets
11.3 Special handling of tool offsets

Job Planning
412 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The same applies in the event that the resulting tool length is modified due to a change in the
mirroring status of an axis. The tool must be selected again after the mirror command, in order
to activate the modified tool-length components.

Orientable toolholders and new setting data
Setting data SD42900 to SD42940 has no effect on the components of an active toolholder
with orientation capability. However, the calculation with an orientable toolholder always allows
for a tool with its total resulting length (tool length + wear + tool base dimension). All
modifications initiated by the setting data are included in the calculation of the resulting total
length, i.e. vectors of the orientable toolholder are independent of the machining plane.

Note

When orientable toolholders are used, it is frequently practical to define all tools for a non-
mirrored basic system, even those which are only used for mirrored machining. When
machining with mirrored axes, the toolholder is then rotated such that the actual position of
the tool is described correctly. All tool-length components then automatically act in the correct
direction, dispensing with the need for control of individual component evaluation via setting
data, depending on the mirroring status of individual axes.

Further application options
The use of orientable toolholder functionality can also be useful if there is no physical option
of turning tools on the machine, even though tools with different orientations are permanently
installed. Tool dimensioning can then be performed uniformly in a basic orientation, where the
dimensions relevant for machining are calculated according to the rotations of a virtual
toolholder.

11.3.1 Mirroring of tool lengths
When setting data SD42900 $SC_MIRROR_TOOL_LENGTH and
SD42910 $SC_MIRROR_TOOL_WEAR are not set to zero, then you can mirror the tool length
components and components of the basis dimensions with wear values and their associated
axes.

Tool offsets
11.3 Special handling of tool offsets

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 413

SD42900 $SC_MIRROR_TOOL_LENGTH
Setting data not equal to zero:

The tool length components ($TC_DP3, $TC_DP4 and $TC_DP5) and the components of the
basis dimensions ($TC_DP21, $TC_DP22 and $TC_DP23) are mirrored against their
associated axes, also mirrored – by inverting the sign.

The wear values are not mirrored. If these are also be be mirrored, then setting data
SD42910 $SC_MIRROR_TOOL_WEAR must be set.

SD42910 $SC_MIRROR_TOOL_WEAR
Setting data not equal to zero:

The wear values of the tool length components - whose associated axes are mirrored - are
also mirrored by inverting the sign.

11.3.2 Wear sign evaluation
When setting data SD42920 $SC_WEAR_SIGN_CUTPOS and SD42930 $SC_WEAR_SIGN
are set not equal to zero, then you can invert the sign evaluation of the wear components.

SD42920 $SC_WEAR_SIGN_CUTPOS
Setting data not equal to zero:

For tools with the relevant cutting edge position (turning and grinding tools, tool types 400),
then the sign evaluation of the wear components in the machining plane depends on the cutting
edge position. This setting data is of no significance for tool types without relevant cutting edge
position.

In the following table, the dimensions, whose sign is inverted using SD42920 (not equal to
zero), are designed using an X:

Cutting edge position Length 1 Length 2
1
2 X
3 X X
4 X
5
6
7 X
8 X
9

Note

The sign evaluation using SD42920 and SD42910 are independent of one another. If, for
example, the sign of a dimension is changed using both setting data, then the resulting sign
remains unchanged.

Tool offsets
11.3 Special handling of tool offsets

Job Planning
414 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

SD42930 $SC_WEAR_SIGN
Setting data not equal to zero:

Inverts the sign of all wear dimensions. This affects both the tool length and other variables
such as tool radius, rounding radius, etc.

If a positive wear dimension is entered, the tool becomes "shorter" and "thinner", refer to
Chapter "tool offset, special handling", activating changed setting data".

11.3.3 Coordinate system of the active machining operation (TOWSTD, TOWMCS,
TOWWCS, TOWBCS, TOWTCS, TOWKCS)

Depending on the kinematics of the machine or the availability of an orientable tool carrier, the
wear values measured in one of these coordinate systems are converted or transformed to a
suitable coordinate system.

Coordinate systems of active machining operation
The following coordinate systems produce tool length offsets which the tool length wear
component incorporates in an active tool via the corresponding G command of Group 56:

● Machine coordinate system (MCS)

● Basic coordinate system (BCS)

● Workpiece coordinate system (WCS)

● Tool coordinate system (TCS)

● Tool coordinate system of kinematic transformation (KCS)

Syntax
TOWSTD
TOWMCS
TOWWCS
TOWBCS
TOWTCS
TOWKCS

Meaning

TOWSTD: Initial setting value for offsets in tool length wear value
TOWMCS: Offsets in tool length in MCS
TOWWCS: Offsets in tool length in WCS
TOWBCS: Offsets in tool length in BCS
TOWTCS: Offsets in tool length at tool carrier reference point (orientable tool carrier)
TOWKCS: Compensations of tool length for tool head (kinematic transformation)

Tool offsets
11.3 Special handling of tool offsets

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 415

Further information

Distinguishing features
The most important distinguishing features are shown in the following table:

G command Wear value Active orientable tool carrier
TOWSTD: Initial value, tool length Wear values are subject to rotation.
TOWMCS: Wear value in MCS. TOWMCS is iden‐

tical to TOWSTD if a tool carrier that
can be orientated is not active.

It only rotates the vector of the resul‐
tant tool length without taking into
account the wear.

TOWWCS: The wear value is converted to the
MCS in the WCS.

The tool vector is calculated as for
TOWMCS without taking into account
the wear.

TOWBCS: The wear value is converted to the
MCS in the BCS.

The tool vector is calculated as for
TOWMCS without taking into account
the wear.

TOWTCS: The wear value is converted to the
MCS in the workpiece coordinate sys‐
tem.

The tool vector is calculated as for
TOWMCS without taking into account
the wear.

TOWWCS, TOWBCS, TOWTCS: The wear vector is added to the tool vector.

Linear transformation
The tool length can be defined meaningfully in the MCS only if the MCS is generated by linear
transformation from the BCS.

Non-linear transformation
For example, if with TRANSMIT a non-linear transformation is active, then when specifying
the MCS as requested coordinate system, BCS is automatically used.

No kinematic transformation and no orientable tool carrier
If neither a kinematic transformation nor an orientable tool carrier is active, then all the other
four coordinate systems (except for the WCS) are combined. It is then only the WCS, which
is different to the other systems. Since only tool lengths need to be evaluated, translations
between the coordinate systems are irrelevant.

References:
For more information on tool compensation, see:
Function Manual Basic Functions; Tool Offset (W1)

Inclusion of wear values in calculation
The setting data SD42935 $SC_WEAR_TRANSFORM defines which of the three wear
components:

● Wear

● Total offsets fine

● Total offsets coarse

Tool offsets
11.3 Special handling of tool offsets

Job Planning
416 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

should be subject to a rotation using adapter transformation or a tool carrier that can be
orientated if one of the following G commands is active:

● TOWSTD
Basic position. For corrections in the tool length.

● TOWMCS
Wear values in the machine coordinate system (MCS).

● TOWWCS
Wear values in the workpiece coordinate system (WCS).

● TOWBCS
Wear values in the basic coordinate system (BCS).

● TOWTCS
Wear values in the tool coordinate system at the tool carrier fixture (T tool carrier reference).

● TOWKCS
Wear values in the coordinate system of the tool head for kinematic transformation.

Note

Evaluation of individual wear components (assignment to geometry axes, sign evaluation)
is influenced by the following factors:
● Active plane
● Adapter transformation
● Setting data:

– SD42910 $SC_MIRROR_TOOL_WEAR
– SD42920 $SC_WEAR_SIGN_CUTPOS
– SD42930 $SC_WEAR_SIGN
– SD42940 $SC_TOOL_LENGTH_CONST
– SD42950 $SC_TOOL_LENGTH_TYPE

11.3.4 Tool length and plane change
When setting data SD42940 $SC_TOOL_LENGTH_CONST is set not equal to zero, then you
can assign the tool length components – such as lengths, wear and basic dimension – to the
geometry axes for turning and grinding tools when changing the plane.

SD42940 $SC_TOOL_LENGTH_CONST
Setting data not equal to zero:

The assignment of tool length components (length, wear and tool base dimension) to geometry
axes does not change when the machining plane is changed (G17 - G19).

The following table shows the assignment of tool length components to geometry axes for
turning and grinding tools (tool types 400 to 599):

Content Length 1 Length 2 Length 3
17 Y X Z
*) X Z Y

Tool offsets
11.3 Special handling of tool offsets

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 417

19 Z Y X
-17 X Y Z
-18 Z X Y
-19 Y Z X

*) Each value not equal to 0, which is not equal to one of the six listed values, is evaluated as value 18.

The following table shows the assignment of tool length components to geometry axes for all
other tools (tool types < 400 or > 599):

Operating plane Length 1 Length 2 Length 3
*) Z Y X
18 Y X Z
19 X Z Y
-17 Z X Y
-18 Y Z X
-19 X Y Z

*) Each value not equal to 0, which is not equal to one of the six listed values, is evaluated as value 17.

Note

For representation in tables, it is assumed that geometry axes up to 3 are designated with X,
Y, Z. The axis order and not the axis identifier determines the assignment between a
compensation and an axis.

Tool offsets
11.3 Special handling of tool offsets

Job Planning
418 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.4 Online tool offset

11.4.1 Defining a polynomial function (FCTDEF)
Certain dressing strategies (e.g. dressing roller) are characterized by the fact that the grinding
wheel radius is continuously (linearly) reduced as the dressing roller is fed in. This strategy
requires a linear function between infeed of the dressing roller and writing the wear value of
each length. The linear function is defined using the predefined procedure FCTDEF(...) for up
to third order polynomial functions.

Straight line equation
y = f(x) = a0 + a1*x1

a1: Gradient of the straight line, with a1= Δx / Δy

a0: Shift of the straight line along the X axis with a0 = -a1 * XV

Syntax
FCTDEF(<Func>,<LLimit>,<ULimit>,<a0>,<a1>,<a2>,<a3>)

Meaning

FCTDEF(...): Defining a polynomial function for PUTFTOCF(...):
y = f(x) = a0 + a1*x + a2*x2 + a3*x3

<Func>: Function number
Data type: INT
Range of values: 1, 2, 3

<LLimit>: Lower limit value
Data type: REAL

<ULimit>: Upper limit value
Data type: REAL

<a0>,<a1>,<a2>,<a3>: Coefficients of polynomial function
Data type: REAL

Tool offsets
11.4 Online tool offset

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 419

Example

Definitions
● Function number: 1

● Lower and upper limit value: -100, 100

● Gradient of the characteristic: a1 = 1

● The operating point should be located at the center of the characteristic. Based on the
setpoint position of axis XA in the WCS at the instant that the function is defined in the NC
program, the characteristic must be shifted in the negative Y direction: a0 = -a1 * XAD = -1
* $AA_IW

● a2 = a3 = 0

Characteristic

UL Upper limit value
LL Lower limit value
XAD Setpoint of axis XA at the time that the function is defined in the NC program

Programming

Program code Comment
FCTDEF(1,-100,100,-$AA_IW[XA],1) ; Function definition

11.4.2 Write online tool offset continuously (PUTFTOCF)
Using the predefined procedure PUTFTOCF(...), an online tool offset is executed based on a
polynomial function previously defined with FCTDEF(...) (Page 419).

Note

The online tool offset can also be realized using a synchronized action.

For further information, see Function Manual Synchronized Actions.

Tool offsets
11.4 Online tool offset

Job Planning
420 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax
PUTFTOCF(<Func>,<RefVal>,<ToolPar>,<Chan>,<Sp>)

Meaning

PUTFTOCF(...): Write online tool offset, continuously block-by-block using the polynomial function
defined with FCTDEF(...)

<Func>: Function number, defined in the function definition with FCTDEF(...)
Data type: INT
Range of val‐
ues:

1, 2, 3

<RefVal>: Reference value, from which the offset is to be derived (e.g. setpoint of an axis).
Data type: VAR REAL

<ToolPar>: Number of the wear parameter (length 1, 2 or 3) in which the offset value is to be
included.
Data type: INT

<Chan>: Number of the channel in which the online tool offset is to take effect.
Note:
Only required if the offset is not to take effect in the active channel.
Data type: INT

<Sp>: Number of the spindle for which the online tool offset is to take effect.
Note:
Only required if the offset is to be applied to a non-active grinding wheel rather
than the active tool that is currently in use.
Data type: INT

11.4.3 Write online tool offset, discrete (PUTFTOC)

Function
Using the predefined procedurePUTFTOC(...), an online tool offset is executed based on a
fixed offset value.

Syntax
PUTFTOC(<CorrVal>,<ToolPar>,<Chan>,<Sp>)

Meaning

PUTFTOC(...): Write online tool offset
<CorrVal>: Offset value, which is added to the wear parameter.

Data type: REAL
<ToolPar>: Number of the wear parameter (length 1, 2 or 3) in which the offset value is to be

included.
Data type: INT

Tool offsets
11.4 Online tool offset

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 421

<Chan>: Number of the channel in which the online tool offset is to take effect.
Note:
Only required if the offset is not to take effect in the active channel.
Data type: INT

<Sp>: Number of the spindle for which the online tool offset is to take effect.
Note:
Only required if the offset is to be applied to a non-active grinding wheel rather
than the active tool that is currently in use.
Data type: INT

11.4.4 Activate/deactivate online tool offset (FTOCON/FTOCOF)
The online tool offset is activated or deactivated using the G commands FTOCON and
FTOCOF.

Syntax

FTOCON
...
FTOCOF

Meaning

FTOCON: Activate online tool offset
The command must be programmed in the channel in which the online tool offset
is to be activated.

FTOCOF: Deactivate online tool offset
The command must be programmed in the channel in which the online tool offset
is to be deactivated.
Note:
On FTOCOF, the axis does not move further out for the tool offset. However, the
value calculated with PUTFTOC/PUTFTOCF remains in the cutting-specific offset
data.
To finally deactivate the online tool offset, the tool (T...) must again be selected/
deselected after FTOCOF.

Tool offsets
11.4 Online tool offset

Job Planning
422 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.5 3D tool radius compensation

11.5.1 Selecting 3D tool radius compensation for 3D circumferential milling (CUT3DC,
CUT3DCD, ISD)

The 3D tool radius compensation (3D TRC) for the 3D circumferential milling without taking
limitation surfaces into account is selected with the modally effective G command CUT3DC or
CUT3DCD.

The actual activation is performed with G41 or G42 The tool radius compensation is
deactivated with G40.

Syntax

G41/G42 ORIC/ORID ISD=... CUT3DC/CUT3DCD CDOF2 X... Y... Z...
...
G40 X... Y... Z...

Meaning

CUT3DC: 3D TRC for circumferential milling (only when 5-axis transforma‐
tion is active)

CUT3DCD: 3D TRC for circumferential milling referred to a differential tool
(only when 5-axis transformation is active)
The radius difference is specified by the tool parameter
$TC_DP15.

G41/G42 X... Y... Z... : Activate tool radius compensation
G41: Tool radius compensation left of the contour
G42: Tool radius compensation right of the contour
Note:
The activation must be performed in a linear block (G0/G1).

CDOF2: Deactivate collision detection for 3D circumferential milling
ORIC/ORID: The behavior for orientation changes at outside corners is speci‐

fied via the G commands ORIC and ORID.
ORIC: Orientation changes at outside corners are superim‐

posed on the circle block to be inserted.
ORID: Orientation changes at outside corners are executed

before the circle block to be inserted.
ISD=<Value>: With the ISD address, the insertion depth of the tool can be

changed for circumferential milling and active 3D tool radius com‐
pensation.
<Value>: Length of the insertion depth

G40 X... Y... Z... : Deactivate tool radius compensation
Note:
The deactivation must be performed in a linear block (G0/G1) with
geometry axis movements.

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 423

Note

The G commands for selecting the 3D TRC are evaluated in the approach block, i.e. typically
in the block that contains G41 or G42.

G41 or G42 can also be programmed in blocks without traversing movement in geometry axes
relevant for the compensation. In this case, the approach block is the first traversing block
following such a block.

A change of the 3D TRC variant with active tool radius compensation is ignored without alarm.

Example

Program code Comment
 ; Definition of tool D1:
$TC_DP1[1,1]=120 ; Type (end mill)
$TC_DP3[1,1]=20 ; Length compensation vector
$TC_DP6[1,1]=8 ; Radius

N10 X0 Y0 Z0 T1 D1 F12000 ; Selection of the tool.
N20 TRAORI(1) ; Activation of the transformation.
N30 G42 ORIC ISD=10 CUT3DC G64 X30 ; Activation of the 3D circumferential milling,
 ; continuous orientation changes at outside corners,
 ; insertion depth: 10 mm
N40 ORIWKS A30 B15 ; Orientation change at a corner through specification of axis po-

sitions.
N50 Y20 A3=1 C3=1 ; Traversing block with orientation change,
 ; specification of the orientation with direction vector.
N60 X50 Y30 ; Traversing block with constant orientation.
N70 Y50 A3=0.5 B3=1 C3=5 ; Traversing block with orientation change.
N80 M63 ; Block without traversing information.
N90 X0 ISD=20 ; Traversing block with change of the insertion depth.
N100 G40 Y0 ; Deactivation of the tool radius compensation.
N110 M30

Further information

Path and orientation
The type of circumferential milling used here is implemented by defining a path (guide line)
and the associated orientation. In this type of machining, the shape of the tool on the path is
not relevant. Only the radius at the tool intervention point is decisive.

Tool offsets
11.5 3D tool radius compensation

Job Planning
424 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Figure 11-1 Circumferential milling

Approach behavior
The approach behavior is always NORM for the 3D variant of the tool radius compensation.

Behavior at outside corners
The G commands of group 18 (corner behavior, tool offset) are evaluated at the outside corners
for circumferential milling with 3D TRC in the same way as for the conditions for the 2½D TRC:

● G450: Transition circle (tool travels round workpiece corners on a circular path)
In contrast to the solution for the 2½D TRC, the inserted contour element at an outside
corner is always a circle with a 0 radius, on which the tool radius compensation acts in the
same way as on any other programmed path. It is not possible to insert conics instead of
circles. In this case, the DISC address has no significance and is therefore not evaluated.

● G451: Intersection of equidistant paths (tool backs off from the workpiece corner)
The intersection is determined by extending the offset curves of the two participating blocks
and defining the intersection of the two blocks at the corner in the plane perpendicular to
the tool orientation.

The intersection procedure (G451) is not used when at least one block containing a change
to the tool orientation was inserted between the relevant traversing blocks. In this case, a circle
is always inserted at the corner.

Behavior for changes in orientation at outside corners
The ORIC and ORID G commands are used to determine whether changes in orientation
programmed between two blocks forming the corner are executed before the inserted circle
block (ORID) is processed or at the same time (ORIC).

Insertion depth
The insertion depth of the milling tool is the distance of the milling tool reference point from
the tip of the tool.

The milling tool reference point is the vertical projection of the milling tool machining point on
the programmed path to the longitudinal axis of the tool.

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 425

The position of the machining point on the peripheral surface of the tool is set with the insertion
depth.

① Programmed path
② Milling tool machining point
③ Milling tool reference point
④ Milling tool tip
ISD Insertion depth (InSertion Depth)

Figure 11-2 Insertion depth

Tool radius compensation referred to a differential tool
3D TRC for circumferential milling referred to a differential tool is activated via the CUT3DCD
command. It should be applied if the programmed contour refers to the center-point path of a
standard tool, and a tool other than a differential tool is used for machining. When calculating
the 3D tool radius compensation, only the wear value of the radius of the active tool
($TC_DP15) and any programmed tool offsets OFFN and TOFFR are taken into account. The
basic radius ($TC_DP6) of the active tool is not taken into account.

Pocket milling with inclined side walls for circumferential milling with CUT3DC
In this 3D tool radius compensation, a deviation of the mill radius is compensated by infeed
toward the surface normals to be machined. The plane, in which the milling tool face is located,
remains unchanged if the insertion depth ISD has remained the same. For example, a milling
tool with a smaller radius than a standard tool would not reach the pocket base, which is also
the limitation surface. For automatic tool infeed, this limitation surface must be known to the
control, see Section "3D circumferential milling taking into account a limitation surface
(CUT3DCC, CUT3DCCD) (Page 432)".

Tool offsets
11.5 3D tool radius compensation

Job Planning
426 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Advanced Surface / Top Surface

Note

When applying tool radius compensation CUT3DCD in combination with the "Advanced
Surface" or "Top Surface" option (requiring a license), the setting recommendations regarding
"Advanced Surface" / "Top Surface" must be observed.

Special test programs are provided in the SIOS portal for checking the set data:
● Test programs for Advanced Surface (https://support.industry.siemens.com/cs/ww/en/view/

78956392)
● Test programs for Top Surface (https://support.industry.siemens.com/cs/ww/en/view/

109738423)

11.5.2 Selecting 3D tool radius compensation for the 3D face milling (CUT3DF,
CUT3DFS, CUT3DFF, CUT3DFD)

The 3D tool radius compensation (3D TRC) for the 3D face milling is selected with the modally
effective G command CUT3DF, CUT3DFS, CUT3DFF or CUT3DFD.

The actual activation is performed with G41 or G42

With 3D face milling, the surface normals of the plane to be machined must be defined in order
to calculate the tool radius compensation. This must be performed in the block with G41 or
G42 via the A4, B4, C4 and A5, B5, C5 addresses.

The tool radius compensation is deactivated with G40.

Syntax

G41/G42 ORIC/ORID CUT3DF/CUT3DFS/CUT3DFF/CUT3DFD X... Y... Z... A4=... B4=...
C4=... A5=... B5=... C5=...

...
G40 X... Y... Z...

Meaning

CUT3DFS: 3D TRC for face milling with constant orientation. The tool
orientation is defined by G17 - G19 and is not influenced by
frames.

CUT3DFF: 3D TRC for face milling with constant orientation. The tool
orientation is the direction defined by G17 - G19 and, in some
case, rotated by a frame.

CUT3DF: 3D TRC for face milling with orientation change (only with
active 5-axes transformation)

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 427

https://support.industry.siemens.com/cs/ww/en/view/78956392
https://support.industry.siemens.com/cs/ww/en/view/78956392
https://support.industry.siemens.com/cs/ww/en/view/109738423
https://support.industry.siemens.com/cs/ww/en/view/109738423

CUT3DFD: 3D TRC for face milling with orientation change referred to a
differential tool (only with active 5-axis transformation)
The radius difference is specified by the tool parameter
$TC_DP15.
Note:
CUT3DFD is only possible in combination with "Smoothing
of surface normals in 3D face milling". This is activated by
calling the "Top Surface" function (requires as license) via
CYCLE832(...) (Page 777).

G41/G42 X... Y... Z... : Activate tool offset
The behavior with G41 and with G42 is identical for 3D face
milling.
Note:
The activation must be performed in a linear block (G0/G1).

A4/5=... B4/5=... C4/5=...: Definition of the surface normals of the plane to be machined
A4=... B4=... C4=...: Definition at start of block
A5=... B5=... C5=...: Definition at end of block

ORIC/ORID: The behavior for orientation changes at outside corners is
specified via the G commands ORIC and ORID.
ORIC: Orientation changes at outside corners are su‐

perimposed on the circle block to be inserted.
ORID: Orientation changes are performed before the

circle block.
G40 X... Y... Z... : Deactivate tool radius compensation

Note:
The deactivation must be performed in a linear block (G0/G1)
with geometry axis movements.

Note

G41 or G42 can also be programmed in blocks without traversing movement in geometry axes
relevant for the compensation. In this case, the approach block is the first traversing block
following such a block.

A change of the 3D TRC variant with active tool radius compensation is ignored without alarm.

Examples

Example 1: 3D face milling with CUT3DF

Program code Comment
N10 ; Definition of tool D1:
N20 $TC_DP1[1,1]=121 ; Tool type (toroidal miller)
N30 $TC_DP3[1,1]=20 ; Length compensation
N40 $TC_DP6[1,1]=5 ; Radius
N50 $TC_DP7[1,1]=3 ; Rounding radius
N60
N70

Tool offsets
11.5 3D tool radius compensation

Job Planning
428 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N80 X0 Y0 Z0 A0 B0 C0 G17 T1 D1 F12000 ; Selection of the tool.
N90 TRAORI(1) ; Select orientation transformation.
N100 B4=-1 C4=1 ; Definition of the plane.
N110 G41 ORID CUT3DF G64 X10 Y0 Z0 ; Activate tool offset.
N120 X30
N130 Y20 A4=1 C4=1 ; Outside corner, new plane definition.
N140 B3=1 C3=5 ; Change in orientation with ORID.
N150 B3=1 C3=1 ; Change in orientation with ORID.
N160 X-10 A5=1 C5=2 ORIC
N170 A3=-2 C3=1 ; Change in orientation with ORIC.
N180 A3=-1 C3=1 ; Change in orientation with ORIC.
N190 Y-10 A4=-1 C4=3 ; New plane definition.
N200 X-20 Y-20 Z10 ; Inside corner with previous block.
N210 X-30 Y10 A4=1 C4=1 ; Inside corner, new plane definition.
N220 A3=1 B3=0.5 C3=1.7 ; Change in orientation with ORIC.
N230 X-20 Y30 A4=1 B4=-2 C4=3 ORID
N240 A3 = 0.5 B3=-0.5 C3=1 ; Change in orientation.
N250 X0 Y30 C4=1 ; Path movement, new plane,
 ; orientation with relative programming.
N260 BSPLINE X20 Z15 ; Spline begin, relative programming of the orien-

tation
N270 X30 Y25 Z18 ; remains active during spline.
N280 X40 Y20 Z13
N290 X45 Y0 PW=2 Z8
N300 Y-20
N310 G2 ORIMKS A30 B45 I-20 X25 Y-40 Z0 ; Helix, orientation with axis programming.
N320 G1 X0 A3=-0.123 B3=0.456 C3=2.789 B4=-1 C4=5
B5=-1 C5=2

; Path movement, orientation, non-constant plane.

N330 X-20 G40 ; Deactivation of the tool radius compensation.
N340 M30

Example 2: NC program (section) generated from a CAD system with CUT3DFD

Program code Comment
N01 G710
N03 T="12"

N06 S5305 M03
N07 G642
; Approaching the starting position in the MCS taking the tool length into account.
G00 G90 X-250.62787 Y-38.37944 A=DC(253.12719)
B-12.49543

G00 G90 Z251.80052
; End of positioning in the MCS.
;

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 429

Program code Comment
TRAORI(1) ; Select orientation transformation.
G500
D1
CYCLE832(0.01, _TOP_SURFACE_SMOOTH_ON + _ORI_FIN-
ISH, 1)

; Call CYCLE832 with:
; Contour tolerance = 0.01 mm,
; Processing type: Top Surface with smoothing,
; Finishing with input of an orientation toler-
ance,
; Orientation tolerance = 1 degree

CUT3DFD
N08 G90 G94
N09 G00 X-269.21195 Y128.32027 Z1.18577
 A3=-.216361688 B3=.934284397 C3=-.283373051

; The blocks N09 to N10 are the fast portion of
the approach movement to the workpiece with con-
stant orientation.

N10 G00 X-251.90301 Y53.57752 Z23.85561
N11 G01 X-247.57578 Y34.89183 Z29.52308 F50000.00000 ; In the blocks N11 to N21, the slow portion of

the approach movement is realized. The tool is
already close to the workpiece; furthermore, the
mold making settings (e.g. COMPSURF) from the CY-
CLE832 are now active (due to active G01). The
path of this so-called transient phase for the
mold-making behavior should be about 1000 times
the contour tolerance (10 mm in this example).

N12 X-247.69126 Y33.82182 Z24.78219 F1061.00000
N13 X-247.76560 Y33.13299 Z21.73022
N14 X-247.82755 Y32.55897 Z19.18691
N15 X-247.87918 Y32.08062 Z17.06748
N16 X-247.92220 Y31.68200 Z15.30129
N17 X-247.95805 Y31.34981 Z13.82947
 A3=-.216361686 B3=.934284391 C3=-.283373071

N18 X-247.98792 Y31.07299 Z12.60295
 A3=-.216360662 B3=.934280801 C3=-.283385691

N19 X-248.01282 Y30.84230 Z11.58085
 A3=-.216336015 B3=.934194446 C3=-.283689030

N20 X-248.03357 Y30.65006 Z10.72910
 A3=-.216233089 B3=.933833626 C3=-.284952647

N21 X-248.05086 Y30.48986 Z10.01931
 A5=-.060687572 B5=.974940255 C5=-.214029243
 A3=-.215712821 B3=.932005189 C3=-.291263295

N22 G41 X-248.06237 Y30.32400 Z9.36695
 A5=-.060431854 B5=.973045457 C5=-.222554556
 A3=-.214974689 B3=.929398552 C3=-.300007025
F1061.03295

; From N22, the surface normal is completely de-
fined over the entire block for the first time
(i.e. surface normal at the end of the previous
block N21 is present, thus the surface normal at
the beginning of the block N22 and the surface
normal at the end of the block N22). Thus the
prerequisite for switching on the tool offset
with G41/G42 is fulfilled.

Tool offsets
11.5 3D tool radius compensation

Job Planning
430 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N23 X-248.07130 Y30.15119 Z8.71082
 A5=-.060165696 B5=.971048883 C5=-.231179920
 A3=-.214177198 B3=.926684940 C3=-.308841625

N24 X-248.07829 Y29.97126 Z8.05094
 A5=-.059884286 B5=.968941717 C5=-.239928784
 A3=-.213318480 B3=.923853466 C3=-.317789237

N25 X-248.08317 Y29.78487 Z7.38844
 A5=-.059584206 B5=.966718449 C5=-.248807482
 A3=-.212397895 B3=.920898045 C3=-.326854594

N26 X-248.08578 Y29.59254 Z6.72679
 A5=-.059263963 B5=.964380907 C5=-.257793037
 A3=-.211418355 B3=.917822366 C3=-.336012474

...

Note

For 3D face milling with CUT3DFD, the definition of the surface normal is required for activating
the tool offset with G41/G42. Programming of G41/G42 without definition of the surface
normals leads to the output of an alarm.

Further information

3D face milling
For this type of 3D milling, you require the line-by-line description of the 3D paths on the
workpiece surface. The tool shape and dimensions are taken into account in the calculations,
which are normally performed in CAM. The postprocessor writes to the part program - in
addition to NC blocks - the tool orientations (for active 5-axis transformation) and the G
command for the required 3D tool offset. This means that the machine operator has the
possibility of using tools that are slightly smaller - deviating from the tool used to calculate the
NC paths.

Figure 11-3 Face milling

Approach behavior
The approach behavior is always NORM for the 3D variant of the tool radius compensation.

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 431

Behavior at outside corners
Outside corners are treated as circles with radius 0 for face milling, whereby the circle plane
extends from the end tangent of the first block to the start tangent of the second block. In this
way, the orientation can be changed during block transition. A circle is therefore always
inserted as contour element at an outside corner. The intersection procedure is not available
with face milling.

Behavior for changes in orientation at outside corners
The ORIC and ORID G commands are used to determine whether changes in orientation
programmed between two blocks forming the corner are executed before the inserted circle
block (ORID) is processed or at the same time (ORIC).

Tool radius compensation referred to a differential tool
3D tool radius compensation referring to a differential tool is selected using the CUT3DFD
command. It should be applied if the programmed contour refers to the center-point path of a
standard tool, and a tool other than a differential tool is used for machining. When calculating
the 3D tool radius compensation, only the wear value of the radius of the active tool
($TC_DP15) and any programmed tool offsets OFFN and TOFFR are taken into account. The
basic radius ($TC_DP6) of the active tool is not taken into account.

3D face milling with CUT3DFD is only possible in combination with "Smoothing of surface
normals in 3D face milling". This is activated by calling the "Top Surface" function (requires as
license) via CYCLE832(...) (Page 777). Activation must take place before the tool offset is
activated with G41/G42; not directly before tool intervention, but rather one path length before
that, which corresponds to approx. 1000 times the contour tolerance (e.g. 1000 x 0.01 mm =
10 mm). Deactivation must be executed in reverse order: First switch off the tool offset with
G40, then deactivate with e.g. CUT2D (or similar) after a path length which corresponds with
approximately 1000 time the contour tolerance.

In order to be able to use the "Smoothing of surface normals in 3D face milling", the
"Interpolation of surface normals via polynomials" function must also be enabled:

MD28291 $MC_MM_SMOOTH_SURFACE_NORMALS = TRUE

Note

For 3D face milling with CUT3DFD in combination with "Top Surface", the setting
recommendations regarding "Top Surface" must be observed.

Special test programs are provided (https://support.industry.siemens.com/cs/ww/en/view/
109738423) in the SIOS portal for checking the set data.

11.5.3 3D circumferential milling taking into account a limitation surface (CUT3DCC,
CUT3DCCD)

In 3D circumferential milling with a continuous or constant change in tool orientation, the tool
center-point path is frequently programmed for a defined standard tool. Because in practice
suitable standard tools are often not available, a tool that does not deviate too much from a
standard tool (≤ 5%) can be used.

Tool offsets
11.5 3D tool radius compensation

Job Planning
432 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

https://support.industry.siemens.com/cs/ww/en/view/109738423
https://support.industry.siemens.com/cs/ww/en/view/109738423

CUT3DCCD takes account of a limitation surface for a real differential tool that the programmed
standard tool would define. The NC program defines the center-point path of a standard tool.

CUT3DCC with the use of cylindrical tools takes account of a limitation surface that the
programmed standard tool would have reached. The NC program defines the contour on the
machining surface.

The surface normal vector of the limitation surface is specified with A4, B4, C4 and A5, B5,
C5 for 3D face milling.

Syntax

G41/G42 CUT3DCCD/CUT3DCC CDOF2 X... Y... Z... A4=... B4=... C4=... A5=... B5=...
C5=...

...
G40 X... Y... Z...

Meaning

CUT3DCCD: 3D TRC for the circumferential milling taking into account a limitation
surface with a differential tool on the tool center-point path: Infeed
to the limitation surface

CUT3DCC: 3D TRC for the circumferential milling taking into account a limitation
surface with 3D radius compensation: Contour on the machining
surface

G41/G42 X... Y... Z... : Activate tool radius compensation
G41: Tool radius compensation left of the contour
G42: Tool radius compensation right of the contour
Note:
The activation must be performed in a linear block (G0/G1).

CDOF2: Deactivate collision detection for 3D circumferential milling
A4/5=... B4/5=...
C4/5=...:

Definition of the surface normals of the limitation surface
A4=... B4=... C4=...: Definition at start of block
A5=... B5=... C5=...: Definition at end of block

G40 X... Y... Z... : Deactivate tool radius compensation
Note:
The deactivation must be performed in a linear block (G0/G1) with
geometry axis movements.

Note

The G commands for selecting the 3D TRC are evaluated in the approach block, i.e. typically
in the block that contains G41 or G42.

G41 or G42 can also be programmed in blocks without traversing movement in geometry axes
relevant for the compensation. In this case, the approach block is the first traversing block
following such a block.

A change of the 3D TRC variant with active tool radius compensation is ignored without alarm.

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 433

Example

Program code Comment
N10 $TC_DP1[1,1]=120 ; Cylindrical milling tool
N20 $TC_DP6[1,1]=10
N30 $TC_DP15[1,1]=-3
...
; Processing with cylindrical milling tool and CUT3DCCD
N110 TRAORI ; Activation of the transformation.
N120 A4=0 B4=0 C4=1 ; Definition of the surface normal of the

limitation surface at the start of the
block.

N130 X0 Y0 Z0 A0 C0 T1 D1 F20000
N140 X10 Y0 Z0 G41 CUT3DCCD CDOF2 G64 ; Activate 3D circumferential milling,

taking into account the limitation sur-
face + switching off collision detection.

N150 X20
N160 X30 A45 ; Obtuse angle ==> no infeed
N170 X40 A-45 ; Acute angle ==> infeed
N180 X55
N190 Y10 Z10 ; Movement in the tool direction.
N200 Y20
N210 C45 ; Pure change in orientation.
N220 Y30 C90
N230 A5=-1 B5=0 C5=2 Y40 ; Change of the surface.
N240 Y50 G40 ; Deactivation of the tool radius compen-

sation.
...

Further information

Tool type
The tool type (tool parameter $TC_DP1) is evaluated. Only milling tools with cylindrical shank
(cylinder or end mill, toroidal miller and, in the limit case, cylindrical die mill) are permitted. This
corresponds to the tool types 1 - 399, with the exception of the numbers 111 and 155 to 157.

Standard tools with corner rounding
Corner rounding with a standard tool is defined by the tool parameter $TC_DP7. Tool
parameter $TC_DP16 describes the deviation of the corner rounding of the real tool compared
with the standard tool.

Tool offsets
11.5 3D tool radius compensation

Job Planning
434 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example: Toroidal miller with reduced radius compared to the standard tool

Tool type Shaft radius (R) Corner radius (r)
Standard tool with corner rounding R = $TC_DP6 r = $TC_DP7
Real tool with corner rounding
Tool types 121 and 131 toroidal
miller
(end mill with corner rounding)

R' = $TC_DP6 + $TC_DP15 +
OFFN

r' = $TC_DP7 + $TC_DP16

In this example, both $TC_DP15 + OFFN and $TC_DP16 are negative.

3D TRC with CUT3DCCD: Tool center-point path with infeed up to the limitation surface
If a tool with a smaller radius than the appropriate standard tool is used, machining is continued
using a milling tool, which is fed in in the longitudinal direction until it reaches the bottom (base)
of the pocket. The tool removes as much material from the corner formed by the machining
surface and limitation surface. This involves a machining type combining circumferential and
face milling. Analogous to a tool with reduced radius, for a tool with increased radius, the infeed
is in the opposite direction.

① Standard tool
② Tool with smaller radius infeed up to the limitation surface
③ Limitation surface
④ Machining surface

Contrary to all other tool offsets of G group 22, tool parameter $TC_DP6 specified for
CUT3DCCD has no relevance for the tool radius and does not influence the resulting
compensation. The compensation offset results from the sum of the wear value of the tool
radius (tool parameter $TC_DP15) and a tool offset OFFN programmed to calculate the
perpendicular offset to the limitation surface.

The generated part program does not specify whether the surface to be machined is to the
right or left of the path. It is therefore assumed that the radius is a positive value and the wear
value of the original tool is a negative value. A negative wear value always describes a tool
with a reduced diameter.

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 435

Using cylindrical tools
When cylindrical tools are used, infeed is only necessary if the machining surface and the
surface of limitation form an acute angle (less than 90 degrees). If a toroidal miller (end mill
with corner rounding) is used, tool infeed in the longitudinal direction is required for both acute
and obtuse angles.

3D TRC with CUT3DCC: Contour on the machining surface
If CUT3DCC is active with a toroidal miller, the programmed path refers to a fictitious cylindrical
milling tool having the same diameter. The resulting path reference point is shown in the
following diagram for a toroidal miller.

① Toroidal miller
② Limitation surface
③ Path reference point
④ Machining surface
R Shaft radius (tool radius)

The angle between the machining and limitation surfaces may change from an acute to an
obtuse angle and vice versa even within the same block.

The tool actually being used may either be larger or smaller than the standard tool. However,
the resulting corner radius must not be negative and the sign of the resulting tool radius must
be kept.

For CUT3DCC, the NC part program refers to the contour on the machining surface. As for
conventional tool radius compensation, the total tool radius is used that comprises the following
components:

● Tool radius (tool parameter $TC_DP6)

● Wear value (tool parameter $TC_DP15)

● A tool offset OFFN programmed to calculate the perpendicular offset to the limitation surface

The position of the limitation surface is defined from the following difference:

Dimensions of the standard tool - tool radius (tool parameter $TC_DP6)

Tool offsets
11.5 3D tool radius compensation

Job Planning
436 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Advanced Surface / Top Surface

Note

When applying tool radius compensation CUT3DCC / CUT3DCCD in combination with the
"Advanced Surface" or "Top Surface" function (requiring a license), the setting
recommendations regarding "Advanced Surface" / "Top Surface" must be observed.

Special test programs are provided in the SIOS portal for checking the set data:
● Test programs for Advanced Surface (https://support.industry.siemens.com/cs/ww/en/view/

78956392)
● Test programs for Top Surface (https://support.industry.siemens.com/cs/ww/en/view/

109738423)

Tool offsets
11.5 3D tool radius compensation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 437

https://support.industry.siemens.com/cs/ww/en/view/78956392
https://support.industry.siemens.com/cs/ww/en/view/78956392
https://support.industry.siemens.com/cs/ww/en/view/109738423
https://support.industry.siemens.com/cs/ww/en/view/109738423

11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS,
OSD, OST)

The term tool orientation describes the geometric alignment of the tool in space. The tool
orientation on a 5-axis machine tool can be set by means of program commands.

Orientation rounding movements activated with OSD and OST are formed differently depending
on the type of interpolation for tool orientation.

If vector interpolation is active, the smoothed orientation characteristic is also interpolated
using vector interpolation. On the other hand, if rotary axis interpolation is active, the orientation
is smoothed directly using rotary axis movements.

Programming

Programming a orientation change:
A change in tool orientation can be programmed by:

● Direct programming of rotary axes A, B, C (rotary axis interpolation)

● Euler or RPY angle

● Direction vector (vector interpolation by specifying A3 or B3 or C3)

● LEAD/TILT (face milling)

The reference coordinate system is either the machine coordinate system (ORIMKS) or the
current workpiece coordinate system (ORIWKS).

Tool offsets
11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)

Job Planning
438 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Programming tool orientation:

ORIC: Orientation and path movement in parallel
ORID: Orientation and path movement consecutively
OSOF: No orientation smoothing
OSC: Orientation constantly
OSS: Orientation smoothing only at beginning of block
OSSE: Orientation smoothing at beginning and end of block
ORIS: Velocity of the orientation change with orientation smoothing activated in degrees per

mm (valid for OSS and OSSE)
OSD: Smoothing of orientation by specifying smoothing distance with setting data:

SD42674 $SC_ORI_SMOOTH_DIST
OST: Smoothing of orientation by specifying angular tolerance in degrees for vector interpo‐

lation with setting data:
SD42676 $SC_ORI_SMOOTH_TOL
With rotary axis interpolation, the specified tolerance is assumed to be the maximum
variance of the orientation axes.

Note

All commands for smoothing the tool orientation (OSOF, OSC, OSS, OSSE, OSD, and OST) are
summarized in G group 34. They are modal; in other words, only one of these commands can
ever be effective at the same time.

Examples

Example 1: ORIC
If two or more blocks with orientation changes are programmed between the traversing blocks
N10 and N20 (e.g. A2=... B2=... C2=...) programmed and ORIC is active, then the

Tool offsets
11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 439

inserted circle block is distributed among these intermediate blocks according to the absolute
changes in angle.

Program code Comment
ORIC
N8 A2=… B2=… C2=…
N10 X… Y… Z…
N12 C2=… B2=…
N14 C2=… B2=…

; The circle block inserted at the external corner is
distributed between N12 and N14, corresponding to the
change in orientation. The circular motion and the
orientation change are executed in parallel.

N20 X =…Y=… Z=… G1 F200

Example 2: ORID
If ORID is active, then all blocks between the two traversing blocks are executed at the end of
the first traversing block. The circle block with constant orientation is executed immediately
before the second traversing block.

Tool offsets
11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)

Job Planning
440 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
ORID
N8 A2=… B2=… C2=…
N10 X… Y… Z…
N12 A2=… B2=… C2=… ; The N12 and N14 blocks are executed at the end of N10.

The circle block is then executed with the actual orien-
tation.

N14 M20 ; Help functions, etc.
N20 X… Y… Z…

Note

The method which is used to change orientation at an outer contour is determined using the
program command that is active in the first traversing block of an outer corner.

Without change in orientation: If the orientation is not changed at the block boundary, the cross-
section of the tool is a circle, which touches both of the contours.

Tool offsets
11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 441

Example 3: Change in orientation at an inside corner

Program code
ORIC
N10 X …Y… Z… G1 F500
N12 X …Y… Z… A2=… B2=… C2=…
N15 X …Y… Z… A2=… B2=… C2=…

Further information

Behavior at outer corners
A circle block with the radius of the cutter is always inserted at an outside corner.

The ORIC and ORID program commands are used to determine whether changes in orientation
programmed between block N1 and N2 are executed before the inserted circle block is
processed or at the same time.

Tool offsets
11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)

Job Planning
442 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

If an orientation change is required at outside corners, this can be performed either at the same
time as interpolation or separately together with the path movement.

When ORID is programmed, the inserted blocks are executed first without path motion. The
circle block generating the corner is inserted immediately before the second of the two
traversing blocks.

If several orientation blocks are inserted at an external corner and ORIC is selected, the circular
motion is distributed among the individual inserted blocks according to the absolute values of
the orientation changes.

Smoothing orientation with OSD or OST
When blending with G642, the maximum variance for the contour axes and orientation axes
cannot vary greatly. The smaller tolerance of the two determines the type of smoothing motion
and/or angular tolerance to smooth the orientation characteristic relatively strongly without
having to accept higher contour deviations.

OSD and OST can be activated to "generously" smooth very slight deviations from the
orientation characteristics with a specified smoothing distance and angular tolerance without
serious contour deviations.

Note

Unlike the process of rounding the contour (and orientation characteristics) with G642, when
rounding the orientation with OSD and/or OST, a separate block is not formed, instead the
rounding movement is added directly to the programmed original blocks.

With OSD and/or OST, block transitions cannot be rounded if there is a change in the type of
interpolation for tool orientation (vector → rotary axis, rotary axis → vector). These block
transitions can if necessary be rounded with the standard rounding functions G641, G642 and
G643.

Tool offsets
11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 443

11.7 Free assignment of D numbers, cutting edge numbers

11.7.1 Free assignment of D numbers, cutting edge numbers (CE address)

D number
The D numbers can be used as contour numbers. You can also address the number of the
cutting edge via the address CE. You can use the system variable $TC_DPCE to describe the
cutting edge number.

Default: compensation no. == tool edge no.

Machine data are used to define the maximum number of D numbers (cutting edge numbers)
and the maximum number of cutting edges per tool (→ machinery construction OEM). The
following commands are only practical if the maximum cutting edge number (MD18105) was
specified to be greater than the number of cutting edges per tool (MD18106). See machine
manufacturer's specifications.

Note

In addition to relative D number allocation, the D numbers can also be assigned as "flat" or
"absolute" D numbers (1-32000) without a reference to a T number (within the "Flat D number
structure" function).

References
Function Manual Basic Functions; Tool Offset (W1)

11.7.2 Free assignment of D numbers: Checking D numbers (CHKDNO)
Using the CKKDNO command, you can check whether the existing D numbers were uniquely
assigned. The D numbers of all tools defined within a TO unit may not occur more than once.
No allowance is made for replacement tools.

Syntax
state=CHKDNO(Tno1,Tno2,Dno)

Meaning

state: =TRUE: The D numbers are assigned uniquely to the checked
areas.

= FALSE: There was a D number collision or the parameters are
invalid. Tno1, Tno2 and Dno return the parameters
that caused the collision. These data can now be eval‐
uated in the part program.

Tool offsets
11.7 Free assignment of D numbers, cutting edge numbers

Job Planning
444 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

CHKDNO(Tno1,Tno2): All D numbers of the part specified are checked.
CHKDNO(Tno1): All D numbers of Tno1 are checked against all other tools.
CHKDNO: All D numbers of all tools are checked against all other tools.

11.7.3 Free assignment of D numbers: Rename D numbers (GETDNO, SETDNO)
You must assign unique D numbers. Two different cutting edges of a tool must not have the
same D number.

GETDNO
This command returns the D number of a particular cutting edge (ce) of a tool with tool number
t. If no D number exists for the entered parameters, d=0 will be set. If the D number is invalid,
a value greater than 32000 is returned.

SETDNO
This command assigns the value d of the D number to a cutting edge (ce) of tool t. The result
of this statement is returned via state (TRUE or FALSE). If there is no data block for the
specified parameter, the value FALSE is returned. Syntax errors generate an alarm. The D
number cannot be set explicitly to 0.

Syntax
d = GETDNO (t,ce)
state = SETDNO (t,ce,d)

Meaning

d: D number of the tool edge
t: T number of the tool
ce: Cutting edge number (CE number) of the tool
state: Indicates whether the command could be executed (TRUE or FALSE).

Example for renaming a D number

Programming Comment
$TC_DP2[1.2]=120
$TC_DP3[1,2] = 5.5
$TC_DPCE[1,2] = 3 ; Cutting edge number CE
...
N10 def int DNoOld, DNoNew = 17
N20 DNoOld = GETDNO(1,3)
N30 SETDNO(1,3,DNoNew)

Tool offsets
11.7 Free assignment of D numbers, cutting edge numbers

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 445

The new D value 17 is then assigned to cutting edge CE=3. Now the data for the cutting edge
is addressed via D number 17; both via the system variables and in the programming with the
NC address.

11.7.4 Free assignment of D numbers: Determine T number to the specified D number
(GETACTTD)

You determine the T number associated with an absolute D number using the GETACTTD
command. There is no check for uniqueness. If several D numbers within a TO unit are the
same, the T number of the first tool found in the search is returned. This command is not
suitable for use with "flat" D numbers, because the value "1" is always returned in this case
(no T numbers in database).

Syntax
status=GETACTTD(Tnr,Dnr)

Meaning

Dnr: D number for which the T number shall be searched.
Tnr: T number found
status: Value: Meaning:

0 The T number has been found. Tno contains the value of the T number.
-1 No T number exists for the specified D number; Tno=0.
-2 The D number is not absolute. Tno receives the value of the first found

tool that contains the D number with the value Dno.
-5 The function was not able to be executed for another reason.

11.7.5 Free assignment of D numbers: Invalidate D numbers (DZERO)
The DZERO command is used for support during retooling. Compensation data sets tagged
with this command are no longer verified by the CHKDNO command. These data sets can be
accessed again by setting the D number once more with SETDNO.

Syntax
DZERO

Meaning

DZERO: Marks all D numbers of the TO unit as invalid.

Tool offsets
11.7 Free assignment of D numbers, cutting edge numbers

Job Planning
446 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.8 Toolholder kinematics

Requirements
A toolholder can only orientate a tool in all possible directions in space if

● Two rotary axes V1 and V2 are present.

● The rotary axes are mutually orthogonal.

● The tool longitudinal axis is perpendicular to the second rotary axis V2.

In addition, the following requirement is applicable to machines for which all possible
orientations have to be settable:

● The tool longitudinal axis must be perpendicular to the first rotary axis V1.

Function
The toolholder kinematics with a maximum of two rotary axes v1 or v2 are defined using the 17
system variables $TC_CARR1[m] to $TC_CARR17[m]. The description of the toolholder
consists of:

● The vectoral distance from the first rotary axis of the toolholder I1, the vectoral distance
from the first rotary axis to the second rotary axis I2, the vectoral distance from the second
rotary axis to the reference point of the tool I3.

● The direction vectors of both rotary axes V1, V2.

● The angles of rotation α1, α2 around the two axes. The rotation angles are counted in
viewing direction of the rotary axis vectors, positive, in clockwise direction of rotation.

For machines with resolved kinematics (both the tool and the part can rotate), the system
variables have been extended with the entries $TC_CARR18[m] to $TC_CARR23[m].

Tool offsets
11.8 Toolholder kinematics

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 447

Parameters

Function of the system variables for orientable toolholders
Designation x component y component z component
l1 offset vector $TC_CARR1[m] $TC_CARR2[m] $TC_CARR3[m]
l2 offset vector $TC_CARR4[m] $TC_CARR5[m] $TC_CARR6[m]
v1 rotary axis $TC_CARR7[m] $TC_CARR8[m] $TC_CARR9[m]
v2 rotary axis $TC_CARR10[m] $TC_CARR11[m] $TC_CARR12[m]
α1 angle of rota‐
tion
α2 angle of rota‐
tion

$TC_CARR13[m]
$TC_CARR14[m]

l3 offset vector $TC_CARR15[m] $TC_CARR16[m] $TC_CARR17[m]

Extensions of the system variables for orientable toolholders
Designation x component y component z component
l4 offset vector $TC_CARR18[m] $TC_CARR19[m] $TC_CARR20[m]
Axis identifier Ro‐
tary axis v1
Rotary axis v2

Axis identifier of the rotary axes v1 and v2 (initialized with zero)
$TC_CARR21[m]
$TC_CARR22[m]

Kinematic type
Tool
Part
Mixed mode

$TC_CARR23[m]
Kinematics type T -> Kinematics type P -> Kinematics type M
Only the tool can rotate
(default).

Only the part can rotate Part and tool can rotate

Offset of the
Rotary axis v1
Rotary axis v2

Angle in degrees of the rotary axes v1 and v2 on assuming the initial setting
$TC_CARR24[m]
$TC_CARR25[m]

Angle offset of
the rotary axis v1
Rotary axis v2

Offset of the Hirth tooth system in degrees for rotary axes v1 and v2
$TC_CARR26[m]
$TC_CARR27[m]

Angle increment
v1 rotary axis
v2 rotary axis

Offset of the Hirth tooth system in degrees for rotary axes v1 and v2
$TC_CARR28[m]
$TC_CARR29[m]

Min. position Ro‐
tary axis v1
Rotary axis v2

Software limit for the minimum position of the rotary axes v1 and v2
$TC_CARR30[m]
$TC_CARR31[m]

Max. position Ro‐
tary axis v1
Rotary axis v2

Software limits for the maximum position of the rotary axes v1 and v2
$TC_CARR32[m]
$TC_CARR33[m]

Toolholder name A toolholder can be given a name instead of a number. $TC_CARR34[m]
User:
Axis name 1
Axis name 2
Identifier
Position

Intended use in user measuring cycles $TC_CARR35[m]
$TC_CARR36[m]
$TC_CARR37[m]
$TC_CARR38[m] $TC_CARR39[m] $TC_CARR40[m]

Fine
offset

Parameters that can be added to the values
 in the basic parameters.

l1 offset vector $TC_CARR41[m] $TC_CARR42[m] $TC_CARR43[m]

Tool offsets
11.8 Toolholder kinematics

Job Planning
448 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Extensions of the system variables for orientable toolholders
l2 offset vector $TC_CARR44[m] $TC_CARR45[m] $TC_CARR46[m]
l3 offset vector $TC_CARR55[m] $TC_CARR56[m] $TC_CARR57[m]
l4 offset vector $TC_CARR58[m] $TC_CARR59[m] $TC_CARR60[m]
v1 rotary axis $TC_CARR64[m]
v2 rotary axis $TC_CARR65[m]

Note
Explanations of parameters

"m" specifies the number of the toolholder to be programmed.

$TC_CARR47 to $TC_CARR54 and $TC_CARR61 to $TC_CARR63 are not defined and
produce an alarm if read or write access is attempted.

The start/end points of the distance vectors on the axes can be freely selected. The rotation
angles α1, α2 around the two axes are defined in the initial state of the toolholder by 0°. In this
way, the kinematics of a toolholder can be programmed for any number of possibilities.

Toolholders with only one or no rotary axis at all can be described by setting the direction
vectors of one or both rotary axes to zero.
With a toolholder without rotary axis the distance vectors act as additional tool offsets whose
components cannot be affected by a change of machining plane (G17 to G19).

Parameter extensions

Parameters of the rotary axes
The system variables have been extended by the entries $TC_CARR24[m] to
$TC_CARR33[m] and described as follows:

Offset of rotary axes
v1, v2

Changing the position of the rotary axis v1 or v2 for the initial setting of the ori‐
ented toolholder.

The angle offset/an‐
gle increment of the
rotary axes v1, v2

The offset or the angle increment of the Hirth tooth system of the rotary axes
v1 and v2. Programmed or calculated angle is rounded up to the next value that
results from phi = s + n * d when n is an integer.

The minimum and
maximum position of
the rotary axes v1, v2

The minimum and maximum position of the rotary axis limit angle (software limit)
of the rotary axes v1 and v2.

Parameters for the user
$TC_CARR34 to $TC_CARR40 contain parameters that are freely available to users and up
to SW 6.4 were as standard, not further evaluated within the NCK or had no significance.

Fine offset parameters
$TC_CARR41 to $TC_CARR65 include fine offset parameters that can be added to the values
in the basis parameters. The fine offset value assigned to a basic parameter is obtained when
the value 40 is added to the parameter number.

Tool offsets
11.8 Toolholder kinematics

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 449

Example
The toolholder used in the following example can be fully described by a rotation around the
Y axis.

Program code Comment
N10 $TC_CARR8[1]=1 ; Definition of the Y component of

the first rotary axis of toolholder
1.

N20 $TC_DP1[1,1] = 120 ; Definition of a shaft miller.
N30 $TC_DP3[1,1]=20 ; Definition of a shaft miller, 20

mm long.
N40 $TC_DP6[1,1]=5 ; Definition of a shaft miller with

5 mm radius.
N50 ROT Y37 ; Frame definition with 37° rota-

tion around the Y axis.
N60 X0 Y0 Z0 F10000 ; Approach start position.
N70 G42 CUT2DF TCOFR TCARR=1 T1 D1 X10 Set radius compensation, tool

length compensation in rotated
frame, select toolholder 1, tool 1.

N80 X40 ; Perform machining under a rota-
tion of 37°.

N90 Y40
N100 X0
N110 Y0
N120 M30

Tool offsets
11.8 Toolholder kinematics

Job Planning
450 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information

Resolved kinematics
For machines with resolved kinematics (both the tool as well as the workpiece can be rotated),
the system variables have been expanded by the entries $TC_CARR18[m] up to
$TC_CARR23[m] and are described as follows:

The rotatable tool table consisting of:

● The vectorial clearance of the second rotary axis V2 to the reference point of a tool table
that can be rotated I4 of the third rotary axis.

The rotary axes consisting of:

● The two channel identifiers for the reference of the rotary axes V1and V2, whose position
is, when required, accessed to determine the orientation of the toolholder that can be
orientated.

The type of kinematics with one of the values T, P or M:

● Kinematics type T: Only tool can rotate.

● Kinematics type P: Only part can rotate.

● Kinematics type M: Tool and part can rotate.

Clearing the toolholder data
Data of all toolholder data sets can be deleted using $TC_CARR1[0]=0.

The kinematic type $TC_CARR23[T]=T must be assigned with one of the three permissible
uppercase or lowercase letters (T,P,M) and for this reason, should not be deleted.

Changing the toolholder data
Each of the described values can be modified by assigning a new value in the part program.
Any character other than T, P or M results in an alarm when an attempt is made to activate
the toolholder that can be orientated.

Reading the toolholder data
Each of the described values can be read by assigning it to a variable in the part program.

Fine offsets
An illegal fine offset value is only detected if a toolholder that can be orientated is activated,
which contains such a value and at the same time setting data
SD42974 $SC_TOCARR_FINE_CORRECTION = TRUE.

The maximum permissible fine offset is limited to a permissible value in the machine data.

Tool offsets
11.8 Toolholder kinematics

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 451

11.9 Tool length compensation for orientable toolholders (TCARR,
TCOABS, TCOFR, TCOFRX, TCOFRY, TCOFRZ)

When the spatial orientation of the tool changes, its tool length components also change.

After a reset, e.g. through manual setting or change of the toolholder with a fixed spatial
orientation, the tool length components also have to be determined again. This is performed
using the TCOABS and TCOFR path commands.

For a toolholder of an active frame that can be orientated, when selecting the tool with TCOFRZ,
TCOFRY and TCOFRX, it is possible to define the direction in which the tool should point.

Syntax
TCARR=[<m>]
TCOABS
TCOFR
TCOFRZ
TCOFRY
TCOFRX

Meaning

TCARR=[<m>]: Request toolholder with the number "m"
TCOABS: Determine tool length components from the orientation of the current toolholder
TCOFR: Determine tool length components from the orientation of the active frame
TCOFRZ: Orientable toolholder from active frame with a tool pointing in the Z direction
TCOFRY: Orientable toolholder from active frame with a tool pointing in the Y direction
TCOFRX: Orientable toolholder from active frame with a tool pointing in the X direction

Tool offsets
11.9 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR, TCOFRX, TCOFRY,
TCOFRZ)

Job Planning
452 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information

Determine tool length offset from the orientation of the toolholder (TCOABS)
TCOABS calculates the tool length offset from the current orientation angles of the toolholder;
saved in the system variables $TC_CARR13 and $TC_CARR14.

For a definition of toolholder kinematics with system variables, see "Toolholder kinematics
(Page 447)".

In order to make a new calculation of the tool length offset when frames are changed, the tool
has to be selected again.

Tool direction from active frame
The toolholder with orientation capability is set so that the tool points in the following directions:

● With TCOFR or TCOFRZ in the Z direction

● With TCOFRY in the Y direction

● With TCOFRX in the X direction

The tool length offset is re-calculated when changing over between TCOFR and TCOABS.

Request toolholder (TCARR)
With TCARR, the toolholder number m is requested with its geometry data (compensation
memory).

With m=0, the active toolholder is deselected.

The geometry data of the toolholder only becomes active after a tool is called. The selected
tool remains active after a toolholder change has taken place.

The current geometry data for the toolholder can also be defined in the part program via the
corresponding system variables.

Recalculation of tool length offset (TCOABS) for a frame change
In order to make a new calculation of the tool length offset when frames are changed, the tool
has to be selected again.

Note

The tool orientation must be manually adapted to the active frame.

When the tool length offset is calculated, the angle of rotation of the toolholder is calculated
in an intermediate step. With toolholders with two rotary axes, there are generally two sets of
rotation angles, which can be used to adapt the tool orientation to the active frame; therefore,

Tool offsets
11.9 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR, TCOFRX, TCOFRY,

TCOFRZ)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 453

the rotation angle values stored in the system variables must at least correspond approximately
to the mechanically set rotation angles.

Note
Tool orientation

It is not possible for the control to check whether the rotation angles calculated by means of
the frame orientation are settable on the machine.

If the rotary axes of the toolholder are arranged such that the tool orientation calculated by
means of the frame orientation cannot be reached, then an alarm is output.

The combination of tool precision compensation and the functions for tool length offset on
movable toolholders is not permissible. If both functions are called simultaneously, an error
message is issued.

The TOFRAME function allows a frame to be defined on the basis of the direction of orientation
of the selected toolholder. For more information please refer to chapter "Frames".

When orientation transformation is active (3, 4 or 5-axis transformation), it is possible to select
a toolholder with an orientation deviating from the zero position without causing output of an
alarm.

Transfer parameter from standard and measuring cycles
For the transfer parameter of standard and measuring cycles, the following defined value
ranges apply.

For angular value, the value range is defined as follows:

● Rotation around 1st geometry axis: -180 degrees to +180 degrees

● Rotation around 2nd geometry axis: -90 degrees to +90 degrees

● Rotation around 3rd geometry axis: -180 degrees to +180 degrees

Refer to Chapter Frames, "Programmable rotation (ROT, AROT, RPL)".

Note

When transferring angular values to a standard or measuring cycle, the following should be
carefully observed:

Values less than the calculation resolution of the NC should be rounded-off to zero!

The calculation resolution of the NC for angular positions is defined in the machine data:

MD10210 $MN_INT_INCR_PER_DEG

Tool offsets
11.9 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR, TCOFRX, TCOFRY,
TCOFRZ)

Job Planning
454 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.10 Online tool length compensation (TOFFON, TOFFOF)
Use the system variable $AA_TOFF[<n>] to overlay the effective tool lengths in accordance
with the three tool directions three-dimensionally in real time.

The three geometry axis identifiers are used as index <n>. Thus, the number of active direction
offsets is determined by the geometry axes that are active at the same time.

All offsets can be active at the same time.

The online tool length offset function can be used for:

● Orientation transformation TRAORI

● Orientable toolholder TCARR

Note

Online tool length offset is an option, which must be enabled in advance. This function is
only practical in conjunction with an active orientation transformation or an active orientable
toolholder.

Syntax

TRAORI
TOFFON(<compensation direction>[,<offset value>])
WHEN TRUE DO $AA_TOFF[<compensation direction>] ; In synchronized actions.
...
TOFFOF(<compensation direction>)

For more information about programming online tool length offset in motion-synchronous
actions, see "Synchronized actions (Page 603)".

Meaning

TOFFON: Activate online tool length offset
<compensation
direction>:

Tool direction (X, Y, Z), in which the online tool length
offset should be active.

<offset value>: When activating, an offset value can be specified for
the relevant direction of compensation and this is im‐
mediately recovered.

TOFFOF: Reset online tool length offset
The compensation values in the specified compensation direction are reset and a pre-
processing stop is initiated.

Tool offsets
11.10 Online tool length compensation (TOFFON, TOFFOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 455

Examples

Example 1: Selecting the tool length compensation

Program code Comment
MD21190 $MC_TOFF_MODE = 1
MD21194 $MC_TOFF_VELO[0] =1000
MD21196 $MC_TOFF_VELO[1] =1000
MD21194 $MC_TOFF_VELO[2] =1000
MD21196 $MC_TOFF_ACCEL[0] =1
MD21196 $MC_TOFF_ACCEL[1] =1
MD21196 $MC_TOFF_ACCEL[2] =1

; Absolute values are approached.

N5 DEF REAL XOFFSET
N10 TRAORI(1) ; Transformation on.
N20 TOFFON(Z) ; Activation of online tool length

compensation for the Z tool direc-
tion.

N30 WHEN TRUE DO $AA_TOFF[Z]=10 G4 F5 ; A TLC of 10 is interpolated for the
Z tool direction.

...
N100 XOFFSET=$AA_TOFF_VAL[X] ; Assigns actual compensation in the

X direction.
N120 TOFFON(X,-XOFFSET) G4 F5 ; For the X tool direction, the TLC

is reduced back to 0.

Example 2: Deselect the tool length offset

Program code Comment
N10 TRAORI(1) ; Transformation on.
N20 TOFFON(X) ; Activation of online tool length

compensation for the X tool direc-
tion.

N30 WHEN TRUE DO $AA_TOFF[X]=10 G4 F5 ; A TLC of 10 is interpolated for the
X tool direction.

...
N80 TOFFOF(X) ; Position offset of the X tool di-

rection is deleted:
...$AA_TOFF[X]=0
No axis is moved.
The position offset is added to the
actual position in the Work corre-
sponding to the
actual orientation.

Tool offsets
11.10 Online tool length compensation (TOFFON, TOFFOF)

Job Planning
456 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information

Block preparation
During block preparation in preprocessing, the current tool length offset active in the main run
is also taken into consideration. To allow extensive use to be made of the maximum permissible
axis velocity, it is necessary to stop block preparation with a STOPRE preprocessing stop while
a tool offset is established.

The tool offset is always known at the time of run-in when the tool length offsets are not changed
after program start or if more blocks have been processed after changing the tool length offsets
than the IPO buffer can accommodate between run-in and main run.

Variable $AA_TOFF_PREP_DIFF
The dimension for the difference between the currently active compensation in the interpolator
and the compensation that was active at the time of block preparation can be polled in the
variable $AA_TOFF_PREP_DIFF[<n>].

Adjusting machine data and setting data
The following system data is available for online tool length offset:

● MD20610 $MC_ADD_MOVE_ACCEL_RESERVE (acceleration margin for overlaid motion)

● MD21190 $MC_TOFF_MODE
Content of system variable $AA_TOFF[<n>] is moved through as absolute value or is
integrated up.

● MD21194 $MC_TOFF_VELO (velocity of the online tool length offset)

● MD21196 $MC_TOFF_ACCEL (acceleration of the online tool length offset)

● Setting data for presetting limit values
:
SD42970 $SC_TOFF_LIMIT (upper limit of the tool length offset value)

Reference:
Function Manual, Special Functions; F2: Multi-axis transformations

Tool offsets
11.10 Online tool length compensation (TOFFON, TOFFOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 457

11.11 Modification of the offset data for rotatable tools

11.11.1 Calculating orientations (ORISOLH)
The predefined ORISOLH function helps the user to set the rotary axis positions of a machine
so that a turning tool can be brought into a defined, kinematic-independent position relative to
the workpiece. Prerequisite is that a 6-axis transformation is active that has been
parameterized with kinematic chains.

Two basic functions are available:

● Tool alignment
The β and γ angles are specified. The function calculates the angles of the three orientation
axes required for this.

● Direct tool alignment
The angles of the second and third orientation axes are specified. The function calculates
the associated β and γ angles as well as that of the missing first orientation axis.

Note
Order of the orientation axes

If you run through the kinematic chain that describes the structure of the machine, from the
workpiece to the tool, then the following specifications apply for the order of the three
orientation axes of a 6-axis transformation:
● The orientation axis that is closest to the workpiece is the first orientation axis.
● The orientation axis that is closest to the tool is the third orientation axis.

Generally, the first orientation axis is a spindle and the corresponding rotation is therefore
implemented in these cases through a rotating frame.

Syntax
<RetVal> = ORISOLH(<Cntrl>,<W1>,<W2>)

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
458 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

ORISOLH: Function call
<RetVal>: Function return value

Data type: INT
Range of val‐
ues:

0, -2, -3, ..., -17

Values: 0 Function has ended without an error.
-2 No valid transformation (6-axis orientation transformation) is

active.
-3 The first parameter (<Cntrl>) is negative.
-4 The unit position of the first parameter (<Cntrl>) is invalid.

Only the values 0 and 1 are permissible.
-5 The tens position of the first parameter (<Cntrl>) is invalid.

Only the values 0 to 3 are permissible.
-6 The hundreds position of the first parameter (<Cntrl>) is in‐

valid.
Only the values 0 and 1 are permissible.

-7 The thousands position of the first parameter (<Cntrl>) is in‐
valid.
Only the values 0 to 3 are permissible.

-8 Angle γ is too large for the "Direct tool alignment" function.
-9 At least one of the specified axis positions violates an axis

limit for the "Direct tool alignment" function.
-10 No tool is active.
-11 The requested orientation cannot be set.
-12 The adaptation of the free axis angle for the Hirth joint is not

possible for the first or only solution.
-13 The adaptation of the free axis angle for the Hirth joint is not

possible for the second solution.
-14 The adaptation of the free axis angle for the Hirth joint is not

possible for either of the two solutions.
-15 The first orientation axis is parameterized as Hirth axis.
-16 The second as well as the third rotary axis has been para‐

meterized as Hirth axis. Only one of the two axes can be the
Hirth axis.

-17 At least one of the specified axis positions is not compatible
with the associated Hirth joint for the "Swivel directly" func‐
tion.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 459

<Cntrl>: Controls the behavior of the function
Data type: INT
The <Cntrl> parameter is decimal coded (unit to thousands position):
Unit position: The unit position controls the response to errors.

xxx0 In the event of an error (return value < 0), alarm 14106 is
output and program processing is aborted.
Note:
The alarm is also output irrespective of the value of the unit
position when the <Cntrl> parameter is negative.

xxx1 In the event of an error (return value < 0) no alarm is output.
The user can react suitably in the program.

Tens position: Controls the behavior when an orientation axis with Hirth joint is
present.
Note:
This parameter is only evaluated for the "Tool alignment" function
(i.e. when the hundreds position has the value "0").

xx0x The axis position is rounded off to the nearest position.
xx1x The axis positions are rounded off so that the difference of

the β angle to its programmed value is minimal.
xx2x The axis positions are rounded off so that the β angle is equal

to the highest possible value which is less than the program‐
med value (β is rounded down).

xx3x The axis positions are rounded off so that the β angle is equal
to the lowest possible value which is greater than the pro‐
grammed value (β is rounded up).

Hundreds posi‐
tion:

Specifies which function is to be executed or the significance of the
two following parameters <W1> and <W2>.

x0xx "Tool alignment" function
Parameters <W1> and <W2> have the following meaning:
● <W1> = β
● <W2> = γ
The associated angles of the orientation axes are calculated.

x1xx "Direct tool alignment" function
<W1> is the position specification for the second orientation
axis, <W2> is the position specification for the third orienta‐
tion axis of a 6-axis transformation. The position of the first
orientation axis and the β and γ angles are defined which are
compatible with the two position specifications.
If no error occurs, two solutions are always output in the
$P_ORI_POS[<n>, <m>] system variables. The first index
<n> (0 or 1) refers to the solution and the second index <m>
(0 ... 2) to the orientation axis:
● $P_ORI_POS[0/1, 0]: Position of the first orientation axis
● $P_ORI_POS[0/1, 1]: Angle β
● $P_ORI_POS[0/1, 2]: Angle γ
A check is made as to whether the position specifications
<W1> and <W2> are compatible with any Hirth joints or active
software limits. If this is not the case, a corresponding error
number is returned (see <RetVal> parameter).

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
460 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

If the angles <W1> and <W2> are selected arbitrarily, the
cutting edge of the tool is generally not in the machining
plane. The angle γ through which the cutting edge is rotated
out of the machining plane, must not be greater than the limit
value which is defined by the setting data SD42999 $SC_OR‐
ISOLH_INCLINE_TOL.

Thousands po‐
sition:

Specifies which positions of the solutions may be modified when the
hundreds position has the value "0", i.e. for the "Tool alignment"
function.

0xxx The calculated axis positions should be as close as possible
to the current machine axis positions.

1xxx The calculated axis positions for modulo axes should be as
close as possible to the middle of the modulo range, for other
axes as close as possible to 0. For non-modulo axes, this
means that the axis positions are reduced to the range
-180° … +180°.

2xxx The calculated axis positions should be reduced to the range
-180° … +180° irrespective of the axis type.

<W1>: First angle
The meaning results from the hundreds position of the <Cntrl> paramter.
Data type: REAL

<W1>: Second angle
The meaning results from the hundreds position of the <Cntrl> paramter.
Data type: REAL

Note

Parameters that have not been programmed have the default value "0".

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 461

Further information
The number of solutions found together with further status information when executing the
ORISOLH function, can be read via the following system variables:

System variable Meaning
$P_ORI_POS
[<n>, <m>]

Returns the angles of the orientation axes that result from the orientation program‐
ming.
<n>: Index of the solution

Range of values: 0, 1
<m>: Index of the orientation axis

Range of values: 0 ... 2
The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

When the ORISOLH function is called in the "Direct tool alignment" mode, the
$P_ORI_POS[0/1, 1] and P_ORI_POS[0/1, 2] variables contain the values of the
two angles β and γ belonging to the two solutions.
The first solution entered in $P_ORI_POS[<n>, <m>], i.e. with the index <n> = 0, is
always the solution that is selected by the control when the requested orientation
is approached directly. The second index <m> refers to the orientation axis, i.e. on
$NT_ROT_AX_NAME.
The axis positions entered in $P_ORI_POS[<n>, <m>] take into account the offsets
entered in $NK_OFF and $NK_OFF_FINE, i.e. these axis angles can be used in the
following blocks to set the required orientation without any further modification.
If a rotary axis is a Hirth axis, the solution positions are rounded off to the nearest
position of rest of the Hirth joint. For Hirth jointed rotary axes, you can read the
differences between the axis positions for the exact solutions and those of the sol‐
utions adapted to the Hirth incrementing in the $P_ORI_DIFF system variable.

$P_ORI_DIFF
[<n>, <m>]

Returns the difference between the exact positions of the orientation axes and those
provided in $P_ORI_POS that result from the orientation programming.
<n>: Index of the solution

Range of values: 0, 1
<m>: Index of the orientation axis

Range of values: 0 ... 2
The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

The content can only be not equal to zero when the positions are incremented (Hirth
joint), i.e. when the system data $NT_HIRTH_INCR of the relevant axis is not equal
to zero and when this axis is a manual rotary axis.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
462 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

System variable Meaning
$P_ORI_SOL If for an orientation transformation with more than one orientation axis, the axis

angles are calculated that should result in a specified orientation, there is generally
more than one solution. The $P_ORI_SOL system variables contain the number of
valid solutions together with additional status information.
The content of $P_ORI_SOL is coded as follows:
Values < 0 General error states

-1 No solutions have been calculated yet for the active transfor‐
mation (missing call of ORISOLH).

-2 A transformation is not active, or the active transformation is
not an orientation transformation (6-axis transformation) that
can provide positions for a specified orientation programming.

-4 The desired orientation cannot be set with the present kine‐
matics.

-5 No solution was found when the ORISOLH function was called
in the "Direct tool alignment" mode.

-6 Angle γ is too large when the ORISOLH function was called
in the "Direct tool alignment" mode.

-7 An angle was specified when the ORISOLH function was
called in the "Direct tool alignment" mode that cannot be set
because of the Hirth joint.

-8 The first orientation axis (frame axis) must not be parameter‐
ized as Hirth axis.

-9 The second as well as the third rotary axis has been parame‐
terized as Hirth axis. Only one of the two axes can be the Hirth
axis.

-10 No adaptation of the solution(s) to the Hirth joint has been
found.

Values > 0
Unit position

Number of mathematically possible solutions without consideration
of axis limits and any error conditions.

0 There is no solution, i.e. the requested orientation cannot be
set.
There can be three different causes for this case:
● In principle, the requested orientation cannot be achieved

because of the machine kinematics (orientation axes not
arranged at right angles) even with an arbitrary traversing
range of the orientation axes. In this case, the tens and
hundreds positions of $P_ORI_SOL are both zero, the
$P_ORI_STAT status variables assigned to the orientation
axis have the value "-4".

● The calculated solutions cannot be achieved because they
would violate the axis limits. The positions of the
orientation axes that would result without the axis limits,
can be read in $P_ORI_POS.

● Axis positions were specified when the ORISOLH function
was called in the "Direct tool alignment" mode which would
result in either the orientation vector or the orientation
normal vector of the tool being aligned parallel to the first
orientation axis, whose position is to be calculated. The
position of this axis is not defined in these cases.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 463

System variable Meaning
1 There is a solution.

There can be three different causes for this case:
● Based on the specified orientation and the machine

kinematics, there is only one solution (from the
mathematical point of view, two coinciding solutions) even
without consideration of the axis limits. This case occurs
at the edge of the orientation range for kinematics that are
not at right angles. $P_ORI_POS contains both (identical)
solutions.

● There is only one solution because a second solution is
invalid due to the violated axis limits. The valid solution is
always the first solution in $P_ORI_POS. The second
solution which would result when the axis limits are not
taken into account, can also be read in $P_ORI_POS.

● This is the normal case when the ORISOLH function is
called in the "Direct tool alignment" mode. For the specified
axis positions of two orientation axes, there is generally
only one valid position for the missing orientation axis to
be calculated.

2 There are two solutions.
8 There are an infinite number of solutions, i.e. the position of

an orientation axis (the polar axis) is arbitrary. However, from
the two possible positions of the other axes, one is excludes
because of the violated axis limits.

9 There are an infinite number of solutions, i.e. the position of
an orientation axis (the polar axis) is indefinite. The indefinite
axis can be determined from the hundreds position or from the
$P_ORI_STAT system variable.

Values > 0
Tens posi‐
tion

Bit-coded display for violated axis limits. The precise cause of the
error can be determined from the $P_ORI_STAT system variable.
Bit 0 (value 10): For at least one solution, at least one axis limit

of the first orientation axis is violated.
Bit 1 (value 20): For at least one solution, at least one axis limit

of the second orientation axis is violated.
Bit 2 (value 40): For at least one solution, at least one axis limit

of the third orientation axis is violated.
Values > 0
Hundreds
position

Bit-coded display for non-defined axis positions (can only occur when
there is an infinite number of solutions, i.e. when the unit position is
equal to "9").
Bit 0 (value 100): The position of the first orientation axis is not de‐

fined.
Bit 1 (value 200): The position of the second orientation axis is not

defined.
Bit 2 (value 400): The position of the third orientation axis is not

defined.
The designations first, second and third orientation axis refer to the definition of the
axes in $NT_ROT_AX_NAME.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
464 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

System variable Meaning
$P_ORI_STAT
[<n>]

Returns the status for each of the maximum three orientation axes after ORISOLH
has been called.
<n>: Index of the orientation axis

(correspnds to the index of the relevant orientation axis in
$NT_ROT_AX_NAME)
Range of values: 0 ... 2

The order of the orientation axes (1 ... 3) refers to the
definition of the axes in $NT_ROT_AX_NAME.

The content of $P_ORI_STAT is coded as follows:
Values < 0 General error states

-1 The status is not defined (missing call of ORISOLH).
-2 A transformation is not active, or the active transformation is

not an orientation transformation (6-axis transformation) that
can provide positions for a specified orientation programming.

-3 The axis is not included in the active transformation.
-4 The position of the axis cannot be calculated because the re‐

quested orientation cannot be achieved with the present kin‐
ematics even with an arbitrary assumed traversing range of
the axis.

-5 Axis positions were specified when the ORISOLH function
was called in the "Direct tool alignment" mode which would
result in either the orientation vector or the orientation normal
vector of the tool being aligned parallel to the first orientation
axis, whose position is to be calculated. The position of this
axis is not defined in these cases.

-6 Angle γ is too large when the ORISOLH function was called
in the "Direct tool alignment" mode.

-7 An angle was specified when the ORISOLH function was
called in the "Direct tool alignment" mode that cannot be set
because of the Hirth joint.

-8 The first orientation axis (frame axis) must not be parameter‐
ized as Hirth axis.

-9 The second as well as the third rotary axis has been parame‐
terized as Hirth axis. Only one of the two axes can be the Hirth
axis.

-10 No adaptation of the solution(s) to the Hirth joint has been
found.

Values > 0
Unit position

Bit-coded display for violated axis limits of the first solution.
Bit 0 (value 1): The first solution violates the lower axis limit.
Bit 1 (value 2): The first solution violates the upper axis limit.

Values > 0
Tens posi‐
tion

Bit-coded display for violated axis limits of the second solution.
Bit 0 (value 10): The second solution violates the lower axis limit.
Bit 1 (value 20): The second solution violates the upper axis limit.

Values > 0
Hundreds
position

Display of a non-defined axis position.
Bit 0 (value 100): The position of the orientation axis is not defined,

i.e. the requested orientation is achieved with
each arbitrary setting of the rotary axis (polar po‐

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 465

System variable Meaning
sition). This information is also contained in the
$P_ORI_SOL system variable.

Of the error numbers that indicate a violation of the axis limits, several can occur
simultaneously. When an axis limit is violated, an attempt is made to reach a position
within the permissible axis limits by adding or subtracting multiples of 360°. If this
is not possible, it is not clearly defined whether the lower or the upper axis limit has
been violated.
If there is no solution for the requested orientation ($P_ORI_SOL = 0), the status of
the orientation axes in the transformation is "0".

Note
$NT_ROT_AX_NAME

This system variable refers to a maximum of three axes used for setting the orientation. It
contains the names of the chain elements ($NK_NAME) that define the machine axes (rotary
axes) that must perform the orientation movements resulting from a kinematic transformation.
The order in which the maximum three rotary axes are contained in this system variable is
irrelevant for the machine kinematics because this is derived from the structure of the kinematic
chains. However, as it defines the order in which other variables access the rotary axes, the
order of the orientation axes in $NT_ROT_AX_NAME must match the kinematic description.

Note
Status information

The status information that shows, for example, that an orientation cannot be achieved or can
only be achieved when relevant axis limits are violated, does not trigger an NC alarm. It is the
responsibility of the user to react suitably to the specified conditions.

11.11.2 Activating the modification of the offset data for rotatable tools (CUTMOD,
CUTMODK)

The modification of the offset data for rotatable tools is activated in the NC program via the
CUTMOD (in combination with orientable tool carriers) or CUTMODK language command (for
orientation transformations that were defined by means of kinematic chains).

Note

As the orientable tool carriers and orientation transformations that were defined by means of
kinematic chains cannot be active at the same time, there are no conflicts between the two
variants.

Syntax
CUTMOD = <Value>

or

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
466 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

CUTMODK = <Command>

Meaning

CUTMOD: Function call in combination with orientable tool carriers
<Value>: Assigned value

Data type: INT
Value: 0 The function is deactivated.

The values supplied from system variables $P_AD... are the same
as the corresponding tool parameters.

> 0 The function is activated if an orientable tool carrier with the speci‐
fied number is active, i.e. the activation is linked to a specific ori‐
entable tool carrier.
The values supplied from system variables $P_AD... may be modi‐
fied with respect to the corresponding tool parameters depending
on the active rotation.
The deactivation of the designated orientable tool carrier tempo‐
rarily deactivates the function; the activation of another orientable
tool carrier permanently deactivates it. This is the reason why in
the first case, the function is re-activated when again selecting the
same orientable tool carrier; in the second case, a new selection
is required - even if at a subsequent time, the orientable tool carrier
is re-activated with the specified number.
The function is not influenced by a reset.

-1 The function is always activated if an orientable tool carrier is ac‐
tive.
When changing the tool carrier or when de-selecting it and a sub‐
sequent new selection, CUTMOD does not have to be set again.

-2 The function is always activated if an orientable tool carrier is ac‐
tive whose number is the same as the currently active orientable
tool carrier.
If an orientable tool carrier is not active, then this has the same
significance as CUTMOD=0.
If an orientable tool carrier is active, then this has the same signif‐
icance as when directly specifying the actual tool carrier number.

< -2 Values less than 2 are ignored, i.e. this case is treated as if CUT‐
MOD was not programmed.
Note:
This value range should not be used as it is reserved for possible
subsequent expansions.

CUTMODK: Function call in combination with orientation transformations that have been defined by
means of kinematic chains

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 467

<Command>: Assigned Command
Data type: STRING
Value: "NEW" The states of an active transformation defined with kinematic

chains relevant for the "Modification of the offset data", the
name of the transformation and the current contour frame
are saved.
Note:
This command is only permissible when a suitable transfor‐
mation (TRAORI_DYN, TRAORI_STAT or TRAANG_K) is
active.

"OFF" Switches the active "Modification of the offset data" off. The
data previously stored with "NEW" is retained.
Note:
This command is also permissible when CUTMODK is not
active. It then remains without effect. Any data set present
for the "Modification of the offset data" is retained.

"ON" With this command, the "Modification of the offset data" is
re-activated with a data set previously stored with the "NEW"
command.
If a transformation with the name of the stored data set is
active when this command is executed, the "Modification of
the offset data" takes effect immediately. Otherwise, the ac‐
tivation is delayed until an active transformation is activated.

"CLEAR" As with the "OFF" command, switches the "Modification of
the offset data" off and also deletes the stored data set.
Note:
This command is also permissible when CUTMODK is not
active.

Note
SD42984 $SC_CUTDIRMOD

The CUTMOD or CUTMODK command replaces the function that can be activated using the
setting data SD42984 $SC_CUTDIRMOD. However, this function remains available
unchanged. However, as it doesn't make sense to use both functions in parallel, it can only be
activated if CUTMOD is equal to zero and CUTMODK is the zero string.

Further information

Reading modified offset data
The modified offset data is provided in the following system variables and OPI variables:

Meaning System variable OPI variable
Cutting edge position $P_AD[2] cuttEdgeParam2
Holder angle $P_AD[10] cuttEdgeParam10
Cut direction $P_AD[11] cuttEdgeParam11
Clearance angle $P_AD[24] cuttEdgeParam24

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
468 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The data is always modified with respect to the corresponding tool parameters
($TC_DP2[..., ...] etc.) when the "Modification of the offset data for rotatable tools" function
was activated with the CUTMOD or CUTMODK command and the tool was rotated by an orientable
tool carrier or a suitable orientation transformation.

Further function-relevant system variables

System variable Meaning
$P_CUTMOD_ANG /
$AC_CUTMOD_ANG

Returns the angle through which a tool was rotated in the active machining
plane and the modified cutting edge data available for the CUTMOD and
CUTMODK functions.

$P_CUTMOD /
$AC_CUTMOD

Reads the currently valid value that was last programmed with the CUTMOD
command (number of the tool carrier for which the modification of the offset
data should be activated).
If the last programmed value was CUTMOD = -2 (activation with the currently
active orientable tool carrier), then the value "-2" is not returned in the system
variable, but rather the number of the orientable tool carrier active at the time
of programming.

$P_CUTMODK /
$AC_CUTMODK

Reads the name of the transformation under which the currently valid data set
for the "Modification of the offset data" was created.

$P_CUT_INV /
$AC_CUT_INV

Supplies the value TRUE if the tool is rotated so that the spindle direction of
rotation must be inverted. To do this, the following four conditions must be
fulfilled in the block to which the read operations refer:
1. If a turning or grinding tool is active

(tool types 400 to 599 and / or SD42950 $SC_TOOL_LENGTH_TYPE = 2).
2. The modification of the offset data was activated with the CUTMOD or

CUTMODK command.
3. An orientable tool carrier or an orientation transformation defined with

kinematic chains is active, which was selected with the CUTMOD or
CUTMODK command.

4. The tool is rotated by the orientable tool carrier or the kinematic orientation
transformation so that the resulting normal of the tool cutting edge is
rotated with respect to the initial position by more than 90° (typically 180°).

If at least one of the specified four conditions is not fulfilled, the variable returns
the value FALSE. For tools whose cutting edge position is not defined, the
value of the variable is always FALSE.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 469

System variable Meaning
$P_CUTMOD_ERR Error state after the last call of the CUTMOD function

The CUTMOD function can also be called implicitly for a tool change. At a
reset, the variable is reset to zero. It is reset at every tool change and, if
required, rewritten.
The variable is bit-coded. The bits have the following meanings:
Bit 0: No valid cut direction is defined for the active tool.
Bit 1: The cutting edge angle (clearance angle and holder angle) of the

active tool are both zero.
Bit 2: The clearance angle of the active tool has an impermissible value (<

0° or > 180°).
Bit 3: The holder angle of the active tool has an impermissible value (< 0°

or > 90°).
Bit 4: The plate angle of the active tool has an impermissible value (< 0° or

> 90°).
Bit 5: The cutting edge position - holder angle combination of the active tool

is not permitted (the holder angle must be ≤ 90° for cutting edge po‐
sition 1 to 4; for cutting edge positions 5 to 8 it must be ≥ 90°).

Bit 6: Illegal rotation of the active tool.
The tool was rotated out of the active machining plane by ± 90° (with
a tolerance of about 1°). The cutting edge position is therefore no
longer defined in the machining plane.

Bit 7: The cutting plate is not in the machining plane and the angle between
the cutting plate and the machining plane exceeds the upper limit
specified with the setting data SD42998 $SC_CUT‐
MOD_PLANE_TOL.

Bit 8: The cutting plate is not in the machining plane. Angle α is greater than
1°. Angle α is the angle of rotation around the coordinate axis which
is perpendicular to the axis of rotation of angle β as well as to the axis
of rotation of angle γ (the X axis for G18).

$P_...: Preprocessing variables
$AC_...: Main run variables

All main run variables can be read in synchronized actions. A read access operation from the
preprocessing generates a preprocessing stop.

Plane change
To determine the modified cutting edge position, cutting direction and holder or clearance
angle, the evaluation of the cutting edge in the active plane (G17 - G19) is decisive.

However, if setting data SD42940 $SC_TOOL_LENGTH_CONST (change of the tool length
component when selecting the plane) has a valid non-zero value (plus or minus 17, 18 or 19),
its contents define the plane in which the relevant quantities are evaluated.

This priority rule of the setting data over the G code can be deactivated by setting bit 18 of the
machine data $MC_TOOL_PARAMETER_DEF_MASK. This means that when this bit is set,
the plane defined with the G command of group 6 is still valid.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
470 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Effectiveness of the modified cutting data
The modified cutting edge position and the modified cutting edge reference point are
immediately effective when programming, even for a tool that is already active. A tool does
not have to be re-selected for this purpose.

S: Cutting edge center point
P: Cutting edge reference point
SL: Cutting edge position

Figure 11-4 Tool with cutting edge position 3 and an orientable tool carrier that can rotate the tool
around the B axis.

Program code Comment
N10 $TC_DP1[1,1]=500
N20 $TC_DP2[1,1]=3 ;Cutting edge position
N30 $TC_DP3[1,1]=12
N40 $TC_DP4[1,1]=1
N50 $TC_DP6[1,1]=6
N60 $TC_DP10[1,1]=110 ; Holder angle
N70 $TC_DP11[1,1]=3 ; Cut direction
N80 $TC_DP24[1,1]=25 ; Clearance angle

N90 $TC_CARR7[2]=0 $TC_CARR8[2]=1 $TC_CARR9[2]=0 ; B axis
N100 $TC_CARR10[2]=0 $TC_CARR11[2]=0
$TC_CARR12[2]=1

; C axis

N110 $TC_CARR13[2]=0
N120 $TC_CARR14[2]=0
N130 $TC_CARR21[2]=X

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 471

Program code Comment
N140 $TC_CARR22[2]=X
N150 $TC_CARR23[2]="M"

N160 TCOABS CUTMOD=0
N170 G18 T1 D1 TCARR=2 ; X Y Z
N180 X0 Y0 Z0 F10000 ; 12.000 0.000 1.000

N190 $TC_CARR13[2]=30
N200 TCARR=2
N210 X0 Y0 Z0 ; 10.892 0.000 -5.134
N220 G42 Z–10 ; 8.696 0.000 –17.330
N230 Z–20 ; 8.696 0.000 –21.330
N240 X10 ; 12.696 0.000 –21.330
N250 G40 X20 Z0 ; 30.892 0.000 –5.134

N260 CUTMOD=2 X0 Y0 Z0 ; 8.696 0.000 –7.330
N270 G42 Z–10 ; 8.696 0.000 –17.330
N280 Z–20 ; 8.696 0.000 –21.330
N290 X10 ; 12.696 0.000 –21.330
N300 G40 X20 Z0 ; 28.696 0.000 –7.330

N310 M30

The numerical values in the comments specify the end of block positions in the machine coordinates
(MCS) in the sequence X → Y → Z.

Explanations
In block N180, initially the tool is selected for CUTMOD=0 and non-rotated tool holders that can
be orientated. As all offset vectors of the tool holder that can be orientated are 0, the position
that corresponds to the tool lengths specified in $TC_DP3[1,1] and $TC_DP4[1,1] is
approached.

The tool holder that can be orientated with a rotation of 30° around the B axis is activated in
block N200. As the cutting edge position is not modified due to CUTMOD=0, the old cutting edge
reference point is decisive just as before. This is the reason why in block N210 the position is
approached, which keeps the old tool nose reference point at the zero (i.e. the vector (1, 12)
is rotated through 30° in the Z/X plane).

In block N260, contrary to block N200, CUTMOD=2 is effective. As a result of the tool holder
rotation that can be orientated, the modified cutting edge position becomes 8. Deviating axis
positions also result from this.

The tool radius compensation (TRC) is activated in blocks N220 and/or N270. The different
cutting edge position in both program sections has no effect on the end positions of the blocks
in which the TRC is active; the corresponding positions are therefore identical. The different
cutting edge positions only become effective again in the deselect blocks N260 and/or N300.

Tool offsets
11.11 Modification of the offset data for rotatable tools

Job Planning
472 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.12 Working with tool environments

Overview of functions
● Save tool environment (TOOLENV) (Page 473)

● Delete tool environment (DELTOOLENV) (Page 476)

● Read T, D and DL number (GETTENV) (Page 477)

● Read tool lengths and/or tool length components (GETTCOR) (Page 478)

● Change tool components (SETTCOR) (Page 484)

System variables overview
● Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)

(Page 478)

11.12.1 Save tool environment (TOOLENV)
The TOOLENV function is used to save any current states needed for the evaluation of tool
data stored in the memory.

The individual data are as follows:

● The active G command of group:

– 6 (G17, G18, G19)

– 56 (TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, TOWKCS)

● The active transverse axis

● Machine data:

– MD18112 $MN_MM_KIND_OF_SUMCORR (properties of the summed offsets in the
TO area)

– MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 473

● Setting data:

– SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

– SD42910 $SC_MIRROR_TOOL_WEAR (sign change tool wear when mirroring)

– SD42920 $SC_WEAR_SIGN_CUTPOS (sign of the tool wear with cutting edge systems)

– SD42930 $SC_WEAR_SIGN (sign of wear)

– SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

– SD42940 $SC_LENGTH_CONST (change of the tool length components for a plane
change)

– SD42942 $SC_TOOL_LENGTH_CONST_T (change of tool length components for
turning tools at change of plane)

– SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type)

– SD42954 $SC_TOOL_ORI_CONST_M (change of tool orientation components for
milling tools at change of plane)

– SD42956 $SC_TOOL_ORI_CONST_T (change of tool orientation components for
turning tools at change of plane)

● The orientation component of the current complete frame (rotation and mirroring, no work
offsets or scaling)

● The orientation component and the resulting length of the active toolholder with orientation
capability

● The orientation component and the resulting length of an active transformation

In addition to the data describing the environment of the tool, the T number, D number and DL
number of the active tool are also stored, so that the tool can be accessed later in the same
environment as the TOOLENV call, without having to name the tool again.

Syntax
<Status> = TOOLENV(<name>)

Meaning

TOOLENV(...): Predefined function to save a tool environment
Alone in the
block:

Yes

Tool offsets
11.12 Working with tool environments

Job Planning
474 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 No more free memory locations for tool environments available.
-3 Null string illegal as name of a tool environment.
-4 No parameter (<name>) specified.

Parameters
1 <name>: Name, under which the current data set should be saved.

If a data set of the same name already exists, then it is overwritten. In this case,
the status is "0".
Data type: STRING

Additional information

Base dimension/adapter dimension – tool length compensation
When the tool magazine management is active (only available with the "Tool management"
option!), the value of the following machine data defines whether the adapter length or the tool
base dimension (cutting edge-specific parameters $TC_DP21, $TC_DP22 and $TC_DP23) is
incorporated in the calculation of the tool length:

MD18104 $MN_MM_NUM_TOOL_ADAPTER (tool adapter in TO area).

Since a change to this machine data only takes effect after the control system has powered
up, it is not saved in the tool environment.

Resulting length of toolholders with orientation capability and transformations:

Note

Both toolholders with orientation capability and transformations can use system variables or
machine data, which act as additional tool length components, and which can be subjected
partially or completely to the rotations performed. The resulting additional tool length
components must also be saved when TOOLENV is called, because they represent part of
the environment, in which the tool is used.

Adapter transformation
The adapter transformation is a property of the tool adapter and thus of the complete tool. It
is, therefore, not part of a tool environment, which can be applied to another tool.

By saving the complete data necessary to determine the overall tool length, it is possible to
calculate the effective length of the tool at a later point in time, even if the tool is no longer
active or if the conditions of the environment (e.g. G codes or setting data) have changed.
Similarly, the effective length of a different tool can be calculated assuming that it would be
used under the same conditions as the tool, for which the status was saved.

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 475

Maximum number of data sets for tool environments
Machine data MD18116 $MN_MM_NUM_TOOL_ENV is used to define the maximum number
of data sets that can be saved to describe the tool environments. The data are in the TOA
area. They are kept even when the control system is switched off.

Data cannot be backed up. This means that this data cannot be transferred between the
different control systems.

11.12.2 Delete tool environment (DELTOOLENV)
The DELTOOLENV function is used to delete the data sets that are used to describe tool
environments. Deletion means that the set of data stored under a particular name can no longer
be accessed (an access attempt triggers an alarm).

Note

Data sets can only be deleted using the DELTOOLENV function, by an INITIAL.INI download
or by a cold start (NC power up with default machine data). There are no additional automatic
deletion operations.

Syntax
<Status> = DELTOOLENV(<name>)
<Status> = DELTOOLENV()

Meaning

DELTOOLENV(...): Predefined function to delete a tool environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the specified name does not exist.
Parameters
1 <name>: Name of data set to be deleted

Data type: STRING

DELTOOLENV(): DELTOOLENV() deletes data sets describing tool environments without spec‐

ifying a name

Tool offsets
11.12 Working with tool environments

Job Planning
476 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.12.3 Read T, D and DL number (GETTENV)
The GETTENV function is used to read the T, D and DL numbers stored in a tool environment.

Syntax
<Status> = GETTENV(<name>, <TDDL>)

Meaning

GETTENV(...): Predefined function to read T, D and DL numbers in a data set to describe a tool
environment
Alone in the
block:

Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the specified name does not exist.
Parameters
1 <name>: Name of the data set from which the T, D and DL numbers are to be read

Data type: STRING
2 <TDDL>: The field of this result parameter contains the T, D and DL numbers of the tool,

whose tool environment is saved in the specified data set:
● <TDDL> [0]: T number
● <TDDL> [1]: D number
● <TDDL> [2]: DL number
Data type: INT[3]

GETTENV(,<TDDL>),
GETTENV("",<TDDL>):

When calling function GETTENV, it is permissible to omit the first pa‐
rameter – or to transfer the null string as first parameter. In these two
special cases, in <TDDL>, the T, D and DL numbers of theactive tool
are returned.

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 477

11.12.4 Read information about the saved tool environments ($P_TOOLENVN,
($P_TOOLENV)

Information regarding the saved tool environments can be read using the following system
variables:

$P_TOOLENVN: Supplies the number of data sets (which have still not been deleted) – defined
using TOOLENV – to describe tool environments
Syntax: <n> = $P_TOOLENVN
Meaning: <n>: Number of defined data sets

Data type: INT
Value range: 0 ... MD18116

$MN_MM_NUM_TOOL_ENV
This system variable can be accessed even if no tool environments are possible
(MD18116 = 0). In this case, the return value is "0".

$P_TOOLENV: Supplies the name of the <i>th data set to describe a tool environment
Syntax: <Name> = $P_TOOLENV[<i>]
Meaning: <name>: Name of the data set with number <i>

Data type: STRING
<i>: Number of the data set

Data type: INT
Value range: 1 ... $P_TOOLENVN

The assignment of numbers to data sets is not fixed, but can be changed as a
result of deleting or creating data sets. The data sets are numbered internally.
If <i> refers to a data set that has not been defined, then the null string is returned.
If index <i> is not valid, i.e. <i> is less than 1 or higher than that the maximum
number of data sets for tool environments (MD18116 $MN_MM_NUM_TOO‐
LENV), then the following alarm is output:
Alarm 17020 "inadmissible array index 1"

11.12.5 Read tool lengths and/or tool length components (GETTCOR)
The GETTCOR function is used to read out tool lengths or tool length components.

The parameters can be used to specify which components are considered and the conditions
under which the tool is used.

Syntax
<Status> = GETTCOR(<Len>[, <Comp>, <Stat>, <T>, <D>, <DL>])

Meaning

GETTCOR(...): Predefined function to read tool lengths or to read tool length components
Alone in the
block:

Yes

Tool offsets
11.12 Working with tool environments

Job Planning
478 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value:

0 Function OK
-1 No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the name specified under <Stat> does
not exist.

-3 Invalid string in parameter <Comp>.
Causes of this error can be invalid characters or characters pro‐
grammed twice.

-4 Invalid T number
-5 Invalid D number
-6 Invalid DL number
-7 Attempt to access a non-existent memory module.
-8 Attempt to access a non-existent option (programmable tool

orientation, tool management).
-9 The <Comp> string contains a colon (identifier for the specifi‐

cation of a coordinate system), but it is not followed by a valid
character denoting the coordinate system.

Parameters
1 <Len>: Result vector

Data type: REAL[11]
The vector components are arranged in the following order:
● <Len> [0]: Tool type
● <Len> [1]: Cutting edge position
● <Len> [2]: Abscissa
● <Len> [3]: Ordinate
● <Len> [4]: Applicate
● <Len> [5]: Tool radius
The coordinate system defined in <Comp> and <Stat> is used as the reference
coordinate system for the length components. If a coordinate system is not defined
in <Comp>, then tool lengths are displayed in the machine coordinate system.
The assignment of the abscissa, ordinate and applicate to the geometry axes
depends on the active plane used in the tool environment. This means, for G17,
the abscissa is parallel to X, with G18 it is parallel to Z, etc.
Components <Len>[6] to <Len>[10] contain the additional parameters, which can
be used to specify the geometry description of a tool (e.g. $TC_DP7 to $TC_DP11
for the geometry and the corresponding components for wear or sum and setup
offsets).
These 5 additional elements and the tool radius are only defined for components
E, G, S, and W. Their evaluation does not depend on <Stat>. The corresponding
values in <Len>[6] to <Len>[10] can thus only be not equal to zero if at least one
of the four specified components is involved in the tool length calculation. The
remaining components do not influence the result. The dimensions refer to the
control's basic system (inch or metric).

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 479

2 <Comp>: Tool length components (optional)
Data type: STRING
The character string consists of two substrings, which are separated from one
another by a colon.
General form: "<SubStr_1> [: <SubStr_2]"
<SubStr_1>: The first substring designates the tool length components to be

taken into account when calculating the tool length.
The order of the characters in the substrings, and their notation
(upper or lower case), is arbitrary. Any number of blanks or
white spaces can be inserted between the characters.
Note:
It is not permissible that the characters in the substring are pro‐
grammed twice.
Charac‐
ters:

-

Minus symbol (only allowed as first character)
The complete tool length is calculated, minus
the components specified in the next string.

C Adapter or tool base dimension (whichever of
the two alternative components is active for the
tool in use)

E Setup offsets
G Geometry
K Kinematic transformation (is only evaluated for

generic 3, 4 and 5-axis transformation)
S Summed offsets
T Toolholder with orientation capability
W Wear

If the first substring is empty (except for white spaces), the com‐
plete tool length is calculated allowing for all components. This
applies even if the <Comp> parameter is not specified.

<Substr_2>: The optional second substring identifies the coordinate system,
in which the tool length is to be output.
The second substring only comprises one single relevant char‐
acter.
Charac‐
ters:

A Adjustable coordinate system (ACS)
B Basic coordinate system (BCS)
K Tool coordinate system of kinematic transfor‐

mation (KCS)
M Machine coordinate system (MCS)
T Tool coordinate system (TCS)
W Workpiece coordinate system (WCS)

If no coordinate system is specified, the evaluation is performed
in the MCS (machine coordinate system). If any rotations are
to be taken into account, they are specified in the tool environ‐
ment defined in <Stat>.

3 <_Stat>: Name of the data set for describing a tool environment (optional)
Data type: STRING
If the value of this parameter is the null string (""), or is not specified, then the
current status is used. The current tool is used if a tool is not specified.

Tool offsets
11.12 Working with tool environments

Job Planning
480 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

4 <T>: Internal T number of the tool (optional).
Data type: INT
If this parameter is not specified or if its value is "0", then the tool stored in <Stat>
is used.
If the value of this parameter is "-1", then the T number of the active tool is used.
It is also possible to explicitly specify the number of the active tool.
Note:
If <Stat> is not specified, the actual status is used as the tool environment. Since
<T> = 0 refers to the T number saved in the tool environment, the active tool is
used in this environment, i.e. parameters <T> = 0 and <T> = -1 have the same
meaning in this special case.

5 <D>: Cutting edge of the tool (optional).
Data type: INT
If this parameter is not specified, or if its value is "0", then the D number used is
based on the source of the T number. If the T number from the tool environment
is used, then the D number of the tool environment is also read, otherwise the D
number of the currently active tool is read.

6 <DL>: Number of the offset dependent on the location (optional).
Data type: INT
If this parameter is not specified, then the DL number used is based on the source
of the T number. If the T number from the tool environment is used, then the D
number of the tool environment is also read, otherwise the D number of the cur‐
rently active tool is read.

Examples

GETTCOR(_LEN) Calculates the tool length of the currently active
tool in the machine coordinate system allowing for
all components.

GETTCOR(_LEN,"CGW:W") Calculates the tool length for the active tool, con‐
sisting of the adapter or tool base dimension, ge‐
ometry and wear. Further components, such as
toolholder with orientation capability or kinematic
transformation, are not considered. Output in the
workpiece coordinate system.

GETTCOR (_LEN,"-K:B") Calculates the complete tool length of the active
tool without allowing for the length components of
a possibly active kinematic transformation. Output
in the basic coordinate system.

GETTCOR (_LEN,":M","Testenv1",,3) Calculates the complete tool length in the machine
coordinate system for the tool stored in the tool
environment named "Testenv1". However, the cal‐
culation is performed for cutting edge number D3,
regardless of the cutting edge number stored.

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 481

Additional information

Adapter transformation/toolholder with orientation capability/kinematic transformation
Any rotations and component exchanges initiated by the adapter transformation, toolholder
with orientation capability and kinematic transformation, are part of the tool environment. They
are thus always performed, even if the corresponding length component is not supposed to
be included. If this is undesirable, tool environments must be defined, in which the
corresponding transformations are not active. In many cases (i.e. any time a transformation
or toolholder with orientation capability is not used on a machine), the data sets stored for the
tool environments automatically fulfill these conditions, with the result that the user does not
need to make special provision.

Turning and grinding tools: Calculating the tool length depending on MD20360
$MC_TOOL_PARAMETER_DEF_MASK
The following machine data defines how the wear and tool length are to be evaluated if a
diameter axis is used for turning and grinding tools.

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Bit Value
0

For turning and grinding tools, the wear parameter of the transverse axis is taken into account
as the diameter value:
= 0 (default) No
= 1 Yes

1 For turning and grinding tools, the tool length component of the transverse axis is taken into
account as the diameter value:
= 0 (default) No
= 1 Yes

If the bits involved are set, the associated entry is weighted with a factor of 0.5. This weighting
is reflected in the tool length returned by GETTCOR.

Example:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 3

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function) = "X"

X is diameter axis (standard turning machine configuration)

Program code Comment
N30 $TC_DP1[1,1]=500
N40 $TC_DP2[1,1]=2
N50 $TC_DP3[1,1]=3.0 ; geometry L1
N60 $TC_DP4[1,1]=4.0
N70 $TC_DP5[1,1]=5.0
N80 $TC_DP12[1,1]=12.0 ; wear L1
N90 $TC_DP13[1,1]=13.0
N100 $TC_DP14[1,1]=14.0
N110 T1 D1 G18
N120 R1=GETTCOR(_LEN,"GW")
N130 R3=_LEN[2] ; 17.0 (= 4.0 + 13.0)

Tool offsets
11.12 Working with tool environments

Job Planning
482 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N140 R4=_LEN[3] ; 7.5 (= 0.5 * 3.0 + 0.5 * 12.0)
N150 R5=_LEN[4] ; 19.0 (= 5.0 + 14.0)
N160 M30

Length components of the kinematic transformation and toolholder with orientation capability
If a toolholder with orientation capability is taken account of during the tool length calculation,
the following vectors are included in that calculation:

Type Vectors
M l1 and l2
T l1, l2 and l3
P The tool length is not influenced by the toolholder with orientation capability.

In generic 5-axis transformation, the following machine data are included in the tool length
calculation for transformer types 24 and 56:

Transforma‐
tion type

Machine data

24 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2
MD24558/24658 $MC_TRAFO5_PART_OFFSET_1/2

56 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2

Transformation type 56 (moving tool and moving workpiece) corresponds to type M for
toolholders with orientation capability.

For this 5-axis transformation, in the previous software releases, vector MD24560/24660
$MC_TRAFO5_JOINT_OFFSET_1/2 (vector of kinematic offset of the 1st/2nd 5-axis
transformation in the channel) corresponds to the sum of the two vectors l1 and l3 for a type
M tool carrier with orientation capability.

Only the sum is relevant for the transformation in both cases. The way, in which the two
individual components are composed, is insignificant. However, when calculating the tool
length, it is relevant which component is assigned to the tool and which is assigned to the tool
table. This is the reason that machine data MD24558/24658
$MC_TRAFO5_JOINT_OFFSET_PART_1/2 (vector kinematic offset in table) was introduced.
It corresponds to vector l3. Machine data:MD24560/24660
$MC_TRAFO5_JOINT_OFFSET_1/2 no longer corresponds to the sum of l1 and l3, but only
to vector l1. If machine data MD24558/24658 $MC_TRAFO5_JOINT_OFFSET_PART_1/2 is
equal to zero, the behavior is the same as before.

Compatibility
The GETTCOR function is used in conjunction with the TOOLENV and SETTCOR functions
to replace parts of the functionality, which were previously implemented externally in the
measuring cycles.

Only some of the parameters, which actually determine the effective tool length, were
implemented in the measuring cycles. The functions mentioned above can be configured to
reproduce the behavior of the measuring cycles in relation to the tool length calculation.

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 483

11.12.6 Change tool components (SETTCOR)
The SETTCOR function is used to change tool components taking into account all general
conditions that can be involved when evaluating the individual components.

Note

Regarding the terminology: If in the following, in conjunction with the tool length, tool
components are involved, then the components considered from a vectorial perspective are
meant, which make up the complete tool length (e.g. geometry or wear). Such a component
comprises three individual values (L1, L2, L3), which are called coordinate values in the
following.

The tool component "geometry" therefore comprises three coordinate values $TC_DP3 to
$TC_DP5.

Syntax
<Status> = SETTCOR(<CorVal>, <Comp>, [<CorComp>, <CorMode>, <GeoAx>,
<Stat>, <T>, <D>, <DL>])

Meaning

SETTCOR(...): Predefined function to change tool components
Alone in the
block:

Yes

Tool offsets
11.12 Working with tool environments

Job Planning
484 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

-1 No memory reserved for tool environments:
MD18116 $MN_MM_NUM_TOOL_ENV = 0
This means that the "tool environments" functionality is not
available.

-2 A tool environment with the name specified under <Stat> does
not exist.

-3 Invalid string in parameter <Comp>.
Causes of this error can be invalid characters or characters pro‐
grammed twice.

-4 Invalid T number.
-5 Invalid D number.
-6 Invalid DL number.
-7 Attempt to access a non-existent memory module.
-8 Attempt to access a non-existent option (programmable tool

orientation, tool management).
-9 Illegal numerical value for parameter <CorComp>.

-10 Illegal numerical value for parameter <CorMode>.
-11 The contents of parameters <Comp> and <CorComp> are con‐

tradictory.
-12 The contents of parameters <Comp> and <CorMode> are con‐

tradictory.
-13 The content of the <GeoAx parameter does not designate a

geometry axis.
-14 Write attempt to a non-existent setup offset.

Parameters
1 <CorVal>: Correction vector

In the workpiece coordinate system (WCS) defined by <Stat>, the following as‐
signment applies:
● <CorVal> [0]: Abscissa
● <CorVal> [1]: Ordinate
● <CorVal> [2]: Applicate
If only one tool component is to be corrected (i.e. no vectorial correction, see
parameter <CorMode>), the correction value is always in <CorVal>[0], independ‐
ent of the axis on which it acts. The contents of the other two components are then
not evaluated.
If <CorVal> or a component of <CorVal> refers to the transverse axis, then the
data is evaluated as radius dimension. This means that a tool is, for example,
"longer" by the specified dimension; this correspondingly results in a change to
the workpiece diameter that is twice as large.
The dimensions refer to the basic system (inch or metric) of the control system.
Data type: REAL[3]

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 485

2 <Comp>: Tool component(s)
Data type: STRING
The character string consists of two substrings, which are separated from one
another by a colon.
General form: "<SubStr_1> [: <SubStr_2]"
<SubStr_1>: The first substring must always be available, and can either

comprise one or two characters. The first or only character for
the 1st component (Val1) and the second character for the 2nd
component (Val2), which are processed according to the sub‐
sequent parameters <CorComp> and <CorMode>.
Charac‐
ters:

C Adapter or tool base dimension (whichever
of the two alternative components is active
for the tool in use)

E Setup offsets
G Geometry
S Sum offsets
W Wear

<Substr_2>: The second substring is optional. Alternatively, it can comprise
(individual) letters "W" or "T".
Charac‐
ters:

W If the second substring is empty or contains
the letter "W", then the offset values are
taken into account as if they had been
measured in the workpiececoordinate sys‐
tem (WCS).

T If the second substring contains the letter
"T", then the offset values are taken into
account as if they had been measured in
the toolcoordinate system (Tool Coordinate
System, TCS).

The notation of the characters in the string (upper or lower case) is arbitrary. Any
number of spaces or tabs (white spaces) can be inserted.

Tool offsets
11.12 Working with tool environments

Job Planning
486 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

3 <CorComp>: Specifies the component(s) of the tool data sets that are to be described (optional).
Data type: INT
Value: 0 Offset value <CorVal>[0] refers to the geometry axis transferred

in parameter <GeoAx> in the workpiece coordinate system – or
in the tool coordinate system (also see a description of param‐
eter <Comp>). This means that the offset value must be calcu‐
lated in the designated tool components so that, taking account
all the parameters that can influence the tool length calculation,
a change of the total tool length by the specified value in the
specified axis direction is obtained.
This change should be achieved by correcting the component
specified in <Comp> and the symbolic algorithm specified in
<CorMode> (see the following parameters). The resulting cor‐
rection can therefore have an effect on all three axis compo‐
nents.

1 Like "0", however, vectorial. The content of vector <CorVal>
refers to abscissa, ordinate and applicate in the workpiece co‐
ordinate system or tool coordinate system (see the description
of parameter <Comp>).
Subsequent parameter <GeoAx> is not evaluated.

2 Vectorial offset, i.e. L1, L2 and L3 can change simultaneously.
In contrast to the versions from "0 and "1", the offset values
contained in <CorVal> refer to the coordinates of Val1 compo‐
nents (see following parameter <CorMode>) of the tool.
Any possible inclination of an existing tool compared with the
workpiece coordinate system has no influence on the offset.

3 - 5 Correction of tool lengths L1 to L3 ($TC_DP3 to $TC_DP5) or
the corresponding values for wear, setting up or additive offsets.
The offset value is contained in <CorVal>[0]. It is measured in
the coordinates of the Val1 component (see following parameter
<CorMode>) of the tool. Any possible inclination of an existing
tool compared with the workpiece coordinate system has no
influence on the offset.

6 Correction of the tool radius ($TC_DP6) or the corresponding
values for wear, setting up or additive offsets. Bits 10 and 11
(evaluation of the diameter and/or diameter wear data, either
specified as a radius or diameter) in machine data
MD20360 $MC_TOOL_PARAMETER_DEF_MASK are taken
into account.

7 –
11

Correction of $TC_DP7 to $TC_DP11 or the corresponding val‐
ues for wear, setting up or additive offsets. These parameters
are treated just like the tool radius.

If this parameter is not specified then its value is "0".

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 487

4 <CorMode>: Specifies the type of write operation to be executed (optional).
Data type: INT
Value: 0 Val1new = <CorVal>

1 Val1new = Val1old + <CorVal>
2 Val1new = <CorVal>

Val2new = 0
3 Val1new = Val1old + Val2old + <CorVal>

Val2new = 0
The notation Val1old + Val2old is symbolic. If the two components (due to the status
of <_Stat>) are evaluated in different ways, i.e. if a rotation is effective between
the two components, then Val2old is transformed prior to addition so that the result‐
ing tool length after deleting Val2new and prior to the addition of <CorVal> remains
unchanged.
<CorVal> always refers to Val1. <CorVal> is a value, which dependent on the
second part of parameter <Comp>, is measured in the workpiece coordinate sys‐
tem (WCS) or in the tool coordinate system (TCS). It is therefore already trans‐
formed with respect to the tool components, in which it should be calculated.
Therefore, it cannot be directly calculated together with the saved value, but must
be transformed back prior to adding to Val1 or Val2. This can mean that the offset
acts on an axis different than the one defined by <CorComp> – or that it acts on
several axes.
For the case <CorComp> = 0, i.e. when <CorVal> does not contain a vector, but
only an individual value, then the described operations are executed in the coor‐
dinates in which <CorVal> was measured (WCS/TCS). In particular, this also ap‐
plies to setting Val2new to zero in variants 2 and 3. This result is then transformed
back into the coordinates of the tool. This can mean that none of the coordinate
values to be set to zero (L1, L2, L3) become zero, or coordinate values, that were
previously zero, are now not equal to zero. However, if the corresponding opera‐
tions are successively executed for all three geometry axes, then it is guaranteed
that all three coordinate values of the components to be deleted are zero. If the
tool is not rotated with respect to the workpiece coordinate system or is rotated
so that all tool components remain parallel to the coordinate axes (axis exchange
operations), then this also ensures that only one tool coordinate changes.
The successive execution of the same operation (<CorMode>) with <Cor‐
Comp> = 0 for all three coordinate axes in any sequence is identical with the single
execution of the same operation with <CorComp>=1.
For parameter values "0" and "1", parameter <Comp> must contain one character,
and for parameter values "2" and "3", two characters.
Example:
<Comp> contains string "ES", <CorMode> the value "2"
⇒ Setup offsetnew = <CorVal>, summed offsetnew = 0
If parameter <CorMode> is not specified, then its value is "0".

5 <GeoAx>: Specifies the index of the geometry axis in which the offset value <CorVal>[0] was
read (optional)
Data type: INT
Value range: 0 ... 2
Indices 0 to 2 refer to abscissa, ordinate and applicate in the active plane (G17/
G18/G19) of the current tool environment.
The content of this parameter is only evaluated if parameter <CorComp> has a
value of "0".

Tool offsets
11.12 Working with tool environments

Job Planning
488 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

6 <Stat>: Name of the data set for describing a tool environment (optional)
Data type: STRING
If the value of this parameter is the null string (""), or is not specified, then the
current status is used. The current tool is used if a tool is not specified.

7 <T>: Internal T number of the tool (optional).
Data type: INT
If this parameter is not specified or if its value is "0", then the tool stored in <Stat>
is used.
If the value of this parameter is "-1", then the T number of the active tool is used.
It is also possible to explicitly specify the number of the active tool.
Note:
If <Stat> is not specified, the actual status is used as the tool environment. Since
<T> = 0 refers to the T number saved in the tool environment, the active tool is
used in this environment, i.e. parameters <T> = 0 and <T> = -1 have the same
meaning in this special case.

8 <D>: Cutting edge of the tool (optional).
Data type: INT
If this parameter is not specified, or if its value is "0", then the D number used is
based on the source of the T number. If the T number from the tool environment
is used, the D number of the tool environment is also read, otherwise the D number
of the currently active tool is read.

9 <TL>: Number of the offset dependent on the location (optional).
Data type: INT
If this parameter is not specified, then the DL number used is based on the source
of the T number. If the T number from the tool environment is used, the D number
of the tool environment is also read, otherwise the D number of the currently active
tool is read. If T, D and DL specify a tool without location-dependent offsets, no
summed or setup offsets may be specified in parameter <Comp> (error code in
<Status>).

Note

Not all possible combinations of the three parameters <Comp>, <CorComp> and <CorMode>
make sense. For example, algorithm 3 in <CorComp> requires that two characters are
specified in <Comp>. If an invalid parameter combination is specified, then a corresponding
error code is returned in the <Status>.

Examples

Example 1

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 489

Program code Comment
N70 R1=SETTCOR(_CORVAL,"G",0,0,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z1.333
N90 M30

<CorComp> is "0", therefore, the coordinate value of the geometry component acting in the Z
direction must be replaced by the offset value 0.333.

The resulting total tool length is thus: L1 = 0.333 + 1.000 = 1.333

Example 2

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; milling tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"W",0,1,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z11.333
N90 M30

<CorComp> is "1", this means that the offset value of 0.333 – acting in the Z axis – is added
to the wear value of 1.0.

The resulting total tool length is thus: L1 = 10.0 + 1.333 = 11.333

Example 3

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; Wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,2,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z0.333
N90 M30

<CorComp> is "2", therefore, the offset effective in the Z axis is entered in the geometry
component (the old value is overwritten) and the wear value is deleted.

The resulting total tool length is thus: L1 = 0.333 + 0.0 = 0.333

Example 4

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1

Tool offsets
11.12 Working with tool environments

Job Planning
490 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N40 $TC_DP12[1,1]=1.0 ; wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,3,2)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.000 Y0.000 Z11.333
N90 M30

<CorComp> is "3", therefore, the wear value and compensation value are added to the
geometry component and the wear component is deleted.

The resulting total tool length is thus: L1 = 11.333 + 0.0 = 11.333

Example 5

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=120 ; Milling tool
N30 $TC_DP3[1,1]=10.0 ; Geometry L1
N40 $TC_DP12[1,1]=1.0 ; Wear L1
N50 _CORVAL[0]=0.333
N60 T1 D1 G17 G0
N70 R1=SETTCOR(_CORVAL,"GW",0,3,0)
N80 T1 D1 X0 Y0 Z0 ; ==> MCS position X0.333 Y0.000 Z11.000
N90 M30

<CorComp> is "3", as in the previous example, but the compensation is now effective on the
geometry axis with index "0" (X axis), which for a milling tool, is assigned to tool component
L3 due to G17. As a consequence, when calling SETTCOR, tool parameters $TC_DP3 and
$TC_DP12 are not influenced. Instead, the compensation value is entered in $TC_DP5.

Example 6

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=5.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",0,3,1)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500
N120 M30

The tool is a turning tool. A frame rotation is activated in N80, causing the basic coordinate
system (BCS) to be rotated in relation to the workpiece coordinate system (WCS). In the WCS,
the compensation value (N70) acts on the geometry axis with index 1, i.e. on the X axis because

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 491

G18 is active. Since <CorMode> = 3, the tool wear in the direction of the X axis of the WCS
must become zero once N100 has been executed.

The contents of the relevant tool parameters at the end of the program are thus:

$TC_DP3[1,1]: 21.830 ; geometry L1

$TC_DP4[1,1] : 21.830 ; geometry L2

$TC_DP12[1,1] : 2.500 ; wear L1

$TC_DP13[1,1] : -4.330 ; wear L2

The geometrical relationships are shown in the figure below: The total wear including
_CORVAL is mapped onto the X' direction in the WCS. This produces point P2. The
coordinates of this point (measured in X/Y coordinates) are entered in the geometry component
of the tool. The difference vector P2 - P1 remains in the wear. The wear thus no longer has a
component in the direction of _CORVAL.

If the program example is continued after N110 with the following instructions, then the
remaining wear is included completely in the geometry because the compensation is now
effective in the Z' axis (parameter <GeoAx> = 0):

N120 _CORVAL[0]=0.0
N130 R1=SETTCOR(_CORVAL,"GW",0,3,0)
N140 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500

Since the new compensation value is "0", the total tool length and thus the position approached
in N140 may not change. If _CORVAL were not equal to "0" in N120, a new total tool length
and thus a new position in N140 would result, however, the wear component of the tool length
would always be zero, i.e. the total tool length is subsequently always contained in the
geometry component of the tool.

Tool offsets
11.12 Working with tool environments

Job Planning
492 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The same result as that achieved by calling the SETTCOR function with the <CorComp> = 0
parameter twice can also be reached by calling <CorComp> = 1 (vectorial compensation) just
once:

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=0.0
N71 _CORVAL[1]=5.0
N72 _CORVAL[2]=0.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",1,3,1)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X24.330 Y0.000 Z17.500
N120 M30

In this case, all wear components of the tool are set to zero immediately after the first call of
SETTCOR in N100.

Example 7

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP12[1,1]=10.0 ; wear L1
N60 $TC_DP13[1,1]=0.0 ; wear L2
N70 _CORVAL[0]=5.0
N80 ROT Y-30
N90 T1 D1 G18 G0
N100 R1=SETTCOR(_CORVAL,"GW",3,3)
N110 T1 D1 X0 Y0 Z0 ; ==> MCS position X25.000 Y0.000 Z15.000
N120 M30

When compared to example 6, parameter <CorComp> = 3, and so the <GeoAx> parameter
can be omitted. The value contained in _CORVAL[0] now acts immediately on the tool length
component L1, the rotation in N80 has no effect on the result, the wear components in
$TC_DP12 are included in the geometry component together with _CORVAL[0], with the result
that the total tool length is stored in the geometry component of the tool, due to $TC_DP13,
after the first SETTCOR call in N100.

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 493

Example 8

Program code Comment
N10 DEF REAL _CORVAL[3]
N20 $TC_DP1[1,1]=500 ; turning tool
N30 $TC_DP3[1,1]=10.0 ; geometry L1
N40 $TC_DP4[1,1]=15.0 ; geometry L2
N50 $TC_DP5[1,1]=20.0 ; geometry L3
N60 $TC_DP12[1,1]=10.0 ; wear L1
N70 $TC_DP13[1,1]=0.0 ; wear L2
N80 $TC_DP14[1,1]=0.0 ; wear L3
N90 $SC_WEAR_SIGN=TRUE
N100 _CORVAL[0]=10.0
N110 _CORVAL[1]=15.0
N120 _CORVAL[2]=5.0
N130 ROT Y-30
N140 T1 D1 G18 G0
N150 R1=SETTCOR(_CORVAL,"W",1,1)
N160 T1 D1 X0 Y0 Z0 ; ==> MCS position X7.990 Y25.000 Z31.160
N170 M30

Setting data:SD42930 $SC_WEAR_SIGN is enabled in N90, i.e. the wear must be evaluated
with a negative sign. The compensation is vectorial (<CorComp> = 1), and the compensation
vector must be added to the wear (<CorMode> = 1). The geometrical relationships in the Z/X
plane are shown in the diagram below:

The geometry component of the tool remains unchanged due to <CorMode> = 1. The
compensation vector defined in the WCS (rotation around the y axis) must be included in the
wear component such that the total tool length in Fig. 3 refers to point P2. Therefore, the
resulting wear component of the tool is given by the distance of the two points P1 and P2.

Tool offsets
11.12 Working with tool environments

Job Planning
494 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

However, since the wear is evaluated negatively, due to setting data SD42930
$SC_WEAR_SIGN, the compensation determined in this way has to be entered in the
compensation memory with a negative sign. The contents of the relevant tool parameters at
the end of the program are thus:

$TC_DP3[1,1]: 10.000 ; geometry L1 (unchanged)

$TC_DP4[1,1] : 15.000 ; geometry L2 (unchanged)

$TC_DP5[1,1]: 10.000 ; geometry L3 (unchanged)

$TC_DP12[1,1] : 2.010 ; wear L1 (= 10 - 15 * cos(30) + 10 * sin(30))

$TC_DP13[1,1] : -16.160 ; wear L2 (= -15 * sin(30) - 10 * cos(30))

$TC_DP14[1,1] : -5.000 ; wear L3

The effect of setting data SD42930 $SC_WEAR_SIGN on the L3 component in the Y direction
can be recognized without the additional complication caused by the frame rotation.

Additional information

Turning/grinding tools: Calculating the tool length depending on MD20360
$MC_TOOL_PARAMETER_DEF_MASK
The following machine data defines how the wear and tool length are to be evaluated if a
diameter axis is used for turning/grinding tools:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK.<Bit> = <Value>

<Bit> <Value> Meaning
0

0 For turning/grinding tools, the wear parameter of the transverse axis is taken into
account in the radius value:

1 For turning/grinding tools, the wear parameter of the transverse axis is taken into
account as the diameter value:

1 0 For turning/grinding tools, the tool length component of the transverse axis is taken
into account as the radius value:

1 For turning/grinding tools, the tool length component of the transverse axis is taken
into account as the diameter value:

If the bits involved are set, the associated entry is weighted with a factor of 0.5. The correction
using SETTCOR is executed so that the total effective tool length change is equal to the value
transferred in <CorVal>. If, when calculating the length, a length is evaluated with a factor of
0.5 as a result of machine data MD20360 $MC_TOOL_PARAMETER_DEF_MASK, then the
compensation of this component must be realized with twice the value transferred.

Example
MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 2 (tool length must be evaluated in the
diameter axis using a factor of 0.5)

Axis X is the diameter axis.

Program code Comment
N10 DEF REAL _LEN[11]
N20 DEF REAL _CORVAL[3]
N30 $TC_DP1[1,1]=500 ; Tool type

Tool offsets
11.12 Working with tool environments

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 495

Program code Comment
N40 $TC_DP2[1,1]=2 ; Cutting edge position
N50 $TC_DP3[1,1]=3. ; Geometry - length 1
N60 $TC_DP4[1,1]=4. ; Geometry - length 2
N70 $TC_DP5[1,1]=5. ; Geometry - length 3
N80 _CORVAL[0]=1.
N90 _CORVAL[1]=1.
N100 _CORVAL[2]=1.
N110 T1 D1 G18 G0 X0 Y0 Z0 ; ==> MCS position X1.5 Y5 Z4
N120 R1=SETTCOR(_CORVAL,"G",1,1)
N130 T1 D1 X0 Y0 Z0 ; ==> MCS position X2.5 Y6 Z5
N140 R3=$TC_DP3[1,1] ; = 5. = (3.000 + 2.*1.000)
N150 R4=$TC_DP4[1,1] ; = 5. = (4.000 + 1.000)
N160 R5=$TC_DP5[1,1] ; = 6. = (5.000 + 1.000)
N170 M30

In each axis, the tool length compensation should be 1 mm (N80 to N100). 1 mm is thus added
to the original length in lengths L2 and L3. Twice the compensation value (2 mm) is added to
the original tool length in L1, in order to change the total length by 1 mm as required. If the
positions approached in blocks N110 and N130 are compared, it can be seen that each axis
position has changed by 1 mm.

Tool offsets
11.12 Working with tool environments

Job Planning
496 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate
axes (LENTOAX)

The LENTOAX function provides information about the assignment of tool lengths L1, L2 and
L3 of the active tool to the abscissa, ordinate and applicate. The assignment of abscissa,
ordinate and applicate to the geometry axes is affected by frames and the active plane (G17
- G19).

Only the geometry component of a tool ($TC_DP3[<t>,<d>] to $TC_DP5[<t>,<d>]) is
considered, i.e. a different axis assignment for other components (e.g. wear) has no effect on
the result.

Syntax
<Status> = LENTOAX(<AxInd>, <Matrix>[, <Coord>])

Principle

LENTOAX(...): Predefined function to read the assignment of tool lengths L1, L2 and L3 of the
active tool to the coordinate axes
Alone in the block: Yes

<Status>: Function return value. Negative values indicate error states.
Data type: INT
Value: 0 Function OK

Information provided in <AxInd> is sufficient for the descrip‐
tion (all tool length components are in parallel to the geom‐
etry axes).

1 Function is OK, however, the content of <Matrix> must be
evaluated for a correct description (the tool length compo‐
nents are not parallel to the geometry axes).

-1 Invalid string in parameter <Coord>.
-2 No tool active.

Parameters

Tool offsets
11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 497

1 <AxInd>: If the tool length components are parallel to the geometry axes, the axis indices
assigned to length components L1 to L3 are returned in the <AxInd> array.
● <AxInd> [0]: Abscissa
● <AxInd> [1]: Ordinate
● <AxInd> [2]: Applicate
Data type: INT[3]
Value: 0 No assignment exists (axis does not exist)

1 ... 3
or

-1 ... -3

Number of the length effective in the corresponding coordi‐
nate axis.
The sign is negative if the tool length component is pointing
in the negative coordinate direction.

If not all length components are parallel or antiparallel to the geometry axes, the
index of the axis, which contains the largest part of a tool length component, is
returned in <AxInd>. In this case (if the function does not return an error for a
different reason), then the return value is <Status> = 1. The mapping of tool length
components L1 to L3 to geometry axes 1 to 3 is then described completely by the
content of the 2nd parameter <Matrix>.

2 <Matrix>: Matrix which represents the vector of the tool lengths (L1=1, L2=1, L3=1) to the
vector of the coordinate axes (abscissa, ordinate, applicate), i.e. the tool length
components are assigned to the columns in the order L1, L2, L3 and the axes are
assigned to the lines in the order abscissa, ordinate, applicate.
Data type: REAL
All elements are always valid in the matrix, even if the geometry axis belonging
to the coordinate axis is not available, i.e. if the corresponding entry in <AxInd>
is 0.

3 <Coord>: coordinate system applicable for the assignment (optional)
Data type: STRING
Charac‐
ters:

MCS
M

The tool length is represented in the machine coordinate
system.

BCS
B

The tool length is represented in the basic coordinate system.

WCS
W

The tool length is represented in the workpiece coordinate
system (default setting).

KCS
K

The tool length is represented in the tool coordinate system
of the kinematic transformation.

TCS
T

The tool length is represented in the tool coordinate system.

The notation of the characters in the string (upper or lower case) is arbitrary.
If the parameter <Coord> is not specified, then WCS is used (default setting).

Note

In the TCS, all tool length components are always parallel or antiparallel to the axes.

The components can only be antiparallel when mirroring is active and the following setting
data is activated:

SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

Tool offsets
11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Job Planning
498 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
Standard application, milling tool for G17.

L1 applies in Z (applicate), L2 applies in Y (ordinate), L3 applies in X (abscissa).

Function call in the form:
<Status>=LENTOAX(<AxInd>,<Matrix>,"WCS")
The result parameter <AxInd> then contains the values:

<AxInd>[0] = 3

<AxInd>[1] = 2

<AxInd>[2] = 1

Or, in short: (3, 2, 1)

In this case, the associated matrix (<Matrix>) is:

A change from G17 to G18 or G19 does not alter the result, because the assignment of the
length components to the geometry axes changes in the same way as the assignment of the
abscissa, ordinate and applicate.

A frame rotation of Z through 60 degrees is now programmed with G17 active, e.g.
ROT Z60
The direction of the applicate (Z direction) remains unchanged; the main component of L2 now
lies in the direction of the new X axis; the main component of L1 now lies in the direction of
the negative Y axis. As a consequence, the return value (<Status>) is "1", <AxInd> contains
the values (2, -3, 1).

In this case, the associated matrix (<Matrix>) is:

Tool offsets
11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 499

Tool offsets
11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

Job Planning
500 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Path traversing behavior 12
12.1 Tangential control

12.1.1 Defining coupling (TANG)
Via the predefined procedure TANG(...), a tangential coupling between a rotary axis is defined
as the following axis and two geometry axes as the leading axes. The following axis is
continuously aligned with the path tangent of the leading axes.

Note
Coupling factor

A coupling factor of 1 does not have to be programmed explicitly.
The direction of the tangential axis is rotated using the coupling factor of -1.

Syntax
TANG(<following axis>, <leading axis_1>, <leading axis_2>, <coupling
factor>, <coordinate system>, <optimization>)

Meaning

TANG(...): Define tangential coupling
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

<leading axis_1>
<leading axis_2>:

Axis names of the leading axes (geometry axes) 1)

Data type: AXIS
Range of values: Geometry axis names of the channel

<coupling factor>: Factor n of the angle change of the following axis for changing the path
tangent of the leading axes:
Angle changefollowing axis = angle changepath tangent * n
Data type: REAL
Default value: 1.0

<coordinate system>: Active coordinate system 2)

Data type: CHAR
Value: "B": Basic coordinate system (default value)

"W": Workpiece coordinate system (not availa‐
ble)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 501

<optimization>: Optimization type
Data type: CHAR
Value: "S": Standard (default value)

The dynamic response of the rotary axis
has no effect on the leading axes If the dy‐
namic response of the rotary axis is greater
than required for tracking, this method is
sufficiently precise. If the dynamic re‐
sponse of the rotary axis is not great
enough to follow the change in the path
tangent, the orientation of the rotary axis
will deviate from the target orientation
along an undefined rounding clearance.

"P": The dynamic response of the rotary axis is
considered in the path planning of the lead‐
ing axes.
For this purpose, on activation of the tan‐
gential coupling with TANGON(), two addi‐
tional parameters must be specified:
● Rounding clearance
● Angular tolerance
See Section "Activating the coupling (TAN‐
GON) (Page 503)"
Note
With kinematic transformations, we recom‐
mend using optimization method "P."

Note
Default values do not have to be programmed explicitly.
1) Note
As the leading axes for tangential coupling, the geometry axes must be used that travel along the
programmed path in the machine coordinate system (MCS) with reference to the initial position of the
machine. For example, if swivel cycle CYCLE800 is used on a milling machine with a swivel head,
depending on how the cycle is configured, interpolation will be performed in the WCS, e.g. with the
geometry axes X and Y. The tangential coupling, however, must be defined with the geometry axes as
the leading axes, which travel along the programmed path in the MCS. For this purpose, the geometry
axes in the non-swiveled condition of the machine must be used as the leading axes.
2) Note
The basic coordinate system (BCS) must not be rotated with respect to the MCS. For example, if the
BCS is rotated with the ROT command or with the swivel cycle CYCLE800, the tangential control is no
longer correct.

12.1.2 Activating intermediate block generation (TLIFT)
If the tangent change of the following axis at any position along the programmed path of the
leading axes exceeds the limit parameterized in machine data MD37400
$MA_EPS_TLIFT_TANG_STEP, further path planning will depend on the set behavior at
corners. Without use of the predefined procedure TLIFT(...), the path is traversed in
accordance with the rounding behavior programmed in connection with TANG(...) (Page 501)
and TANGON(...) (Page 503).

Path traversing behavior
12.1 Tangential control

Job Planning
502 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Activating intermediate block generation
If TLIFT(...) is programmed after TANG(...), an intermediate block automatically generated by
the control is inserted at this point when a corner is detected during preprocessing.

When the program is executed, the leading axes are stopped when the intermediate block is
reached. In the intermediate block, the following axis is rotated with maximum axis dynamics
toward the path tangent of the following block. The leading axes are then traversed further on
the programmed path.

Deactivating intermediate block generation
To deactivate intermediate block generation, the tangential coupling must be defined again
using TANG(...), but without subsequent activation of intermediate block generation by means
of TLIFT(...).

Syntax
TLIFT(<following axis>)

Meaning

TLIFT(...): Activate corner detection with intermediate block calculation
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

Speed of rotation of the following axis

Path axis
If the following axis had already been traversed as a path axis before tangential coupling was
activated, the rotational movement is performed in the intermediate block as a path axis.

If you specify the reference radius with FGREF[<axis>]=0.001, the rotational movement
will be performed with the parameterized maximum axis velocity:

MD32000 $MA_MAX_AX_VELO[<following axis>]

Positioning axis
If the following axis had not yet been traversed as a path axis before tangential coupling was
activated, the rotation is performed in the intermediate block as a positioning axis.

The rotational movement is performed with the parameterized positioning axis velocity:

MD32060 $MA_POS_AX_VELO[<following axis>]

12.1.3 Activating the coupling (TANGON)
Via the predefined procedure TANGON(...), a tangential coupling previously defined with
TANG(...) (Page 501) is activated. The following axis is then continuously aligned with the path
tangent during subsequent travel.

Path traversing behavior
12.1 Tangential control

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 503

Angle of the following axis
The angle of the following axis with respect to the path tangent depends on the transformation
ratio specified in TANG(...), the offset angle parameterized in the machine data MD37402
$MA_TANG_OFFSET, and the offset angle specified for TANGON(...), which is applied
additively.

Optimization "P"
If the value "P" was specified as the optimization parameter in the definition of the tangential
coupling (TANG(...)), the parameter "rounding clearance" and optionally the parameter
"angular tolerance" must be set when coupling is activated.

If the value 0 is specified as the angular tolerance, only the parameter "rounding clearance"
will be active.

If a value greater than 0 is specified as the angular tolerance, the active rounding clearance
results from the minimum of the parameterized rounding clearance and the rounding clearance
based on the parameterized angular tolerance.

If the dynamic response of the following axis is not sufficient to follow the parameterized
conditions, the path velocity of the leading axes will be reduced accordingly.

Syntax
TANGON(<following axis>, <offset angle>, <rounding clearance>,
<angular tolerance>)

Meaning

TANGON(...): Activate tangential coupling
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

<offset angle>: Offset angle of following axis with respect to the path tangent
The reference point is the zero point of the rotary axis.
Data type: REAL

<rounding clearance>: Maximum permissible rounding clearance
If the rounding clearance is increased due to the dynamic conditions,
the path velocity of the leading axes is reduced.
Data type: REAL

<angular tolerance>: Maximum permissible tolerance with respect to the specified angle be‐
tween the following axis zero setting and the path tangent
Data type: REAL

Path traversing behavior
12.1 Tangential control

Job Planning
504 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12.1.4 Deactivating the coupling (TANGOF)
Via the predefined procedure TANGOF(...), a tangential coupling defined with TANG(...)
(Page 501) and activated with TANGON(...) (Page 503) is deactivated. The following axis is
then no longer aligned with the path tangent of the leading axis. However, the coupling of the
following axis to the leading axes is retained even after deactivation, which prevents the
following functions, for example:

● Plane change

● Geometry axis switchover

● Definition of a new tangential coupling for the following axis

Final cancellation of the connection of the coupling of the following axis to the leading axes is
not completed until the coupling has been deleted with TANGDEL(...) (Page 505).

Programming
TANGOF(<following axis>)

Meaning

TANGOF(...): Deactivate a tangential coupling
<following axis>: Axis name of the following axis (rotary axis)

Data type: AXIS
Range of values: Channel axis names

12.1.5 Deleting a coupling (TANGDEL)
A tangential coupling defined with TANG(...) (Page 501) will be retained even after deactivation
of the tangential coupling with TANGOF(...) (Page 505). The existing tangential coupling then
continues to prevent, for example, the following functions:

● Plane change

● Geometry axis switchover

● Definition of a new tangential coupling for the following axis

With the predefined procedure TANGDEL(...), the existing tangential coupling is deleted after
the tangential coupling has been deactivated with TANGOF(...).

Syntax
TANGDEL(<following axis>)

Meaning

TANGDEL(...): Delete a tangential coupling defined with TANG()
Effective: Non-modal

Path traversing behavior
12.1 Tangential control

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 505

<following axis>: Axis name of the following axis whose tangential coupling is to be de‐
leted
Data type: AXIS
Range of values: Channel axis names

Examples

Leading axis change
Before a new tangential coupling can be defined with another leading axis for the following
axis, the existing tangential coupling must first be deleted.

Program code Comment
N10 TANG(A, X, Y, 1) ; Define tangential couping for following axis A: A to

X and Y
N20 TANGON(A) ; Activate tangential coupling for following axis A
N30 X10 Y20
...
N80 TANGOF(A) ; Deactivate tangential coupling for following axis A
N90 TANGDEL(A) ; Delete tangential coupling for following axis A
...
N120 TANG(A, X, Z) ; Define new tangential coupling for following axis A
N130 TANGON(A) ; Activate new tangential coupling for following axis A
...

Geometry axis switchover
Before geometry axis switchover can be performed for an existing coupling, the coupling must
first be deleted.

Program code Comment
N10 GEOAX(2,Y1) ; 2nd geometry axis = machine axis Y1
N20 TANG(A, X, Y) ; Define tangential coupling for following axis A
N30 TANGON(A, 90) ; Activate tangential coupling for following axis A
N40 G2 F8000 X0 Y0 I0 J50 ; Motion block
N50 TANGOF(A) ; Deactivate tangential coupling for following axis A
N60 TANGDEL(A) ; Delete tangential coupling for following axis A
N70 GEOAX(2, Y2) ; 2nd geometry axis = machine axis Y2
N80 TANG(A, X, Y) ; Define new tangential coupling for following axis A
N90 TANGON(A, 90) ; Activate new tangential coupling for following axis

A
...

Path traversing behavior
12.1 Tangential control

Job Planning
506 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)
To permit flexible definition of the feedrate characteristic, the feedrate programming according
to DIN 66025 has been extended by linear and cubic characteristics.

The cubic characteristics can be programmed either directly or as interpolating splines. These
additional characteristics make it possible to program continuously smooth velocity
characteristics depending on the curvature of the workpiece to be machined.

These additional characteristics make it possible to program continuously smooth velocity
characteristics depending on the curvature of the workpiece to be machined.

Syntax
F… FNORM
F… FLIN
F… FCUB
F=FPO(…,…,…)

Meaning

FNORM: Basic setting. The feed value is specified as a function of the traverse path of the block
and is then valid as a modal value.

FLIN: Path velocity profile linear:
The feed value is approached linearly via the traverse path from the current value at
the block beginning to the block end and is then valid as a modal value. The response
can be combined with G93 and G94.

FCUB: Path velocity profile cubic:
The blockwise programmed F values (relative to the end of the block) are connected
by a spline. The spline begins and ends tangentially with the previous and following
defined feedrate and takes effect with G93 and G94.
If the F address is missing from a block, the last F value to be programmed is used.

F=FPO… : Polynomial path velocity profile:
The F address defines the feed characteristic via a polynomial from the current value
to the block end. The end value is valid thereafter as a modal value.

Feed optimization on curved path sections
Feed polynomial F=FPO and feed spline FCUB should always be traversed at constant
cutting rate CFC, thereby allowing a jerk-free setpoint feed profile to be generated. This
enables creation of a continuous acceleration setpoint feed profile.

Path traversing behavior
12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 507

Example: Various feed profiles
This example shows you the programming and graphic representation of various feed profiles.

Program code Comment
N1 F1000 FNORM G1 X8 G91 G64 ; Constant feedrate profile, incremental di-

mension data
N2 F2000 X7 ; Setpoint velocity step change
N3 F=FPO(4000, 6000, -4000) ; Feed profile via polynomial with feed 4000

at the end of the block
N4 X6 ; Polynomial feedrate 4000 is valid as modal

value
N5 F3000 FLIN X5 ; Linear feedrate profile
N6 F2000 X8 ; Linear feedrate profile
N7 X5 ; Linear feedrate is valid as modal value
N8 F1000 FNORM X5 ; Constant feedrate profile with acceleration

step change
N9 F1400 FCUB X8 ; All of the following F values programmed in

blocks are connected with splines
N10 F2200 X6
N11 F3900 X7
N12 F4600 X7
N13 F4900 X5 ; Switch-out spline profile
N14 FNORM X5
N15 X20

Further information

FNORM
The feed address F defines the path feedrate as a constant value according to DIN 66025.

Please refer to Programming Manual "Fundamentals" for more detailed information on this
subject.

Path traversing behavior
12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)

Job Planning
508 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

FLIN
The feedrate characteristic is approached linearly from the current feedrate value to the
programmed F value until the end of the block.

Example:

N30 F1400 FLIN X50

FCUB
The feedrate is approached according to a cubic characteristic from the current feedrate value
to the programmed F value until the end of the block. The control uses splines to connect all

Path traversing behavior
12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 509

the feedrate values programmed non-modally that have an active FCUB. The feedrate values
act here as interpolation points for calculation of the spline interpolation.

Example:

N50 F1400 FCUB X50
N60 F2000 X47
N70 F3800 X52

F=FPO(…,…,…)
The feedrate characteristic is programmed directly via a polynomial. The polynomial
coefficients are specified according to the same method used for polynomial interpolation.

Example:

F=FPO(endfeed, quadf, cubf)
endfeed, quadf and cubf are previously defined variables.

endfeed: Feedrate at block end
quadf: Quadratic polynomial coefficient
cubf: Cubic polynomial coefficient

With an active FCUB, the spline is linked tangentially to the characteristic defined via FPO at
the block beginning and block end.

Path traversing behavior
12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)

Job Planning
510 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Supplementary conditions
● The functions for programming the path traversing characteristics apply regardless of the

programmed feedrate characteristic.

● The programmed feedrate characteristic is always absolute regardless of G90 or G91.

● The feed characteristic curve FLIN and FCUB does not act with G93 and G94 for G95,
G96/G961 and G97/G971.

● With an active compressor COMPON the following applies when several blocks are joined
to form a spline segment:

FNORM: The F word of the last block in the group applies to the spline segment.
FLIN: The F word of the last block in the group applies to the spline segment.

The programmed F value applies until the end of the segment and is then
approached linearly.

FCUB: The generated feedrate spline deviates from the programmed end points by an
amount not exceeding the value set in machine data MD20172 $MC_COM‐
PRESS_VELO_TOL.

F=FPO(…,…,…): These blocks are not compressed.

Path traversing behavior
12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 511

12.3 Acceleration behavior

12.3.1 Acceleration mode (BRISK, BRISKA, SOFT, SOFTA, DRIVE, DRIVEA)
The following part program commands are available for programming the current acceleration
mode:

● "BRISK, BRISKA"
The single axes or the path axes traverse with maximum acceleration until the programmed
feedrate is reached (acceleration without jerk limitation).

● "SOFT, SOFTA"
The single axes or the path axes traverse with constant acceleration until the programmed
feedrate is reached (acceleration with jerk limitation).

● "DRIVE, DRIVEA"
The single axes or the path axes traverse with maximum acceleration up to a programmed
velocity limit (MD setting!). The acceleration rate is then reduced (MD setting) until the
programmed feedrate is reached.

Figure 12-1 Path velocity curve with BRISK and SOFT

Path traversing behavior
12.3 Acceleration behavior

Job Planning
512 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Figure 12-2 Path velocity curve with DRIVE

Syntax
BRISK
BRISKA(<axis1>,<axis2>,…)
SOFT
SOFTA(<axis1>,<axis2>,…)
DRIVE
DRIVEA(<axis1>,<axis2>,…)

Meaning

BRISK: Command for activating the "acceleration without jerk limitation"
for the path axes.

BRISKA: Command for activating the "acceleration without jerk limitation"
for single axis movements (JOG, JOG/INC, positioning axis, os‐
cillating axis, etc.).

SOFT: Command for activating the "acceleration with jerk limitation" for
the path axes.

SOFTA: Command for activating the "acceleration with jerk limitation" for
single axis movements (JOG, JOG/INC, positioning axis, oscil‐
lating axis, etc.).

DRIVE: Command for activating the reduced acceleration above a con‐
figured velocity limit (MD35220 $MA_ACCEL_REDUC‐
TION_SPEED_POINT) for the path axes.

DRIVEA: Command for activating the reduced acceleration above a con‐
figured velocity limit (MD35220 $MA_ACCEL_REDUC‐
TION_SPEED_POINT) for single axis movements (JOG, JOG/
INC, positioning axis, oscillating axis, etc.).

(<axis1>,<axis2>, etc.): Single axes for which the called acceleration mode is to apply.

Path traversing behavior
12.3 Acceleration behavior

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 513

Supplementary conditions

Changing acceleration mode during machining
If the acceleration mode is changed in a part program during machining (BRISK ↔ SOFT), then
there is a block change with exact stop at the end of the block during the transition even with
continuous-path mode.

Examples

Example 1: SOFT and BRISKA

Program code
N10 G1 X… Y… F900 SOFT
N20 BRISKA(AX5,AX6)
...

Example 2: DRIVE and DRIVEA

Program code
N05 DRIVE
N10 G1 X… Y… F1000
N20 DRIVEA (AX4, AX6)
...

References
Function Manual, Basic Functions; Acceleration (B2)

12.3.2 Influence of acceleration on following axes (VELOLIMA, ACCLIMA, JERKLIMA)
In the case of axis couplings (tangential correction, coupled motion, master value coupling,
electronic gear; see "Axis couplings (Page 547)").

The dynamics limits of the following axes/spindles can be manipulated using the VELOLIMA,
ACCLIMA, and JERKLIMA functions from the part program or from synchronized actions, even
if the axis coupling is already active.

Note

The JERKLIMA function is not available for all types of coupling.

References:
● Function Manual, Special Functions; Axis Couplings (M3)
● Function Manual, Extended Functions; Synchronous Spindle (S3)

Path traversing behavior
12.3 Acceleration behavior

Job Planning
514 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note
Availability for SINUMERIK 828D

The VELOLIMA, ACCLIMA and JERKLIMA functions can only be used with SINUMERIK 828D
in conjunction with the "coupled motion" function!

Syntax
VELOLIMA(<axis>)=<value>
ACCLIMA(<axis>)=<value>
JERKLIMA(<axis>)=<value>

Meaning

VELOLIMA: Command to correct the parameterized maximum velocity
ACCLIMA: Command to correct the parameterized maximum acceleration
JERKLIMA: Command to correct the parameterized maximum jerk
<axis>: Following axis whose dynamics limits need to be corrected
<value>: Percentage correction value

Examples

Example 1: Correction of the dynamics limits for a following axis (AX4)

Program code Comment
...
VELOLIMA[AX4]=75 ; Limit correction to 75% of the maximum axial velocity

stored in the machine data
ACCLIMA[AX4]=50 ; Limit correction to 50% of the maximum axial acceleration

stored in the machine data
JERKLIMA[AX4]=50 ; Limit correction to 50% of the maximum axial jerk stored

in the machine data
...

Example 2: Electronic gear
Axis 4 is coupled to axis X via an "electronic gear" coupling. The acceleration capacity of the
following axis is limited to 70% of the maximum acceleration. The maximum permissible
velocity is limited to 50% of the maximum velocity. Once the coupling has been activated
successfully, the maximum permissible velocity is restored to 100%.

Program code Comment
...
N120 ACCLIMA[AX4]=70 ; Reduced maximum acceleration.
N130 VELOLIMA[AX4]=50 ; Reduced maximum velocity.
...
N150 EGON(AX4,"FINE",X,1,2) ; Activation of the EG coupling.

Path traversing behavior
12.3 Acceleration behavior

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 515

Program code Comment
...
N200 VELOLIMA[AX4]=100 ; Full maximum velocity.
...

Example 3: Influencing master value coupling by static synchronized action
Axis 4 is coupled to X by master value coupling. The acceleration response is limited to position
80% by static synchronized action 2 from position 100.

Program code Comment
...
N120 IDS=2 WHENEVER $AA_IM[AX4] >
100 DO ACCLIMA[AX4]=80

; Synchronized action

N130 LEADON(AX4, X, 2) ; Master value coupling on
...

12.3.3 Activation of technology-specific dynamic values (DYNNORM, DYNPOS,
DYNROUGH, DYNSEMIFIN, DYNFINISH)

Using the "Technology" G group, the appropriate dynamic response can be activated for five
varying technological machining steps.

Dynamic values and G commands can be configured and are, therefore, dependent on
machine data settings (→ machine manufacturer).

References:
Function Manual, Basic Functions; Continuous-Path Mode, Exact Stop, Look Ahead (B1)

Syntax

Activate dynamic values:
DYNNORM
DYNPOS
DYNROUGH
DYNSEMIFIN
DYNFINISH

Note

The dynamic values are already active in the block in which the associated G command is
programmed. Machining is not stopped.

Read or write a specific field element:
R<m>=$MA...[n,X]
$MA...[n,X]=<value>

Path traversing behavior
12.3 Acceleration behavior

Job Planning
516 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

DYNNORM: G command for activating the normal dynamic response
DYNPOS: G command for activating the dynamic response for positioning mode, tapping
DYNROUGH: G command for activating the dynamic response for roughing
DYNSEMIFIN: G command for activating the dynamic response for finishing
DYNFINISH: G command for activating the dynamic response for smooth-finishing

R<m>: R-parameter with number <m>
$MA...[n,X]: Machine data with field element affecting dynamic response
<n>: Array index

Range of values: 0 ... 4
0 Normal dynamic response (DYNNORM)
1 Dynamic response for positioning mode (DYNPOS)
2 Dynamic response for roughing (DYNROUGH)
3 Dynamic response for finishing (DYNSEMIFIN)
4 Dynamic response for smooth-finishing (DYNFINISH)

<X> : Axis address
<value>: Dynamic value

Examples

Example 1: Activate dynamic values

Program code Comment
DYNNORM G1 X10 ; Initial setting
DYNPOS G1 X10 Y20 Z30 F… ; Positioning mode, tapping
DYNROUGH G1 X10 Y20 Z30 F10000 ;Roughing
DYNSEMIFIN G1 X10 Y20 Z30 F2000 ;Finishing
DYNFINISH G1 X10 Y20 Z30 F1000 ; Smooth finishing

Example 2: Read or write a specific field element
Maximum acceleration for roughing, axis X

Program code Comment
R1=$MA_MAX_AX_ACCEL[2,X] ; reading
$MA_MAX_AX_ACCEL[2,X]=5 ; writing

Path traversing behavior
12.3 Acceleration behavior

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 517

12.4 Traversing with feedforward control (FFWON, FFWOF)
The feedforward control reduces the velocity-dependent overtravel when contouring towards
zero. Traversing with feedforward control permits higher path accuracy and thus improved
machining results.

Syntax
FFWON
FFWOF

Meaning

FFWON: Command to activate the feedforward control
FFWOF: Command to deactivate the feedforward control

Note

The type of feedforward control and which path axes are to be traversed with feedforward
control is specified via machine data.

Default: Velocity-dependent feedforward control

Option: Acceleration-dependent feedforward control

Example

Program code
N10 FFWON
N20 G1 X… Y… F900 SOFT

Path traversing behavior
12.4 Traversing with feedforward control (FFWON, FFWOF)

Job Planning
518 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12.5 Programmable contour accuracy (CPRECON, CPRECOF)
The "Programmable contour accuracy" function reduces the path error on curved contours
through automatic adaptation of the velocity.

The contour accuracy to be maintained is specified depending on the configuration of the
machine (MD20470 $MC_MC_CPREC_WITH_FFW; see machine manufacturer
specifications) either via the setting data $SC_CONTPREC or via the programmed contour
tolerance CTOL. The smaller the value and the smaller the KV factor of the geometry axes, the
greater the path feedrate is reduced on curved contours.

The "Programmable contour accuracy" function is activated or deactivated via the operations
CPRECON and CPRECOF in the NC program.

Syntax

CPRECON
...
CPRECOF

Meaning

CPRECON:

G command call: Switch "Programmable contour accuracy" on
Effective: Modal

CPRECOF:

G command call: Switch "Programmable contour accuracy" off
Effective: Modal

Together CPRECON and CPRECOF form the G function group 39 (programmable contour
accuracy).

Note

The user can specify a minimum velocity for the path feedrate via the setting data
$SC_MINFEED (minimum path feedrate with CPRECON).

The feedrate is not limited below this value, unless a lower F value has been programmed or
the dynamic limits of the axes require a lower path velocity.

Note

The "Programmable contour accuracy" function only considers the geometry axes of the path.
It has no effect on the velocities of positioning axes.

Example

Program code Comment
N10 G0 X0 Y0
N20 CPRECON ; Activate the "programmable contour accuracy".

Path traversing behavior
12.5 Programmable contour accuracy (CPRECON, CPRECOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 519

Program code Comment
N30 G1 G64 X100 F10000 ; Machining with 10 m/min in the continuous-path

mode.
N40 G3 Y20 J10 ; Automatic feed limitation in circular block.
N50 G1 X0 ; Feedrate again without limitation (10 m/min).
...
N100 CPRECOF ; Deactivate the "programmable contour accuracy".
N110 G0 ...

References
For the programming of CTOL, see "Programming contour/orientation tolerance (CTOL,
OTOL, ATOL) (Page 542)"

For more detailed information on the "Programmable contour accuracy" function, see:

Function Manual, Special Functions; Contour Tunnel Monitoring (K6), Section: "Programmable
contour accuracy"

Path traversing behavior
12.5 Programmable contour accuracy (CPRECON, CPRECOF)

Job Planning
520 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12.6 Program sequence with preprocessing memory (STOPFIFO,
STARTFIFO, FIFOCTRL, STOPRE)

Depending on its expansion level, the control system has a certain quantity of so-called
preprocessing memory in which prepared blocks are stored prior to program execution and
then output as high-speed block sequences while machining is in progress. These sequences
allow short paths to be traversed at a high velocity. Provided that there is sufficient residual
control time available, the preprocessing memory is always filled.

Designate machining step
The beginning and end of the machining step to be buffered in the preprocessing memory are
identified in the part program with "STOPFIFO" and "STARTFIFO" respectively. The
processing of the preprocessed and buffered blocks starts only after the "STARTFIFO"
command or if the preprocessing memory is full.

Automatic preprocessing memory control
Automatic preprocessing memory control is called with the "FIFOCTRL" command.
"FIFOCTRL" acts initially just like "STOPFIFO". Whatever the programming, processing will
not start until the preprocessing memory is full. However, the response to the emptying of the
preprocessing memory does differ: With "FIFOCTRL", the path velocity is reduced increasingly
once the fill level reaches 2/3 in order to prevent complete emptying and deceleration to
standstill.

Path traversing behavior
12.6 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL, STOPRE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 521

Preprocessing stop
Programming the "STOPRE" command in a block will stop block preprocessing and buffering.
The following block is not executed until all preprocessed and saved blocks have been
executed in full. The preceding block is halted in exact stop (as with G9).

NOTICE

Program abort

If tool offset or spline interpolations are active, a "STOPRE" command should not be
programmed, as this will lead to contiguous block sequences being interrupted.

Syntax

Table 12-1 Identify machining step:

STOPFIFO
...
STARTFIFO

Table 12-2 Automatic preprocessing memory control:

...
FIFOCTRL
...

Table 12-3 Preprocessing stop:

...
STOPRE
...

Note

The "STOPFIFO", "STARTFIFO", "FIFOCTRL" and "STOPRE" commands must be
programmed in their own block.

Path traversing behavior
12.6 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL, STOPRE)

Job Planning
522 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

STOPFIFO: "STOPFIFO" identifies the start of a machining step to be buffered in the prepro‐
cessing memory. "STOPFIFO" stops processing and fills the preprocessing mem‐
ory until:
● "STARTFIFO" or "STOPRE" is recognized

or
● The preprocessing memory is full

or
● The end of the program is reached

STARTFIFO: "STARTFIFO" starts rapid processing of the machining step; the preprocessing
memory is filled in parallel to this.

FIFOCTRL: Activation of automatic preprocessing memory control
STOPRE: Stop preprocessing

Note

The preprocessing memory is not filled or filling is interrupted if the machining step contains
commands that require unbuffered operation (search for reference, measuring functions, etc.).

Note

The control generates an internal preprocessing stop in the event of access to status data
($SA...).

Example: Stop preprocessing

Program code Comment
...
N30 MEAW=1 G1 F1000 X100 Y100 Z50 ; Measurement block with probe at first

measuring input and linear interpola-
tion.

N40 STOPRE ; Preprocessing stop.
...

Path traversing behavior
12.6 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL, STOPRE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 523

12.7 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)
The predefined DELAYFSTON and DELAYFSTOF procedures are used to define a
conditionally interruptible range in the part program (stop delay range).

Note

DELAYFSTON and DELAYFSTOF are not permitted in synchronized actions!

Syntax

DELAYFSTON
...
DELAYFSTOF

Meaning

DELAYFSTON: Defining the start of a stop delay range
Alone in the block: Yes

DELAYFSTOF: Define the end of the stop delay area
Alone in the block: Yes

Programming example
The following program block is repeated in a loop:

Program code
...
N99 MY_LOOP:
N100 G0 Z200
N200 G0 X0 Z200
N300 DELAYFSTON
N400 G33 Z5 K2 M3 S1000
N500 G33 Z0 X5 K3
N600 G0 X100
N700 DELAYFSTOF
N800 GOTOB MY_LOOP
...

In the following diagram it can be seen that the user pressed "Stop" in the stop delay range,
and the NC started braking outside the stop delay range, i.e. in block N100. That causes the
NC to stop at the beginning of N100.

Path traversing behavior
12.7 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)

Job Planning
524 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Additional information

End of subprogram
DELAYFSTOF is activated implicitly at the end of the subprogram in which DELAYFSTON is
called.

Nesting
If subprogram 1 calls subprogram 2 in a stop delay area, the whole of subprogram 2 is a stop
delay area. In particular, DELAYFSTOF in subprogram 2 has no effect.

Example:

Program code Comment
N10010 DELAYFSTON ; Blocks with N10xxx program level 1.
N10020 R1 = R1 + 1
N10030 G4 F1 ; Stop delay area starts.
...
N10040 subprogram2
...
... ; Interpretation of subprogram 2.
N20010 DELAYFSTON ; Ineffective, repeated start, 2nd level.
...
N20020 DELAYFSTOF ; Ineffective, end at another level.
N20030 RET
N10050 DELAYFSTOF ; Stop delay end of range at the same level.
...
N10060 R2 = R2 + 2
N10070 G4 F1 ; Stop delay area ends. From now, stops act immediately.

Path traversing behavior
12.7 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 525

System variables
The following system variables can be queried to determine whether part program processing
is currently in a stop delay area:

● in the part program with $P_DELAYFST

● in synchronized actions with $AC_DELAYFST

Value Meaning
0 Delay stop range not active
1 Delay stop area active

Path traversing behavior
12.7 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)

Job Planning
526 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12.8 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)
For some complicated mechanical situations on the machine it is necessary to the stop block
search SERUPRO.

By using a programmable interruption pointer it is possible to intervene before an untraceable
point with "Search at point of interruption".

It is also possible to define untraceable sections in part program sections that the NC cannot
yet re-enter. When the program is interrupted, the NC notes the last block that was processed
that can then be searched for via the HMI user interface.

Syntax
IPTRLOCK
IPTRUNLOCK
The commands are located in a part program line and allow a programmable interruption
pointer

Meaning

IPTRLOCK: Start of untraceable program section
IPTRUNLOCK: End of untraceable program section

Both commands are only permitted in part programs, but not in synchronous actions.

Example
Nesting of untraceable program sections in two program levels with implicit "IPTRUNLOCK".
Implicit "IPTRUNLOCK" in subprogram 1 ends the untraceable section.

Program code Comment
N10010 IPTRLOCK()
N10020 R1 = R1 + 1
N10030 G4 F1 ; Hold block of the search-suppressed program sec-

tion starts.
...
N10040 subprogram2
... ; Interpretation of subprogram 2.
N20010 IPTRLOCK () ; Ineffective, repeated start.
...
N20020 IPTRUNLOCK () ; Ineffective, end at another level.
N20030 RET
...
N10060 R2 = R2 + 2
N10070 RET ; End of search-suppressed program section.
N100 G4 F2 ; Main program is continued.

The interruption pointer then produces an interruption at 100 again.

Path traversing behavior
12.8 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 527

Further information

Acquiring and finding untraceable sections
Non-searchable program sections are identified with language commands "IPTRLOCK" and
"IPTRUNLOCK".

Command "IPTRLOCK" freezes the interruption pointer at a single block executable in the
main run (SBL1). This block will be referred to as the hold block below. If the program is aborted
after "IPTRLOCK", this hold block can be searched for from the HMI user interface.

Continuing from the current block
The interruption pointer is placed on the current block with "IPTRUNLOCK" as the interruption
point for the following program section.

Once the search target is found a new search target can be repeated with the hold block.

An interrupt pointer edited by the user must be removed again via the HMI.

Rules for nesting:
The following points govern the interaction between language commands "IPTRLOCK" and
"IPTRUNLOCK" with nesting and the subprogram end.

1. "IPTRLOCK" is activated implicitly at the end of the subprogram in which "IPTRUNLOCK"
is called.

2. "IPTRLOCK" in a search-suppressed section has no effect.

3. If subprogram 1 calls subprogram 2 in an untraceable section, the whole of subprogram 2
remains untraceable. "IPTRUNLOCK" in particular has no effect in subprogram 2.

For more information, see
/FB1/ Function Manual, Basic Functions; Mode Group, Channel, Program Operation Mode
(K1).

System variable
An untraceable section can be detected in the part program with "$P_IPTRLOCK".

Automatic interrupt pointer
The automatic interrupt pointer automatically defines a previously defined coupling type as
untraceable. The machine data for

● Electronic gear for "EGON"

● Axial master value coupling for "LEADON"

are used to activate the automatic interrupt pointer. If the programmed interrupt pointer and
interrupt pointer activated with automatic interrupt pointers overlap, the largest possible
untraceable section will be generated.

Path traversing behavior
12.8 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)

Job Planning
528 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ,
REPOSQA, REPOSH, REPOSHA, DISR, DISPR, RMIBL, RMBBL,
RMEBL, RMNBL)

If you interrupt the program run and retract the tool during the machining operation – because,
for example, the tool has broken or you wish to measure the workpiece – you can reposition
at any selected point on the contour under control by the program.

The command REPOS acts in an ASUB as a subprogram return (e.g. M17). The following blocks
are not executed. For information on interrupting program runs, see also "Interrupt routine
(ASUB) (Page 125)."

Syntax
REPOSA RMIBL DISPR=…
REPOSA RMBBL
REPOSA RMEBL
REPOSA RMNBL
REPOSL RMIBL DISPR=…
REPOSL RMBBL
REPOSL RMEBL
REPOSL RMNBL
REPOSQ RMIBL DISPR=… DISR=…
REPOSQ RMBBL DISR=…
REPOSQ RMEBL DISR=…
REPOSQA DISR=…
REPOSH RMIBL DISPR=… DISR=…
REPOSH RMBBL DISR=…
REPOSH RMEBL DISR=…
REPOSHA DISR=…

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,

DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 529

Meaning

Selecting the approach path

REPOSA: Repositioning to the contour with the geometry axes along a straight line.
All other channel axes are also repositioned.

REPOSL: Repositioning to the contour with the geometry axes along a straight line.
Other axes have to be programmed explicitly.

REPOSQ DISR=… : Repositioning to the contour with the geometry axes along a quadrant of
radius DISR.
Other axes have to be programmed explicitly.

REPOSQA DISR=… : Repositioning to the contour with the geometry axes along a quadrant of
radius DISR.
All other channel axes are also repositioned.

REPOSH DISR=… : Repositioning to the contour with the geometry axes along a semicircle
of diameter DISR.
Other axes have to be programmed explicitly.

REPOSHA DISR=… : Repositioning to the contour with the geometry axes along a semi-circle
of radius DISR.
All other channel axes are also repositioned.

Selecting the repositioning point

RMIBL: Approach interruption point
RMIBL DISPR=…: Entry point at distance DISPR in mm/inch in front of interruption point
RMBBL: Approach block start point
RMEBL: Approach end of block
RMEBL DISPR=… : Approach block end point at distance DISPR in front of end point
RMNBL: Approach at nearest path point
A0 B0 C0 : Axes in which approach is to be made

Note
Compatibility

To remain compatible with older software versions, you can still program the REPOS approach
mode via the modal commands RMI, RMB, RME and RMN. When used within an ASUB, this
should be allocated the attribute SAVE in the PROC statement. Otherwise the modal REPOS
approach mode used in the ASUB will take effect in subsequent REPOS processes, too, if it
deviates from the preset RMI.

Repositioning to the contour along a straight line, REPOSA, REPOSL
The tool approaches the repositioning point along a straight line.

Example
REPOSL RMIBL DISPR=6 F400

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,
DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
530 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Repositioning to the contour along a quadrant, REPOSQ, REPOSQA
The tool approaches the repositioning point along a quadrant with a radius of DISR=…. The
control automatically calculates the necessary intermediate point between the start and
repositioning point.

Example
REPOSQ RMIBL DISR=10 F400

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,

DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 531

Repositioning to the contour along a semicircle, REPOSH, REPOSHA
The tool approaches the repositioning point along a semi-circle with a diameter of DISR=….
The control automatically calculates the necessary intermediate point between the start and
repositioning point.

Example
REPOSH RMIBL DISR=20 F400

Specifying the repositioning point (not for SERUPRO approaching with RMNBL)
With reference to the NC block in which the program run has been interrupted, it is possible
to select one of three different repositioning points:

● RMIBL, interruption point

● RMBBL, block start point or last end point

● RMEBL, block end point

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,
DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
532 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

RMIBL DISPR=… or RME DISPR=… allows you to select a repositioning point which lies
before the interruption point or the block end point.

DISPR=… allows you to describe the contour distance in mm/inch between the repositioning
point and the interruption before the end point. Even for high values, this point cannot be further
away than the block start point.

If no DISPR=… command is programmed, then DISPR=0 applies and with it the interruption
point (with RMIBL) or the block end point (with RMEBL).

DISPR sign
The sign of DISPR is evaluated. In the case of a plus sign, the behavior is as previously.

In the case of a minus sign, approach is behind the interruption point or, with RMBBL, behind
the block start point.

The distance between interruption point and approach point depends on the value of DISPR.
Even for higher values, this point can lie in the block end point at the maximum.

Application example:
A sensor will recognize the approach to a clamp. An ASUB is initiated to bypass the clamp.

Afterwards, a negative DISPR is repositioned on one point behind the clamp and the program
is continued.

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,

DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 533

SERUPRO approach with RMNBL
If an abort is forced during machining at any position, the shortest path from the abort point is
approached with SERUPRO approach and RMNBL so that afterward only the distance-to-go
is processed. The user starts a SERUPRO process at the interruption block and uses the JOG
keys to move in front of the problem component of the target block.

Note
SERUPRO

For SERUPRO, RMIBL and RMBBL are identical. RMNBL is not only limited to SERUPRO,
but is generally valid.

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,
DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
534 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Approach from the nearest path point RMNBL
When REPOSA is interpreted, the repositioning block with RMNBL is not started again in full
after an interruption, but only the distance-to-go processed. The nearest path point of the
interrupted block is approached.

Status for the valid REPOS mode
The valid REPOS mode of the interrupted block can be read with synchronized actions and
variable $AC_ REPOS_PATH_MODE:

0 Approach not defined
1 RMBBL: Approach to beginning
2 RMIBL: Approach to point of interruption
3 RMEBL: Approach to end of block
4 RMNBL: Approach to next path point of the interrupted block

Approaching with a new tool
The following applies if you have stopped the program run due to tool breakage:

When the new D number is programmed, the machining program is continued with modified
tool offset values at the repositioning point.

Where tool offset values have been modified, it may not be possible to reapproach the
interruption point. In such cases, the point closest to the interruption point on the new contour
is approached (possibly modified by DISPR).

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,

DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 535

Approach contour
The motion with which the tool is repositioned on the contour can be programmed. Enter zero
for the addresses of the axes to be traversed.

The REPOSA, REPOSQA and REPOSHA commands automatically reposition all axes.
Individual axis names need not be specified.

When the commands REPOSL, REPOSQ and REPOSH are programmed, all geometry axes
are traversed automatically, i.e. they do not have to be specified in the command. All other
axes must be specified in the commands.

The following applies to the REPOSH and REPOSQ circular motions:
The circle is traversed in the specified working planes G17 to G19.

If you specify the third geometry axis (infeed direction) in the approach block, the repositioning
point is approached along a helix in case the tool position and programmed position in the
infeed direction do not coincide.

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,
DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
536 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

In the following cases, there is an automatic switchover to linear approach REPOSL:

● You have not specified a value for DISR.

● No defined approach direction is available (program interruption in a block without travel
information).

● With an approach direction that is perpendicular to the current working plane.

Path traversing behavior
12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR,

DISPR, RMIBL, RMBBL, RMEBL, RMNBL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 537

12.10 Influencing the motion control

12.10.1 Percentage jerk correction (JERKLIM)
Using the NC command "JERKLIM", the maximum jerk of an axis for path motion - set using
machine data - can be reduced or increased in critical program sections.

Requirement
The acceleration mode SOFT must be active.

Effectiveness
The function is effective:

● In the AUTOMATIC operating modes.

● Only on path axes.

Syntax
JERKLIM[<axis>]=<value>

Meaning

JERKLIM: Command for jerk correction
<axis>: Machine axis whose jerk limit value is to be adapted.
<value>: Percentage correction value, referred to the configured maximum axis jerk for path

motion (MD32431 $MA_MAX_AX_JERK).
Range of values: 1 ... 200
Value 100 does not influence the jerk.

Note

The behavior of JERKLIM at the end of the part program and channel reset is configured with
bit 0 in machine data MD32320 $MA_DYN_LIMIT_RESET_MASK:
● Bit 0 = 0:

The programmed value for JERKLIM is reset to 100% with channel reset/M30.
● Bit 0 = 1:

The programmed value for JERKLIM is retained beyond the channel reset/M30.

Example

Program code Comment
...

Path traversing behavior
12.10 Influencing the motion control

Job Planning
538 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N60 JERKLIM[X]=75 ; The axis slide in the X direction should only be ac-

celerated/decelerated with a maximum of 75% of the jerk
permissible for the axis.

...

12.10.2 Percentage velocity correction (VELOLIM)
The maximum possible velocity of an axis or the maximum possible gear-stage-dependent
speed of a spindle set via machine data can be reduce with the VELOLIM command in the
part program or synchronized action.

Effectiveness
The function is effective:

● In the AUTOMATIC operating modes.

● On path and positioning axes.

● On spindles in spindle/axis operations

Syntax
VELOLIM[<axis/spindle>]=<value>

Meaning

VELOLIM: Command for velocity correction
<axis/spindle>: Axis or spindle whose velocity or speed limit value should be adapted.

VELOLIM for spindles
Using machine data (MD30455 $MA_MISC_FUNCTION_MASK, bit 6),
when programming in the part program, it can be set as to whether "VE‐
LOLIM" is effective independent of whether used as spindle or axis
(bit 6 = 1) - or is able to be programmed separately for each operating mode
(bit 6 = 0). If they are to be separately effective, then the selection is made
using the identifier when programming:
● Spindle identifier S<n> for spindle operating modes
● Axis identifier, e.g. "C", for axis operation

Path traversing behavior
12.10 Influencing the motion control

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 539

<value>: Percentage correction value
The correction value refers to:
● For axes/spindles in axis operation (MD30455 bit 6 == 0):

To the configured maximum axis velocity
(MD32000 $MA_MAX_AX_VELO).

● For spindles in spindle or axis operation (MD30455 bit 6 == 1):
To the maximum speed of the active gear unit stage
(MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>])

Range of values: 1 ... 100
The value 100 does not influence the velocity or speed.

Note
Behavior at the end of the part program and for a channel reset

The behavior of "VELOLIM" at the end of the part program and channel reset can be set via
the machine data: MD32320 $MA_DYN_LIMIT_RESET_MASK, bit 0

Detection of an active speed limitation in spindle operation
A speed limitation via "VELOLIM" (less than 100%) can be detected in spindle operation via
the following system variables:

● $AC_SMAXVELO (maximum possible spindle speed)

● $AC_SMAXVELO_INFO (identifier for the speed-limiting cause)

Examples

Example 1: Velocity limitation, machine axis

Program code Comment
...
N70 VELOLIM[X]=80 ; The axis slide in the X direction should only be trav-

ersed with a maximum of 80% of the velocity permissible
for the axis.

...

Example 2: Speed limitation, spindle

Program code Comment
N05 VELOLIM[S1]=90 ; Limiting the maximum speed of spindle 1 to 90% of

1000 rpm.
...
N50 VELOLIM[C]=45 ; Limiting the speed to 45% of 1000 rpm, C is the axis

identifier of S1.
...

Path traversing behavior
12.10 Influencing the motion control

Job Planning
540 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Machine data settings for spindle 1 (AX5)

● Maximum speed of gear stage 1 = 1000 rpm:
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[1, AX5] = 1000

● Programming "VELOLIM" acts together for spindle and axis operation independent of the
programmed identifier:
MD30455 $MA_MISC_FUNCTION_MASK[AX5], bit 6 = 1

12.10.3 Program example for JERKLIM and VELOLIM
The following program presents an application example for the percentage jerk and velocity
limit:

Program code Comments
N1000 G0 X0 Y0 F10000 SOFT G64
N1100 G1 X20 RNDM=5 ACC[X]=20
ACC[Y]=30
N1200 G1 Y20 VELOLIM[X]=5 ; The axis slide in the X direction should

only be traversed with max. 5% of the veloc-
ity permissible for the axis.

JERKLIM[Y]=200 ; The axis slide in the Y direction can be
accelerated/decelerated with max. 200% of
the jerk permissible for the axis.

N1300 G1 X0 JERKLIM[X]=2 ; The axis slide in the X direction should
only be accelerated/decelerated with max. 2%
of the jerk permissible for the axis.

N1400 G1 Y0
M30

Path traversing behavior
12.10 Influencing the motion control

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 541

12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)
Addresses CTOL, OTOL and ATOL can be used to adapt the machining tolerances -
parameterized using machine and setting data - for compressor functions, smoothing and
orientation smoothing in the part program.

The programmed tolerance values are valid until they are reprogrammed or deleted by
assigning a negative value. Further, they are deleted at the end of the program or a reset The
parameterized tolerance values become effective again after deletion.

Syntax
CTOL=<Value>
OTOL=<Value>
ATOL[<Axis>]=<Value>

Meaning

CTOL: Address to program the contour tolerance
Applications: ● All compressor functions

● All rounding types except G641 and G644
Preprocessing stop: No
Effective: Modal
<Value>: The value for the contour tolerance is specified as a length.

Type: REAL
Unit: inch/mm (dependent on the current dimensions

setting)
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

OTOL: Address to program the orientation tolerance
Applications: ● All compressor functions

● ORISON orientation smoothing
● All smoothing types except G641, G644 and OSD

Preprocessing stop: No
Effective: Modal
<Value>: The value for the orientation tolerance is specified as an angle.

Type: REAL
Unit: degrees
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

Path traversing behavior
12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)

Job Planning
542 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

ATOL: Address for programming an axis-specific tolerance
Applications: ● All compressor functions

● ORISON orientation smoothing
● All smoothing types except G641, G644 and OSD

Preprocessing stop: No
Effective: Modal
<Axis>: Name of the channel axis to which the programmed tolerance will

apply
<Value>: The value for the axis tolerance will be specified as a length or an

angle dependent on the axis type (linear or rotary axis).
Type: REAL
Unit: For linear axes: inch/mm (dependent on

the current dimensions set‐
ting)

For rotary axes: degrees
Value range: ≥ 0: Tolerance value

< 0: The programmed tolerance value is de‐
leted
⇒ The tolerance value parameterized in
the machine or setting data becomes ef‐
fective again.

Note

The channel-specific tolerance values programmed with CTOL and OTOL have higher priority
than the axis-specific tolerance values programmed with ATOL.

Note
Scaling frames

Scaling frames affect programmed tolerances in the same way as axis positions; in other
words, the relative tolerance remains the same.

Example

Program code Comment
COMPCAD G645 G1 F10000 ; Activate COMPCAD compressor function.
X... Y... Z... ; The machine and setting data is applied here.
X... Y... Z...
X... Y... Z...
CTOL=0.02 ; A contour tolerance of 0.02 mm is applied start-

ing from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...
ASCALE X0.25 Y0.25 Z0.25 ; A contour tolerance of 0.005 mm is applied start-

ing from here.

Path traversing behavior
12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 543

Program code Comment
X... Y... Z...
X... Y... Z...
X... Y... Z...
CTOL=–1 ; The machine and setting data is applied again

starting from here.
X... Y... Z...
X... Y... Z...
X... Y... Z...

System variables

Reading with preprocessing stop
Using the following system variables, the currently active tolerances can be read in the part
program and synchronized action:

● $AC_CTOL
Channel-specific contour tolerance effective when the actual main run block was
preprocessed.
If no contour tolerance is effective, $AC_CTOL will return the root of the sum of the squares
of the tolerances of the geometry axes.

● $AC_OTOL
Channel-specific orientation tolerance effective when the actual main run block was
preprocessed.
If no orientation tolerance is effective, $AC_OTOL will return the root of the sum of the
squares of the tolerances of the orientation axes during active orientation transformation.
Otherwise, it will return the value "-1."

● $AA_ATOL[<axis>]
Axis-specific contour tolerance effective when the actual main run block was preprocessed.
If no contour tolerance is active, $AA_ATOL[<geometry axis>] returns the contour tolerance
divided by the root of the number of geometry axes.
If an orientation tolerance and an orientation transformation are active
$AA_ATOL[<orientation axis>] will return the orientation tolerance divided by the root of
the number of orientation axes.

Note

If now tolerance values have been programmed, the $A variables are not differentiated enough
to distinguish the tolerance of the individual functions.

Circumstances like this can occur if the machine data and the setting data set different
tolerances for compressor functions, smoothing and orientation smoothing. The system
variables then return the greatest value occurring with the functions that are currently active.
For example, if a compressor function is active with an orientation tolerance of 0.1° and
ORISON orientation smoothing with 1°, the $AC_OTOL variable will return the value "1." If
orientation smoothing is deactivated, $AC_OTOL returns a value value "0.1."

Path traversing behavior
12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)

Job Planning
544 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Reading without preprocessing stop
Using the following system variables, the currently active tolerances can be read in the part
program:

● $P_CTOL
Currently active channel-specific contour tolerance.

● $P_OTOL
Currently active channel-specific orientation tolerance.

● $PA_ATOL
Currently active axis-specific contour tolerance.

Supplementary conditions
The tolerances programmed with CTOL, OTOL and ATOL also affect functions that indirectly
depend on these tolerances:

● Limiting the chord error in the setpoint value calculation

● The basic functions of the free-form surface mode

The following smoothing functions are not affected by the programming of CTOL, OTOL and
ATOL:

● Smoothing the orientation with OSD
OSD does not use a tolerance, it uses a distance from the block transition.

● Smoothing with G644
G644 is not used for smoothing, it is used for optimizing tool changes and other motion not
involving machining.

● Smoothing with G645
G645 virtually always behaves like G642 and, thus, uses the programmed tolerances. The
tolerance value from machine data MD33120 $MA_PATH_TRANS_POS_TOL is only used
in uniformly tangential block transitions with a jump in curvature, e.g. a tangential circle/
straight line transition. The rounding path at these points may also be located outside the
programmed contour, where many applications are less tolerant. Furthermore, it generally
takes a small, fixed tolerance to compensate for the sort of changes in curvature which
need not concern the NC programmer.

Path traversing behavior
12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 545

12.12 Block change behavior with active coupling (CPBC)
The CPBC command specifies the block change criterion that must be satisfied so that a block
change can be executed in the part program with active coupling.

Syntax
CPBC[<following axis>] = <criterion>

Meaning

CPBC: Block change criterion with active coupling
<following axis>: Axis identifier of the following axis
<criterion>: Block change criterion

Type: STRING
Value Meaning: Block change is performed
"NOC" Irrespective of the coupling status
"IPOSTOP" For setpoint synchronism
"COARSE" For actual value synchronism "coarse"
"FINE" For actual value synchronism "fine"

Example

Program code
; Block change takes place with:
; - Coupling to following axis X2 == active
; - Setpoint synchronism == active

CPBC[X2]="IPOSTOP"

Path traversing behavior
12.12 Block change behavior with active coupling (CPBC)

Job Planning
546 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Axis couplings 13
13.1 Coupled motion (TRAILON, TRAILOF)

When a defined leading axis is moved, the coupled motion axes (= following axes) assigned
to it traverse through the distances described by the leading axis, allowing for a coupling factor.

Together, the leading axis and following axis represent coupled axes.

Applications
● Traversal of an axis by means of a simulated axis. The leading axis is a simulated axis and

the coupled axis a real axis. In this way, the real axis can be traversed as a function of the
coupling factor.

● Two-sided machining with two coupled motion groups:
1. leading axis Y, coupled motion axis V
2. leading axis Z, coupled motion axis W

Syntax
TRAILON(<following axis>,<leading axis>,<coupling factor>)
TRAILOF(<following axis>,<leading axis>,<leading axis 2>)
TRAILOF(<following axis>)

Meaning

TRAILON: Command for activating and defining a coupled axis grouping
Effective: Modal

<following axis>: Parameter 1: Axis name of trailing axis
Note:
A coupled-motion axis can also act as the leading axis for other coupled-
motion axes. In this way, it is possible to create a range of different coupled
axis groupings.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 547

<leasing axis>: Parameter 2: Axis name of trailing axis
<coupling factor>: Parameter 3: Coupling factor

The coupling factor specifies the desired relationship between the paths of
the coupled-motion axis and the leading axis:
<coupling factor> = path of coupled-motion axis/path of leading axis
Type: REAL
Default: 1
The input of a negative value causes the master and coupled axes to tra‐
verse in opposition.
If a coupling factor is not programmed, then coupling factor 1 automatically
applies.

TRAILOF: Command for deactivating a coupled axis grouping

Effective: Modal
TRAILOF with 2 parameters deactivates only the coupling to the specified
leading axis:
TRAILOF(<following axis>,<leading axis>)
If a coupled-motion axis has two leading axes, TRAILOF can be called with
three parameters to deactivate both couplings.
TRAILOF(<following axis>,<leading axis>,<leading axis
2>)
Programming TRAILOF without specifying a leading axis produces the
same result:
TRAILOF(<following axis>)

Note

Coupled axis motion is always executed in the base coordinate system (BCS).

The number of coupled axis groupings which may be simultaneously activated is limited only
by the maximum possible number of combinations of axes on the machine.

Axis couplings
13.1 Coupled motion (TRAILON, TRAILOF)

Job Planning
548 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
The workpiece is to be machined on two sides with the axis configuration shown in the diagram.
To do this, you create two combinations of coupled axes.

Program code Comment
…
N100 TRAILON(V,Y) ; Activation of 1st coupled axis group.
N110 TRAILON(W,Z,–1) ; Activation of 2nd coupled axis grouping, Negative cou-

pling factor: Coupled-motion axis traverses in the oppo-
site direction from leading axis.

N120 G0 Z10 ; Infeed of Z and W axes in opposite axial directions.
N130 G0 Y20 ; Infeed of Y and V axes in same axis direction.
…
N200 G1 Y22 V25 F200 ; Overlaying of a dependent and independent movement of

coupled motion axis V.
…
TRAILOF(V,Y) ; Deactivation of 1st coupled axis grouping.
TRAILOF(W,Z) ; Deactivation of 2nd coupled axis grouping.

Further information

Axis types
A coupled axis grouping can consist of any desired combinations of linear and rotary axes. A
simulated axis can also be defined as a leading axis.

Coupled-motion axes
Up to two leading axes can be assigned simultaneously to a trailing axis. The assignment is
made in different combinations of coupled axes.

A coupled-motion axis can be programmed with the full range of available motion commands
(G0, G1, G2, G3, etc.). The coupled axis not only traverses the independently defined paths,
but also those derived from its leading axes on the basis of coupling factors.

Axis couplings
13.1 Coupled motion (TRAILON, TRAILOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 549

Dynamics limit
The dynamics limit is dependent on the type of activation of the coupled axis grouping:

● Activation in part program
If activation is performed in the part program and all leading axes are active as program
axes in the activated channel, the dynamic response of all coupled-motion axes is taken
into account during traversing of the leading axis to avoid overloading the coupled-motion
axes.
If activation is performed in the part program with leading axes that are not active as
program axes in the activating channel ($AA_TYP ≠ 1), then the dynamic response of the
coupled-motion axes is not taken into account during traversing of the leading axis. This
can cause the overloading of coupled-motion axes with a dynamic response which is less
than that required for the coupling.

● Activation in synchronized action
If activation is performed in a synchronized action, the dynamic response of the coupled-
motion axes is not taken into account during traversing of the leading axis. This can cause
the overloading of coupled-motion axes with a dynamic response which is less than that
required for the coupling.

CAUTION

Axis overload

If a coupled axis grouping is activated:
● In synchronized actions
● In the part program with leading axes that are not program axes in the channel of the

coupled-motion axes

It is the specific responsibility of the user / machine manufacturer to take suitable action
to ensure that the traversing of the leading axis will not cause the overloading of the
coupled-motion axes.

Coupling status
The coupling status of an axis can be checked in the part program with the system variable:

$AA_COUP_ACT[<axis>]

Value Meaning
0 No coupling active
8 Coupled motion active

Display of distance-to-go of the coupled-motion axis for modulo rotary axes
If the leading and coupled-motion axes are modulo rotary axes, traversing movements in the
leading axis from n * 360° with n = 1, 2, 3 ... , add up in the distance-to-go display of the coupled-
motion axis until the coupling is switched off.

Example: Program section with TRAILON and leading axis B and following axis C

Program code Comment
TRAILON(C,B,1) ; Activate coupling
G0 B0 ; Starting position
 ; Distance-to-go display at block start:

Axis couplings
13.1 Coupled motion (TRAILON, TRAILOF)

Job Planning
550 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
G91 B360 ; B=360, C=360
G91 B720 ; B=720, C=1080
G91 B360 ; B=360, C=1440

Axis couplings
13.1 Coupled motion (TRAILON, TRAILOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 551

13.2 Curve tables (CTAB)
Curve tables can be used to program position and velocity relationships between two axes
(leading and following axis). Curve tables are defined in the part program.

Application
Curve tables replace mechanical cams. The curve table forms the basis for the axial master
value coupling by creating the functional relationship between the leading and the following
value: With appropriate programming, the control calculates a polynomial that corresponds to
the cam from the relative positions of the leading and following axes.

13.2.1 Define curve tables (CTABDEF, CATBEND)
A curve table represents a part program or a section of a part program enclosed by CTABDEF
at the start and CTABEND at the end.

Within this part program section, unique following axis positions are assigned to individual
positions of the leading axis using motion operations; these following axis positions are used
as intermediate points when calculating the curve definition in the form of a polynomial up to
the 5th order.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
552 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Requirement
The MD must be configured accordingly to ensure that sufficient memory space is reserved
for the definition of curve tables (→ machine manufacturer).

Syntax
CTABDEF(<following axis>,<leading axis>,<n>,<periodicity>[,<memory
location>])
...
CTABEND

Meaning

CTABDEF(): Start of curve table definition
CTABEND: End of curve table definition
<following axis>: Axis whose motion is to be calculated using the curve table
<leasing axis>: Axis providing the master values for the calculation of the following axis motion
<n>: Number (ID) of curve table

The number of a curve table is unique and independent of the memory loca‐
tion. It is not possible for there to be tables with the same number in the static
and dynamic NC memory.

<periodicity>: Table periodicity
0 Table is non-periodic (table is processed only once, even for rotary

axes)
1 Table is periodic with regard to the leading axis
2 Table is periodic with regard to leading axis and following axis

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 553

<memory
location>:

Specification of memory location (optional)
"SRAM" The curve table is created in the static NC memory.
"DRAM" The curve table is created in the dynamic NC memory.
Note:
If a value is not programmed for this parameter, the default memory location
set with MD20905 $MC_CTAB_DEFAULT_MEMORY_TYPE is used.

Note
Overwrite

A curve table is overwritten as soon as its number (<n>) is used in another table definition.
(exception: the curve table is either active in an axis coupling or locked with CTABLOCK). No
warning is output when curve tables are overwritten.

Examples

Example 1: Program section as curve table definition
A program section is to be used unchanged for defining a curve table. The STOPRE command
for preprocessing stop can remain and is reactivated immediately as soon as the program
section is no longer being used for table definition and CTABDEF and CTABEND have been
removed.

Program code Comment
…
CTABDEF(Y,X,1,1) ; Definition of a curve table.
…
IF NOT ($P_CTABDEF)
STOPRE
ENDIF
…
CTABEND

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
554 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example 2: Definition of a non-periodic curve table

Program code Comment
N100 CTABDEF(Y,X,3,0) ; Beginning of the definition of a ;non-periodic curve

table with number 3.
N110 X0 Y0 ; 1st motion operation, defines the starting values and

1st intermediate point:
Master value: 0, Following value: 0

N120 X20 Y0 ; 2nd interpolation point:
Master value: 0…20, Following value: starting value…0

N130 X100 Y6 ; 3rd interpolation point:
Master value: 20…100, Following value: 0…6

N140 X150 Y6 ; 4th interpolation point:
Master value: 100…150, Following value: 6…6

N150 X180 Y0 ; 5th interpolation point:
Master value: 150…180, Following value: 6…0

N200 CTABEND ; End of the definition. The curve table is generated
in its internal representation as a polynomial of up to
the 5th order. The calculation of the curve definition
with the specified intermediate points is dependent on
the modally selected interpolation type (circular, lin-
ear, spline interpolation). The part program state be-
fore starting the definition is restored.

Example 3: Definition of a periodic curve table
Definition of a periodic curve table with number 2, master value range 0 to 360, following axis
motion from 0 to 45 and back to 0:

Program code Comment
N10 DEF REAL DEPPOS

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 555

Program code Comment
N20 DEF REAL GRADIENT
N30 CTABDEF(Y,X,2,1) ; Start of definition.
N40 G1 X=0 Y=0
N50 POLY
N60 PO[X]=(45.0)
N70 PO[X]=(90.0) PO[Y]=(45.0,135.0,-90)
N80 PO[X]=(270.0)
N90 PO[X]=(315.0) PO[Y]=(0.0,-135.0,90)
N100 PO[X]=(360.0)
N110 CTABEND ; End of the definition.
;Test of the curve by coupling Y to X:
N120 G1 F1000 X0
N130 LEADON(Y,X,2)
N140 X360
N150 X0
N160 LEADOF(Y,X)

N170 DEPPOS=CTAB(75.0,2,GRADIENT) ; Read the table function for mas-

ter value 75.0.
N180 G0 X75 Y=DEPPOS ; Positioning leading and follow-

ing axes.
;After activating the coupling, no synchronization of the following axis is required.
N190 LEADON(Y,X,2)
N200 G1 X110 F1000
N210 LEADOF(Y,X)
N220 M30

Further Information

Starting and end value of the curve table
The starting value for the beginning of the definition range of the curve table are the first
associated axis positions specified (the first traverse statement) within the curve table
definition. The end value of the definition range of the curve table is determined in accordance
with the last traverse command.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
556 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Available language scope
Within the definition of the curve table, you have use of the entire NC language.

Note

The following entries are not permitted in curve table definitions:
● Preprocessing stop
● Jumps in the leading axis movement (e.g. on changing transformations)
● Traverse statement for the following axis only
● Reversal of the leading axis, i.e. position of the leading axis must always be unique
● CTABDEF and CTABEND statement on various program levels.

Effectiveness of modal operations
All modal statements that are made within the curve table definition are invalid when the table
definition is completed. The part program in which the table definition is made is therefore
before and after the table definition in the same state.

Assignments to R-parameters
Assignments to R-parameters in the table definition are reset after CTABEND.

Example:

Program code Comment
...
R10=5 R11=20 ;R10=5
...
CTABDEF
G1 X=10 Y=20 F1000
R10=R11+5 ;R10=25
X=R10
CTABEND
... ;R10=5

Activating ASPLINE, BSPLINE, CSPLINE
If an ASPLINE, BSPLINE or CSPLINE is activated within a curve definition table CTABDEF ...
CTABEND, at least a start point should be programmed before this spline activation. Immediate
activation after CTABDEF should be avoided, otherwise the spline will depend on the current
axis position before the curve table definition.

Example:

Program code
...
CTABDEF(Y,X,1,0)
X0 Y0
ASPLINE
X=5 Y=10

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 557

Program code
X10 Y40
...
CTABEND

Repeated use of curve tables
The functional relationship between the leading axis and the following axis calculated using
the curve table will be retained under the selected table number after the end of the part
program and POWER OFF if the table has been saved to the static NC memory (SRAM).

A table created in the dynamic memory (DRAM) will be deleted on POWER ON and may have
to be regenerated.

Once created, the curve table can be applied to any axis combinations of leading and following
axis and is independent of the axes used to create the curve table.

Overwriting curve tables
A curve table is overwritten as soon as its number is used in another table definition.

Exception: A curve table is either active in an axis coupling or locked with CTABLOCK.

Note

No warning is output when curve tables are overwritten.

Curve table definition active?
The $P_CTABDEF system variable can be used at any time in the part program to check
whether a curve table definition is active.

Revoking the curve table definition
Once the operations relating to the curve table definition have been excluded, the part program
section can be used as a real part program again.

Loading curve tables using "Execution from external source"
If curve tables are executed from an external source, the selection of the size of the reload
buffer (DRAM) in MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE has to support the
simultaneous storage of the entire curve table definition in the reload buffer. If it is not, part
program processing will be canceled with an alarm.

Jumps in the following axis
Depending on the setting in machine data
MD20900 $MC_CTAB_ENABLE_NO_LEADMOTION
, jumps in the following axis may be tolerated if a movement is missing in the leading axis.

13.2.2 Check for presence of curve table (CTABEXISTS)
The CTABEXISTS command can be used to check if a specific curve table number is present
in the NC memory.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
558 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Syntax
CTABEXISTS(<n>)

Meaning

CTABEXISTS: Checks for the presence of curve table number <n> in the static or dynamic NC
memory.
0 Table does not exist
1 Table exists

<n>: Number (ID) of curve table

13.2.3 Delete curve tables (CTABDEL)
CTABDEL can be used to delete curve tables.

Note

Curve tables that are active in an axis coupling cannot be deleted.

Syntax
CTABDEL(<n>)
CTABDEL(<n>,<m>)
CTABDEL(<n>,<m>,<memory location>)
CTABDEL()
CTABDEL(,,<memory location>)

Meaning

CTABDEL: Command for deleting curve tables
<n>: Number (ID) of the curve table to be deleted

When a curve table range CTABDEL(<n>,<m>) is deleted, <n> is used to
specify the number of the first curve table in the range.

<m>: When a curve table range CTABDEL(<n>,<m>) is deleted, <m> is used to
specify the number of the last curve table in the range.
<m> has to be greater than <n>.

<memory
location>:

Specification of memory location (optional)
In the case of deletion without a memory location being specified, the specified
curve tables are deleted in the static and the dynamic NC memory.
In the case of deletion with a memory location being specified, of the specified
curve tables, only those located in the specified memory location are deleted.
The rest are retained.
"SRAM" Deletion in the static NC memory
"DRAM" Deletion in the dynamic NC memory

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 559

If CTABDEL is programmed without specification of the curve table to be deleted, then all curve
tables or all curve tables in the specified memory will be deleted:

CTABDEL(): Deletes all curve tables in the static and the dynamic NC memory
CTABDEL(,,"SRAM"): Deletes all curve tables in the static NC memory
CTABDEL(,,"DRAM"): Deletes all curve tables in the dynamic NC memory

Note

If, in the case of multiple deletion with CTABDEL(<n>,<m>) or CTABDEL(), at least one of
the of the curve tables to be deleted is active in a coupling, the delete command will not be
executed; in other words, none of the addressed curve tables will be deleted.

13.2.4 Locking curve tables to prevent deletion and overwriting (CTABLOCK,
CTABUNLOCK)

Locks can be set to protect curve tables against unintentional deletion and overwriting. Once
a lock has been set, it can be revoked at any time.

Syntax

Lock:
CTABLOCK(<n>)
CTABLOCK(<n>,<m>)
CTABLOCK(<n>,<m>,<memory location>)
CTABLOCK()
CTABLOCK(,,<memory location>)

Unlock:
CTABUNLOCK(<n>)
CTABUNLOCK(<n>,<m>)
CTABUNLOCK(<n>,<m>,<memory location>)
CTABUNLOCK()
CTABUNLOCK(,,<memory location>)

Meaning

CTABLOCK: Command for setting a lock to prevent deletion/overwriting
CTABUNLOCK: Command for revoking a lock to prevent deletion/overwriting

CTABUNLOCK unlocks the curve tables locked with CTABLOCK. Curve tables
which are involved in an active coupling remain locked and cannot be deleted.
The lock with CTABLOCK is unlocked as soon as the lock applied due to the
active coupling is unlocked when the coupling is deactivated. This table can
therefore be deleted. It is not necessary to call CTABUNLOCK again.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
560 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<n>: Number (ID) of the curve table to be locked/unlocked
When a curve table range CTABLOCK(<n>,<m>)/CTABUNLOCK(<n>,<m>)
is locked/unlocked, <n> is used to specify the number of the first curve table
in the range.

<m>: When a curve table range CTABLOCK(<n>,<m>)/CTABUNLOCK(<n>,<m>)
is locked/unlocked, <m> is used to specify the number of the last curve table
in the range.
<m> has to be greater than <n>.

<memory
location>:

Specification of memory location (optional)
In the case of locking/unlocking without a memory location being specified,
the specified curve tables are locked/unlocked in the static and the dynamic
NC memory.
In the case of locking/unlocking with a memory location being specified, of
the specified curve tables, only those located in the specified memory location
are locked/unlocked. The rest are not locked/unlocked.
"SRAM" Lock/unlock in the static NC memory
"DRAM" Lock/unlock in the dynamic NC memory

If CTABLOCK/CTABUNLOCK is programmed without specification of the curve table to be
locked/unlocked, then all curve tables or all curve tables in the specified memory will be locked/
unlocked:

CTABLOCK(): Locks all curve tables in the static and the dynamic NC memory
CTABLOCK(,,"SRAM"): Locks all curve tables in the static NC memory
CTABLOCK(,,"DRAM"): Locks all curve tables in the dynamic NC memory

CTABUNLOCK(): Unlocks all curve tables in the static and dynamic NC memory
CTABUNLOCK(,,"SRAM"): Unlocks all curve tables in the static NC memory
CTABUNLOCK(,,"DRAM"): Unlocks all curve tables in the dynamic NC memory

13.2.5 Curve tables: Determine table properties (CTABID, CTABISLOCK,
CTABMEMTYP, CTABPERIOD)

These commands can be used to poll important properties of a curve table (table number, lock
state, memory location, periodicity).

Syntax
CTABID(<p>)
CTABID(<p>,<memory location>)
CTABISLOCK(<n>)
CTABMEMTYP(<n>)
TABPERIOD(<n>)

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 561

Meaning

CTABID: Returns the table number entered as the <p>th curve table in the specified
memory.
Example:
CTABID(1,"SRAM") returns the number of the first curve table in the static
NC memory. In this context the first curve table is the curve table with the
highest table number.
Note:
If the sequence of curve tables in the memory changes between consecutive
calls of CTABID, e.g. due to the deletion of curve tables with CTABDEL,
CTABID(<p>,...) can return a different curve table with the same number
<p>.

CTABISLOCK: Returns the lock state of curve table number <n>:
0 Table is not locked
1 Table is locked by CTABLOCK
2 Table is locked by active coupling
3 Table is locked by CTABLOCK and active coupling
-1 Table does not exist

CTABMEMTYP: Returns the memory location of curve table number <n>:
0 Table in the static NC memory
1 Table in the dynamic NC memory
-1 Table does not exist

CTABPERIOD: Returns the periodicity of curve table number <n>:
0 Table is not periodic
1 Table is periodic in the leading axis
2 Table is periodic in the leading and following axes
-1 Table does not exist

<p>: Entry number in memory
<n>: Number (ID) of curve table
<memory
location>:

Specification of memory location (optional)
"SRAM" Static NC memory
"DRAM" Dynamic NC memory
Note:
If a value is not programmed for this parameter, the default memory location
set with MD20905 $MC_CTAB_DEFAULT_MEMORY_TYPE is used.

13.2.6 Read curve table values (CTABTSV, CTABTEV, CTABTSP, CTABTEP,
CTABSSV, CTABSEV, CTAB, CTABINV, CTABTMIN, CTABTMAX)

The following curve table values can be read in the part program:

● Following axis and leading axis values at the start and end of a curve table

● Following axis values at the start and end of a curve segment

● Following axis value for a leading axis value

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
562 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● Leading axis value for a following axis value

● Following axis minimum and maximum values

– In the entire definition range of the curve table
or

– In a defined curve table interval

Syntax
CTABTSV(<n>,<gradient>[,<following axis>])
CTABTEV(<n>,<gradient>[,<following axis>])
CTABTSP(<n>,<gradient>[,<leading axis>])
CTABTEP(<n>,<gradient>[,<leading axis>])
CTABSSV(<master value>,<n>,<gradient>[,<following axis>])
CTABSEV(<master value>,<n>,<gradient>[,<following axis>])
CTAB(<master value>,<n>,<gradient>[,<following axis>,<leading axis>]
CTABINV(<following value>,<approximate
value>,<n>,<gradient>[,<following axis>,<leading axis>]
CTABTMIN(<n>[,<following axis>])
CTABTMAX(<n>[,<following axis>])
CTABTMIN(<n>,<a>,[,<following axis>,<leading axis>])
CTABTMAX(<n>,<a>,[,<following axis>,<leading axis>])

Meaning

CTABTSV: Read following axis value at the start of curve table no. <n>
CTABTEV: Read following axis value at the end of curve table no. <n>
CTABTSP: Read leading axis value at the start of curve table no. <n>
CTABTEP: Read leading axis value at the end of curve table no. <n>
CTABSSV: Read following axis value at the start of the curve segment belonging to the

specified leading axis value (<master value>)
CTABSEV: Read following axis value at the end of the curve segment belonging to the

specified leading axis value (<master value>)
CTAB: Read following axis value for specified leading axis value (<master

value>)
CTABINV: Read leading axis value for specified following axis value (<following

value>)
CTABTMIN: Define following axis minimum value:

● In the entire definition range of the curve table
or

● In a defined interval <a> ...
CTABTMAX: Define following axis maximum value:

● In the entire definition range of the curve table
or

● In a defined interval <a> ...
<n>: Number (ID) of curve table
<gradient>: The <gradient> parameter returns the incline of the curve table function

at the calculated position.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 563

<following axis>: Axis whose motion is to be calculated using the curve table (optional)
<leasing axis>: Axis providing the master values for the calculation of the following axis

motion (optional)
<following value>: Following axis value for reading the associated leading axis value for

CTABINV
<leading value>: Leading axis value:

● For reading the associated following axis value with CTAB
or

● For the selection of the curve segment with CTABSSV/CTABSEV
<approximate
value>:

The assignment of a leading axis value to a following axis value with
CTABINV must not always be unique. CTABINV requires, therefore, an ap‐
proximate value for the expected leading axis value as a parameter.

<a>: Lower limit of the master value interval with CTABTMIN/CTABTMAX
:

Upper limit of the master value interval with CTABTMIN/CTABTMAX
Note:
The master value interval <a> to always has to be within the curve
table's definition range.

Examples

Example 1:
Define following axis and leading axis values at the start and end of the curve table, along with
the minimum and maximum values of the following axis in the entire definition range of the
curve table.

Program code Comment
N10 DEF REAL STARTPOS
N20 DEF REAL ENDPOS
N30 DEF REAL STARTPARA
N40 DEF REAL ENDPARA
N50 DEF REAL MINVAL
N60 DEF REAL MAXVAL
N70 DEF REAL GRADIENT
...
N100 CTABDEF(Y,X,1,0) ; Start of table definition
N110 X0 Y10 ; Start position 1st table segment
N120 X30 Y40 ; End position 1st table segment =

start position 2nd table segment
N130 X60 Y5 ; End position 2nd table segment = ...
N140 X70 Y30
N150 X80 Y20
N160 CTABEND ; End of table definition.
...
N200 STARTPOS=CTABTSV(1,GRADIENT) ; Following axis value at start of curve table

= 10
N210 ENDPOS=CTABTEV(1,GRADIENT) ; Following axis value at end of curve table

= 20

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
564 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N220 STARTPARA=CTABTSP(1,GRADIENT) ; Master axis value at start of curve table =

0
N230 ENDPARA=CTABTEP(1,GRADIENT) ; Master axis value at end of curve table = 80
N240 MINVAL=CTABTMIN(1) ; Minimum value of following axis with Y=5
N250 MAXVAL=CTABTMAX(1) ; Maximum value of following axis with Y=40

Example 2:
Determination of following axis values at the start and end of the curve segment associated
with leading axis value X=30.

Program code Comment
N10 DEF REAL STARTPOS
N20 DEF REAL ENDPOS
N30 DEF REAL GRADIENT
...
N100 CTABDEF(Y,X,1,0) ; Start of table definition.
N110 X0 Y0 ; Start position 1st table segment
N120 X20 Y10 ; End position 1st table segment =

start position 2nd table segment
N130 X40 Y40 ; End position 2nd table segment = ...
N140 X60 Y10
N150 X80 Y0
N160 CTABEND ; End of table definition.
...
N200 STARTPOS=CTABSSV(30.0,1,GRADIENT) ; Start position Y in 2nd segment = 10
N210 ENDPOS=CTABSEV(30.0,1,GRADIENT) ; End position Y in 2nd segment = 40

Further information

Use in synchronized actions
All commands for reading curve table values can also be used in synchronized actions (see
also the chapter titled "Motion-synchronous actions").

When using the CTABINV, CTABTMIN, and CTABTMAX commands, make sure that:

● Sufficient NC power is available at the time of execution
or

● The number of segments in the curve table is queried prior to the call, so that the table
concerned can be subdivided if necessary

CTAB with non-periodic curve tables
If the specified <master value> is outside the definition range, the upper or lower limit will
be output as the following value:

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 565

CTAB with periodic curve tables
If the specified <master value> is outside the definition range, the master value is evaluated
modulo of the definition range and the corresponding following value is output:

Approximate value for CTABINV
The CTABINV command, therefore, requires an approximate value for the expected master
value. CTABINV returns the leading value that is closest to the approximate value. The
approximate value can be, for example, the master value from the previous interpolator clock
cycle.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
566 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Incline of the curve table function
The output of the incline (<gradient>) makes it possible to calculate the velocity of the
leading or following axis at the corresponding position.

Specification of the leading or following axis
The optional specification of the leading and/or following axis is important if the leading and
following axes are configured in different length units.

CTABSSV, CTABSEV
The CTABSSV and CTABSEV commands are not suitable to query programmed segments in
the following cases:

● Circles or involutes are programmed.

● Chamfer or rounding with CHF/ RND is active

● Smoothing with G643 is active

● NC block compression with COMPON/COMPCURV/COMPCAD is active

13.2.7 Curve tables: Check use of resources (CTABNO, CTABNOMEM, CTABFNO,
CTABSEGID, CTABSEG, CTABFSEG, CTABMSEG, CTABPOLID, CTABPOL,
CTABFPOL, CTABMPOL)

The programmer can use these commands to obtain up-to-date information about the use of
resources for curve tables, table segments, and polynomials.

Syntax
CTABNO
CTABNOMEM(<memory location>)
CTABFNO(<memory location>)
CTABSEGID(<n>,<memory location>)
CTABSEG(<memory location>,<segment type>)
CTABFSEG(<memory location>,<segment type>)
CTABMSEG(<memory location>,<segment type>)
CTABPOLID(<n>)
CTABPOL(<memory location>)
CTABFPOL(<memory location>)
CTABMPOL(<memory location>)

Meaning

CTABNO: Determine the total number of defined curve tables (in the static and the dy‐
namic NC memory)

CTABNOMEM: Determine the number of defined curve tables in the specified <memory
location>

CTABFNO: Determine the number of curve tables remaining possible in the specified
<memory location>

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 567

CTABSEGID: Determine the number of curve segments of the specified <segment
type> used by curve table number <n>

CTABSEG: Determine the number of curve segments of the specified <segment
type> used in the specified <memory location>

CTABFSEG: Determine the number of curve segments of the specified <segment
type> remaining possible in the specified <memory location>

CTABMSEG: Determine the maximum possible number of curve segments of the specified
<segment type> in the specified <memory location>

CTABPOLID: Determine the number of curve polynomials used by curve table number <n>
CTABPOL: Determine the number of curve polynomials used in the specified <memory

location>
CTABFPOL: Determine the number of curve polynomials remaining possible in the speci‐

fied <memory location>
CTABMPOL: Determine the maximum possible number of curve polynomials in the speci‐

fied <memory location>
<n>: Number (ID) of curve table
<memory
location>:

Specification of memory location (optional)
"SRAM" Static NC memory
"DRAM" Dynamic NC memory
Note:
If a value is not programmed for this parameter, the default memory location
set with MD20905 $MC_CTAB_DEFAULT_MEMORY_TYPE is used.

<segment type>: Specification of segment type (optional)
"L" Linear segments
"P" Polynomial segments
Note:
If no value is programmed for this parameter, the sum of the linear and poly‐
nomial segments is output.

Axis couplings
13.2 Curve tables (CTAB)

Job Planning
568 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

13.3 Axial master value coupling (LEADON, LEADOF)

Note

This function is not available for SINUMERIK 828D!

With the axial master value coupling, a leading and a following axis are moved in synchronism.
It is possible to assign the position of the following axis via a curve table or the resulting
polynomial uniquely to a position of the leading axis – simulated if necessary.

The leading axis is the axis which supplies the input values for the curve table. The following
axis is the axis, which takes the positions calculated by means of the curve table.

Actual value and setpoint coupling
The following can be used as the master value, i.e. as the output values for position calculation
of the following axis:

● Actual values of the leading axis position: Actual value coupling

● Setpoints of the leading axis position: Setpoint value coupling

The master value coupling always applies in the basic coordinate system.

For information on the creation of curve tables, see Section "Curve tables".

Syntax
LEADON(<following axis>,<leading axis>,<n>)
LEADOF(<following axis>,<leading axis>)
or deactivation without specifying the leading axis:
LEADOF(<following axis>)

Axis couplings
13.3 Axial master value coupling (LEADON, LEADOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 569

The master value coupling can be activated/deactivated both from the part program and also
during motion from synchronized actions.

Meaning

LEADON: Activate master value coupling
LEADOF: Deactivate master value coupling
<following axis>: Following axis
<leasing axis>: Leading axis
<n>: Curve table number
$SA_LEAD_TYPE: Switching between setpoint and actual value coupling

Deactivate master value coupling, LEADOF
When you deactivate the master value coupling, the following axis becomes a normal
command axis again!

Axial master value coupling and different operating states, RESET
Depending on the setting in the machine data, the master value couplings are deactivated with
RESET.

Example of master value coupling from synchronous action
In a pressing plant, an ordinary mechanical coupling between a leading axis (stanchion shaft)
and axis of a transfer system comprising transfer axes and auxiliary axes is to be replaced by
an electronic coupling system.

It demonstrates how a mechanical transfer system is replaced by an electronic transfer system.
The coupling and decoupling processes are implemented as static synchronized actions.

From the leading axis LV (stanchion shaft), transfer axes and auxiliary axes are controlled as
following axes that are defined via curve tables.

Following axes
X feed or longitudinal axis
YL closing or transverse axis
ZL lifting axis
U roll feed, auxiliary axis
V guide head, auxiliary axis
W greasing, auxiliary axis

Actions
The actions that occur include, for example, the following synchronized actions:

● Activate coupling, LEADON(<following axis>,<leading axis>,<curve table
number>)

● Deactivate coupling, LEADOF(<following axis>,<leading axis>)
● Set actual value, PRESETON(<axis>,<value>)
● Set marker, $AC_MARKER[i]=<value>

Axis couplings
13.3 Axial master value coupling (LEADON, LEADOF)

Job Planning
570 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● Coupling type: real/virtual master value

● Approaching axis positions, POS[<axis>]=<value>
Conditions

Fast digital inputs, real-time variables $AC_MARKER and position comparisons are linked using
the Boolean operator AND for evaluation as conditions.

Note

In the following example, line change, indentation and bold type are used for the sole purpose
of improving readability of the program. For the control, everything that follows a line number
constitutes a single line.

Comment

Program code Comment
 ; Defines all static synchronized actions.
 ; ****Reset marker
N2 $AC_MARKER[0]=0 $AC_MARKER[1]=0 $AC_MARKER[2]=0 $AC_MARKER[3]=0 $AC_MARKER[4]=0 $AC_MARKER[5]=0
$AC_MARKER[6]=0 $AC_MARKER[7]=0
 ; **** E1 0=>1 transfer ON
N10 IDS=1 EVERY ($A_IN[1]==1) AND ($A_IN[16]==1) AND ($AC_MARKER[0]==0)
DO LEADON(X,LW,1) LEADON(YL,LW,2) LEADON(ZL,LW,3) $AC_MARKER[0]=1
 ;**** E1 0=>1 coupling roller feed ON
N20 IDS=11 EVERY ($A_IN[1]==1) AND ($A_IN[5]==0) AND ($AC_MARKER[5]==0)
DO LEADON(U,LW,4) PRESETON(U,0) $AC_MARKER[5]=1
 ; **** E1 0->1 coupling alignment head ON
N21 IDS=12 EVERY ($A_IN[1]==1) AND ($A_IN[5]==0) AND ($AC_MARKER[6]==0)
DO LEADON(V,LW,4) PRESETON(V,0) $AC_MARKER[6]=1
 ; **** E1 0->1 lubrication coupling ON
N22 IDS=13 EVERY ($A_IN[1]==1) AND ($A_IN[5]==0) AND ($AC_MARKER[7]==0)
DO LEADON(W,LW,4) PRESETON(W,0) $AC_MARKER[7]=1
 ; **** E2 0=>1 coupling OFF
N30 IDS=3 EVERY ($A_IN[2]==1)
DO LEADOF(X,LW) LEADOF(YL,LW) LEADOF(ZL,LW) LEADOF(U,LW) LEADOF(V,LW) LEADOF(W,LW) $AC_MARKER[0]=0
$AC_MARKER[1]=0 $AC_MARKER[3]=0 $AC_MARKER[4]=0 $AC_MARKER[5]=0 $AC_MARKER[6]=0 $AC_MARKER[7]=0
....
N110 G04 F01
N120 M30

Description
Master value coupling requires synchronization of the leading and the following axes. This
synchronization can only be achieved if the following axis is inside the tolerance range of the
curve definition calculated from the curve table when the master value coupling is activated.

The tolerance range for the position of the following axis is defined via machine data MD
37200: COUPLE_POS_POL_COARSE A_LEAD_TYPE.

Axis couplings
13.3 Axial master value coupling (LEADON, LEADOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 571

If the following axis is not yet at the correct position when the master value coupling is activated,
the synchronization run is automatically initiated as soon as the position setpoint value
calculated for the following axis is approximately the real following axis position. During the
synchronization procedure the following axis is traversed in the direction that is defined by the
setpoint speed of the following axis (calculated from master spindle and using the CTAB curve
table).

No synchronism
If the following axis position calculated moves away from the current following axis position
when the master value coupling is activated, it is not possible to establish synchronization.

Actual value and setpoint coupling
Setpoint coupling provides better synchronization of the leading and following axis than actual
value coupling and is therefore set by default.

Setpoint coupling is only possible if the leading and following axis are interpolated by the same
NCU. With an external leading axis, the following axis can only be coupled to the leading axis
via the actual values.

Axis couplings
13.3 Axial master value coupling (LEADON, LEADOF)

Job Planning
572 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

A switchover can be programmed via setting data $SA_LEAD_TYPE.

You must always switch between the actual-value and setpoint coupling when the following
axis stops. It is only possible to resynchronize after switchover when the axis is motionless.

Application example
You cannot read the actual values without error during large machine vibrations. If you use
master value coupling in press transfer, it might be necessary to switchover from actual-value
coupling to setpoint coupling in the work steps with the greatest vibrations.

Master value simulation with setpoint coupling

Via machine data, you can disconnect the interpolator for the leading axis from the servo. In
this way you can generate setpoints for setpoint coupling without actually moving the leading
axis.

Master values generated from a setpoint link can be read from the following variables so that
they can be used, for example, in synchronized actions:

- $AA_LEAD_P Master value position
- $AA_LEAD_V Master value velocity

Create master value
As an option, master values can be generated with other self-programmed methods. The
master values generated in this way are written to and read from variables

- $AA_LEAD_SP Master value position
- $AA_LEAD_SV Master value velocity

 Before you use these variables, the setting data $SA_LEAD_TYPE = 2 must be set.

Status of coupling
You can query the status of the coupling in the NC program with the following system variable:

$AA_COUP_ACT[[axis]]
0: No coupling active
16: Master value coupling active

Status management for synchronized actions
Switching and coupling events are managed via real-time variables:

$AC_MARKER[i] = n
managed with:

Axis couplings
13.3 Axial master value coupling (LEADON, LEADOF)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 573

i flag number
n status value

Axis couplings
13.3 Axial master value coupling (LEADON, LEADOF)

Job Planning
574 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

13.4 Electronic gear (EG)
The "Electronic gear" function allows you to control the movement of a following axis according
to linear traversing block as a function of up to five leading axes. The relationship between
each leading axis and the following axis is defined by the coupling factor.

The following axis motion part is calculated by an addition of the individual leading axis motion
parts multiplied by their respective coupling factors. When an EG axis grouping is activated,
it is possible to synchronize the following axes in relation to a defined position. A gear group
can be:

● Defined

● Activated

● Deactivated

● Deleted

.

The following axis movement can be optionally derived from

● Setpoints of the leading axes, as well as

● Actual values of leading axes.

Non-linear relationships between each leading axis and the following axis can also be realized
as extension using curve tables (see "Path traversing behavior" section). Electronic gears can
be cascaded, i.e., the following axis of an electronic gear can be the leading axis for a further
electronic gear.

13.4.1 Defining an electronic gear (EGDEF)
An EG axis group is defined by specifying the following axis and at least one, however not
more than five, leading axis, each with the relevant coupling type.

Requirement
Requirements for defining an EG axis group:

It is not permissible to define an axis coupling for the following axis (or an existing one must
first be deleted with EGDEL).

Syntax
EGDEF(following axis,leading axis1,coupling type1,leading
axis2,coupling type2,...)

Meaning

EGDEF: Definition of an electronic gear
Following axis: Axis that is influenced by the leading axes

Axis couplings
13.4 Electronic gear (EG)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 575

Leading axis1
,...,
Leading axis5

Axes that influence the following axis

Coupling type1
,...,
Coupling type5

Coupling type
The coupling type does not need to be the same for all leading axes and
must be programmed separately for each individual master.
Value: Meaning:
0 The following axis is influenced by the actual value of the

corresponding leading axis.
1 The following axis is influenced by the setpoint of the corre‐

sponding leading axis.

Note

The coupling factors are preset to zero when the EG axis grouping is defined.

Note

EGDEF triggers preprocessing stop. The gearbox definition with EGDEF should also be used
unaltered if, for systems, one or more leading axes affect the following axis via a curve table.

Example

Program code Comment
EGDEF(C,B,1,Z,1,Y,1) ; Definition of an EG axis group. Leading axes B, Z, Y

influence the following axis C via the setpoint.

13.4.2 Switch-in the electronic gearbox (EGON, EGONSYN, EGONSYNE)
There are 3 ways to switch-in an EG axis group.

Syntax

Variant 1:
The EG axis group is selectively switched-in without synchronization with:
EGON(FA,"block change mode",LA1,Z1,N1,LA2,Z2,N2,...,LA5,Z5,N5)

Variant 2:
The EG axis group is selectively activated with synchronization with:
EGONSYN(FA,"block change mode",SynPosFA,[,LAi,SynPosLAi,Zi,Ni])

Variant 3:
The EG axis group is selectively switched-in with synchronization and the approach mode
specified with:
EGONSYNE(FA,"block change mode",SynPosFA,approach
mode[,LAi,SynPosLAi,Zi,Ni])

Axis couplings
13.4 Electronic gear (EG)

Job Planning
576 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

Variant 1:

FA Following axis
Block change mode: The following modes can be used:

"NOC" Block change takes place immediately
"FINE" Block change is performed in "Fine synchronism"
"COARSE" Block change is performed in "Coarse synchron‐

ism"
"IPOSTOP" Block change is performed for setpoint-based

synchronism
LA1, ... LA5 Leading axes
Z1, ... Z5 Numerator for coupling factor i
N1, ... N5 Denominator for coupling factor i

Coupling factor i = numerator i/denominator i

Only the leading axes previously specified with the EGDEF command may be programmed in
the activation line. At least one leading axis must be programmed.

Variant 2:

FA Following axis
Block change mode: The following modes can be used:

"NOC" Block change takes place immediately
"FINE" Block change is performed in "Fine synchron‐

ism"
"COARSE" Block change is performed in "Coarse synchron‐

ism"
"IPOSTOP" Block change is performed for setpoint-based

synchronism
[,LAi,SynPosLAi,Zi,Ni] (do not write the square brackets)

Min. 1, max. 5 sequences of:
LA1, ... LA5 Leading axes
SynPosLAi Synchronized position for i-th leading axis
Z1, ... Z5 Numerator for coupling factor i
N1, ... N5 Denominator for coupling factor i

Coupling factor i = numerator i/denominator i

Only leading axes previously specified with the EGDEF command may be programmed in the
activation line. Through the programmed "Synchronized positions" for the following axis
(SynPosFA) and for the leading axes (SynPosLA), positions are defined for which the axis
grouping is interpreted as synchronous. If the electronic gear is not in the synchronized state
when the grouping is switched on, the following axis traverses to its defined synchronized
position.

Axis couplings
13.4 Electronic gear (EG)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 577

Variant 3:
The parameters correspond to those of variant 2 plus:

Approach mode: The following modes can be used:
"NTGT" Approach next tooth gap time-optimized
"NTGP" Approach next tooth gap path-optimized
"ACN" Traverse rotary axis in negative direction absolute
"ACP" Traverse rotary axis in positive direction absolute
"DCT" Time-optimized for programmed synchronous position
"DCP" Distance-optimized to the programmed synchronous position

Variant 3 only affects modulo following axes that are coupled to modulo leading axes. Time
optimization takes account of velocity limits of the following axis.

Further information

Description of the switch-in versions
Variant 1:

The positions of the leading axes and following axis at the instant the grouping is switched on
are stored as "Synchronized positions". The "Synchronized positions" can be read with the
system variable $AA_EG_SYN.

Variant 2:

If modulo axes are contained in the coupling group, their position values are modulo-reduced.
This ensures that the next possible synchronized position is approached (so-called relative
synchronization: e.g. the next tooth gap). The synchronized position is only approached if
"Enable following axis override" interface signal DB(30 + axis number), DBX 26 bit 4 is issued
for the following axis. Instead, the program stops at the EGONSYN block and self-clearing
alarm 16771 is output until the above mentioned signal is set.

Variant 3:

The tooth distance (deg.) is calculated like this: 360 * Zi/Ni. If the following axis is stopped at
the time of calling, path optimization returns responds identically to time optimization.

If the following axis is already in motion, NTGP will synchronize at the next tooth gap
irrespective of the current velocity of the following axis. If the following axis is already in motion,
NTGT will synchronize at the next tooth gap depending on the current velocity of the following
axis. The axis is also decelerated, if necessary.

Curve tables
If a curve table is used for one of the leading axes:

Ni The denominator of the coupling factor for linear coupling must be set to 0. (Denom‐
inator 0 would be illegal for linear couplings.) Denominator zero tells the control that

Zi is the number of the curve table to use. The curve table with the specified number
must already be defined at POWER ON.

LAi The leading axis specified corresponds to the one specified for coupling via coupling
factor (linear coupling).

Axis couplings
13.4 Electronic gear (EG)

Job Planning
578 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

For more information about using curve tables and cascading and synchronizing electronic
gears, please refer to:
References:
Function Manual Special Functions; Coupled Axes and ESR (M3), "Coupled Motion and
Leading Value Coupling".

Response of the electronic gear for power on, RESET, operating mode change, block search
● No coupling is active after POWER ON.

● The status of active couplings is not affected by RESET or operating mode switchover.

● During block searches, commands for switching, deleting and defining the electronic gear
are not executed or collected, but skipped.

System variables of the electronic gear
By means of the electronic gear's system variables, the part program can determine the current
states of an EG axis grouping and react to them if required.

The system variables of the electronic gearbox are designated as follows:

$AA_EG_ ...

or

$VA_EG_ ...

References:
System Variables Manual

13.4.3 Switching-in the electronic gearbox (EGOFS, EGOFC)
There are 3 different ways to switch-out an active EG axis group.

Programming

Variant 1:

Syntax Meaning
EGOFS(following axis) The electronic gear is deactivated. The following axis is braked to a

standstill. This call triggers a preprocessing stop.

Variant 2:

Syntax Meaning
EGOFS(following axis,leading axis1,
…,leading axis5)

This command parameter setting made it
possible to selectively remove the influence
of the individual leading axes on the following
axis' motion.

At least one leading axis must be specified. The influence of the specified leading axes on the
slave is selectively inhibited. This call triggers a preprocessing stop. If the call still includes
active leading axes, then the slave continues to operate under their influence. If the influence
of all leading axes is excluded by this method, then the following axis is braked to a standstill.

Axis couplings
13.4 Electronic gear (EG)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 579

Variant 3:

Syntax Meaning
EGOFC(following
spindle1)

The electronic gear is deactivated. The following spindle continues
to traverse at the speed/velocity that applied at the instant of deac‐
tivation. This call triggers a preprocessing stop.

Note

This variant is only permitted for spindles.

13.4.4 Deleting the definition of an electronic gear (EGDEL)
An EG axis group must be switched-out before its definition can be deleted.

Programming

Syntax Meaning
EGDEL(following axis) The coupling definition of the axis group is deleted. Additional axis

groups can be defined by means of EGDEF until the maximum number
of simultaneously activated axis groups is reached. This call triggers a
preprocessing stop.

13.4.5 Rotational feedrate (G95) / electronic gear (FPR)
The FPR command can be used to specify the following axis of an electronic gear as the axis,
which determines the revolutional feedrate. Please note the following with respect to this
command:

● The feedrate is determined by the setpoint velocity of the following axis of the electronic
gear.

● The setpoint velocity is calculated from the speeds of the leading spindles and modulo axes
(which are not path axes) and from their associated coupling factors.

● Speed parts of linear or non-modulo leading axes and overlaid movement of the following
axis are not taken into account.

Axis couplings
13.4 Electronic gear (EG)

Job Planning
580 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

13.5 Synchronous spindle
Synchronous operation involves a following spindle (FS) and a leading spindle (LS), referred
to as the synchronous spindle pair. The following spindle imitates the movements of the leading
spindle when a coupling is active (synchronous operation) in accordance with the defined
functional interrelationship.

The synchronous spindle pairs for each machine can be assigned a fixed configuration by
means of channel-specific machine data or defined for specific applications via the CNC part
program. Up to two synchronized spindle pairs can be operated simultaneously on each NC
channel.

Refer to the part program for the following coupling actions

● Defined or changed

● Activated

● Deactivated

● Deleted

.

In addition, depending on the software status

● It is possible to wait for the synchronism conditions

● The block change method can be changed

● Either the setpoint coupling or actual value coupling type is selected or the angular offset
between master and following spindle specified

● When activating the coupling, previous programming of the following axis is transferred

● Either a measured or a known synchronism variance is corrected

13.5.1 Synchronous spindle: Programming (COUPDEF, COUPDEL, COUPON,
COUPONC, COUPOF, COUPOFS, COUPRES, WAITC)

The "Synchronous spindle" enables the speed-synchronous traversing of the following spindle
(FS) and leading spindle (LS) with a programmable transformation ratio.

The function supports the following modes:

● Speed synchronism (nFS = n LS)

● Position synchronism (ϕFS = ϕLS)

● Position synchronism with angular offset (ϕFS = ϕLS+ ∆ϕ)

Axis couplings
13.5 Synchronous spindle

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 581

Application examples:

● Flying workpiece transfer, e.g. to machine the rear side, transformation ratio: 1:1

① Synchronize the speed
② Transfer the workpiece
③ Machine the rear side

● Multi-edge machining (polygonal turning), speed synchronism, transformation ratio: n1:n2

Syntax
COUPDEF(<FS>,<LS>,<ZFS>,<NLS>,<block change>,<coupling type>)
COUPON(<FS>,<LS>,<POSFS>)
COUPONC(<FS>,<LS>)
COUPOF(<FS>,<LS>,<POSFS>,<POSLS>)
COUPOFS(<FS>,<LS>)
COUPOFS(<FS>,<LS>,<POSFS>)
COUPRES(<FS>,<LS>)
COUPDEL(<FS>,<LS>)
WAITC(<FS>,<block change>,<LS>,<block change>)

Axis couplings
13.5 Synchronous spindle

Job Planning
582 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Note
Abbreviated notation

A shorter notation without specification of the leading spindle is possible for the COUPOF,
COUPOFS, COUPRES and COUPDEL statements.

Meaning

COUPDEF: Define/change coupling on user-specific basis
COUPON: Activate coupling. The following spindle synchronizes to the leading spindle

based on the actual speed
COUPONC: Coupling when activating with previous programming of M3 S... or

M4 S....
A difference in speed for the following spindle is transferred immediately.

COUPOF: Deactivate coupling.
● with immediate block change:

COUPOF(<S2>,<S1>)
● Block change only after <POSFS> or <POSLS> deactivation position(s) has

(have) been crossed:
COUPOF(<S2>,<S1>,<POSFS>)
COUPOF(<S2>,<S1>,<POSFS>,<POSLS>)

COUPOFS: Deactivating a coupling with stop of following spindle.
Block change as quickly as possible with immediate block change:
COUPOFS(<S2>,<S1>)
Block change only after passing the switch-off position:
COUPOFS(<S2>,<S1>,<POSFS>)

COUPRES: Reset coupling parameters to configured MD and SD
COUPDEL: Delete user-defined coupling
WAITC: Wait for synchronized run condition

(NOC are increased to IPO during block changes)
<FS>: Designation of following spindle

Optional parameters:
<LS>: Designation of main spindle

Specification with spindle number: e.g. S2, S1
<ZFS>, <NLS>: Transformation ratio between FS and LS.

<ZFS>/<NLS> = numerator/denominator
Default setting: <ZFS> / <NLS> = 1.0 ; specification of denominator optional

Axis couplings
13.5 Synchronous spindle

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 583

<block change>: Block change behavior
The block change is:
"NOC" Immediately
"FINE" On reaching "Synchronism fine"
"COARSE" On reaching "Synchronism coarse"
"IPOSTOP" On reaching IPOSTOP; in other words, after setpoint-

based synchronism (default)
The block change behavior is effective modally.

<coupling type>: Coupling type: Coupling between FS and LS
"DV" Setpoint linkage (default)
"AV" Actual value coupling
"VV" Speed coupling
The coupling type is modal.

<POSFS>: Angle offset between leading and following spindles
Range of val‐
ues:

0°… 359.999°

<POSFS>,<POSLS>: Switch-off positions of the following and leading spindles
"The block change is enabled once POSFS, POSLS has been passed"
Range of val‐
ues:

0°… 359.999°

Examples

Working with leading and following spindles

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 M3 S3000 M2=4 S2=500 Leading spindle rotates at 3000 rpm,

following spindle at 500 rpm.
N10 COUPDEF(S2,S1,1,1,"NOC","Dv") Definition of the coupling (can also be config-

ured).
...
N70 SPCON Bring leading spindle into closed-loop position

control (setpoint coupling).
N75 SPCON(2) Bring following spindle into closed-loop posi-

tion control.
N80 COUPON(S2,S1,45) On-the-fly coupling to offset position = 45 de-

grees.
...
N200 FA[S2]=100 Positioning speed = 100 degrees/min
N205 SPOS[2]=IC(-90) Traverse with 90 degrees overlay in negative di-

rection.
N210 WAITC(S2,"Fine") Wait for "fine" synchronism.
N212 G1 X... Y... F... Machining
...

Axis couplings
13.5 Synchronous spindle

Job Planning
584 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
N215 SPOS[2]=IC(180) Traverse with 180 degrees overlay in the posi-

tive direction.
N220 G4 S50 Dwell time = 50 revolutions of the master spindle
N225 FA[S2]=0 Activate configured velocity (MD).
N230 SPOS[2]=IC(-7200) 20 revolutions. Move with configured velocity in

the negative direction.
...
N350 COUPOF(S2,S1) Couple-out on-the-fly, S=S2=3000
N355 SPOSA[2]=0 Stop FS at zero degrees.
N360 G0 X0 Y0
N365 WAITS(2) Wait for spindle 2.
N370 M5 Stop FS.
N375 M30

Programming a difference in speed

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N01 M3 S500 Leading spindle rotates at 500 rpm.
N02 M2=3 S2=300 Following spindle rotates at 300 rpm.
...
N10 G4 F1 Dwell time of master spindle.
N15 COUPDEF (S2,S1,-1) Coupling factor with ratio -1:1
N20 COUPON(S2,S1) Activate coupling. The speed of the following

spindle results from the speed of the leading
spindle and coupling factor.

...
N26 M2=3 S2=100 Programming a difference in speed.

Examples of transfer of a movement for difference in speed
1. Activate coupling during previous programming of following spindle with COUPON

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 M3 S100 M2=3 S2=200 Leading spindle rotates at 100 rpm, following

spindle at 200 rpm.
N10 G4 F5 Dwell time = 5 seconds of master spindle
N15 COUPDEF(S2,S1,1) Transformation ratio of FS to LS is 1.0 (de-

fault).
N20 COUPON(S2,S1) On-the-fly coupling to the leading spindle.
N10 G4 F5 Following spindle rotates at 100 rpm.

Axis couplings
13.5 Synchronous spindle

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 585

2. Activate coupling during previous programming of following spindle with COUPONC

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 M3 S100 M2=3 S2=200 Leading spindle rotates at 100 rpm, following

spindle at 200 rpm.
N10 G4 F5 Dwell time = 5 seconds of master spindle
N15 COUPDEF(S2,S1,1) Transformation ratio of FS to LS is 1.0 (de-

fault).
N20 COUPONC(S2,S1) On-the-fly coupling to leading spindle and trans-

fer previous speed to S2.
N10 G4 F5 S2 rotates at 100 rpm + 200 rpm = 300 rpm

3. Activate coupling with following spindle stationary with COUPON

Program code Comment
 Leading spindle = master spindle = spindle 1
 Following spindle = spindle 2
N05 SPOS=10 SPOS[2]=20 Following spindle S2 in positioning mode.
N15 COUPDEF(S2,S1,1) Transformation ratio of FS to LS is 1.0 (de-

fault).
N20 COUPON(S2,S1) On-the-fly coupling to the leading spindle.
N10 G4 F1 Coupling is closed, S2 stops at 20 degrees.

4. Activate coupling with following spindle stationary with COUPONC

Note
Positioning or axis mode

If the following spindle is in positioning or axis mode before coupling, then the following spindle
behaves the same for COUPON(<FS>,<LS>) and COUPONC(<FS>,<LS>).

Note
Leading spindle and axis operation

If, prior to the coupling being defined, the leading spindle is in axis operation, the velocity limit
value from machine data

MD32000 $MA_MAX_AX_VELO (maximum axis velocity) will still apply even after the coupling
is activated.

To avoid this behavior, the axis must be switched to spindle mode (M3 S... or M4 S...)
prior to the coupling being defined.

Axis couplings
13.5 Synchronous spindle

Job Planning
586 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information

Configured coupling
For the configured coupling, the LS and FS are defined via machine data. The configured
spindles cannot be changed in the part program. The coupling can be parameterized in the
part program using COUPDEF (on condition that no write protection is valid).

User-defined coupling
COUPDEF can be used to redefine or change a coupling in the part program. If a coupling is
already active, it has to be deleted first with COUPDEL before a new coupling is defined.

A coupling is defined in its entirety by:

COUPDEF(<FS>,<LS>,<TFS>,<TLS>, block change behavior, coupling type)

Following spindle (FS) and leading spindle (LS)
The coupling is uniquely defined using the axis names for the FS and LS. The axis names
have to be programmed with every COUPDEF statement. The other coupling parameters are
modal and only have to be programmed if they change.

Example:

COUPDEF(S2,S1)

Transformation ratio
The transformation ratio is defined as the speed ratio between FS and LS:

Following spindle / leading spindle = numerator/denominator

The numerator must be programmed. The denominator must not be programmed. The default
value 1.0 is then set for the denominator.

Example:

Following spindle S2 and leading spindle S1, transformation ratio = 1/1

COUPDEF(S2, S1, 1.0)

Axis couplings
13.5 Synchronous spindle

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 587

Note

The transformation ratio can also be changed on-the-fly (when the coupling is active and the
spindles are rotating).

Block change behavior NOC, FINE, COARSE, IPOSTOP
The following abbreviated notation can be used when programming the block change behavior:

● "NO": Immediately (default)

● "FI": On reaching "Synchronism fine"

● "CO": On reaching "Synchronism coarse"

● "IP": On reaching IPOSTOP; i.e. after setpoint-based synchronism

Type of coupling

Note

The coupling type may only be changed when the coupling is deactivated.

Activate synchronous mode COUPON, <POSFS>
● Activation of coupling with any angular offset between LS and FS:

– COUPON(S2,S1)
– COUPON(S2)

● Activation of coupling with angular offset <POSFS>
<POSFS> refers to the 0° position of the leading spindle in the positive direction of
rotation <POSFS> value range: 0°… 359,999°

– COUPON(S2,S1,30)

Note

The angular offset can also be changed when the coupling is active.

Position the following spindle
Even with activated synchronous spindle coupling, the FS can be positioned in the range ±180°
independently of the LS.

● Spindle positioning of the FS with SPOS
Example: SPOS[2]=IC(-90)
Further information on SPOS can be found in:
References:
Programming Manual, Fundamentals

Axis couplings
13.5 Synchronous spindle

Job Planning
588 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Differential speed
A speed difference results in speed control mode and active synchronous spindle coupling
through signed overlay of an FS speed because of LS movement and an FS speed because
of spindle programming:

● Synchronous spindle coupling with COUPONC
● S<FS>=<speed> [M<FS>=<direction of rotation>]

Note

Supplementary conditions
● Speed S... must also be reprogrammed with direction of rotation M3/M4.
● Overlay of a spindle speed (M<direction of rotation> S<FS>) through the LS

movement with synchronous spindle coupling COUPONC only becomes effective if the
overlay has been enabled.

● The dynamic responses of the leading spindle have to be restricted to such an extent
that when overlaying is applied to the following spindle, its dynamics limit values are not
exceeded.

For more information about the speed difference, see:
References:
Function Manual, Extended Functions; Synchronous Spindle (S3)

Velocity, acceleration: FA, ACC, OVRA, VELOLIMA
Axial velocity and acceleration of a following spindle can be programmed with:

● FA[SPI(S<n>)] or FA[S<n>] (axial velocity)

● ACC[SPI(S<n>)] or ACC[S<n>] (axial acceleration)

● OVRA[SPI(S<n>)] and OVRA[S<n>] (axial override)

● VELOLIMA[SPI(S<n>)] and VELOLIMA[S<n>] (increase and reduction of axial velocity
respectively)

When <n> = 1, 2, 3, ... (spindle numbers of the following spindles)

References:
Programming Manual, Fundamentals

Note

A reduction or increase of the maximum axial jerk has no effect with spindles.

Further information about the axial dynamic response is provided in:
References:
Function Manual, Extended Functions; Rotary Axes (R2)

Programmable block change behavior WAITC
WAITC can be used to define block change behavior, for example after a change to coupling
parameters or positioning actions, with a variety of synchronism conditions (coarse, fine,
IPOSTOP). If no synchronism conditions are specified, the block change behavior specified in
the COUPDEF definition will apply.

Axis couplings
13.5 Synchronous spindle

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 589

Examples

● Wait for synchronism condition FINE to be fulfilled for following spindle S2 and COARSE to
be fulfilled for following spindle S4: WAITC(S2,"FINE",S4,"COARSE")

● Wait for synchronism condition according to COUPDEF to be fulfilled: WAITC()

Deactivate coupling COUPOF
COUPOF can be used to define the turn-off behavior of the coupling:

● Deactivation of coupling with immediate block change:

– COUPOF(S2,S1) (with specification of leading spindle)

– COUPOF(S2) (without specification of leading spindle)

● Deactivation of coupling after switch-off positions have been crossed. The block change
takes place after the switch-off positions have been crossed.

– COUPOF(S2,S1,150) (switch-off position FS: 150°)

– COUPOF(S2,S1,150,30) (switch-off position FS: 150°, LS: 30°)

Deactivate coupling with following spindle stop COUPOFS
COUPOFS can be used to define the turn-off behavior of the coupling with following spindle stop:

● Deactivation of coupling with following spindle stop and immediate block change:

– COUPOFS(S2,S1) (with specification of leading spindle)

– COUPOFS(S2) (without specification of leading spindle)

● Deactivation of coupling after switch-off positions have been crossed with following spindle
stop. The block change takes place after the switch-off positions have been crossed.

– COUPOFS(S2,S1,150) (switch-off position FS: 150°)

Delete couplings COUPDEL
COUPDEL deletes the coupling:

● COUPDEL(S2,S1) (with specification of leading spindle)

● COUPDEL(S2) (without specification of leading spindle)

Reset coupling parameters, COUPRES
COUPRES activates the coupling values parameterized in the machine and setting data:

● COUPRES(S2,S1) (with specification of leading spindle)

● COUPRES(S2) (without specification of leading spindle)

System variables
● Current coupling status of following spindle

The current coupling status of a following spindle can be read bit-coded via:
<value> = $AA_COUP_ACT[<FS>]

Axis couplings
13.5 Synchronous spindle

Job Planning
590 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Bit <value> Meaning
- 0 No coupling active
2 4 Synchronous spindle coupling active

Note
● All other values refer to axis mode
● If the spindle is a following spindle or several couplings, then the value of the coupling state of all

couplings is returned as a total state.

● Current angular offset
The current angular offset of the following spindle to the leading spindle can be read via:

– $AA_COUP_OFFS[<FS>] (angular offset on the setpoint side)

– $VA_COUP_OFFS[<FS>] (angular offset on the actual value side)

Application example
Correction of the angular offset difference in the NC program after cancelling the follow-up
mode:
Angular offset difference = programmed angular offset - system variable

References
Detailed information on the system variables can be found in:

List Manual, System Variables

Axis couplings
13.5 Synchronous spindle

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 591

13.6 Generic coupling (CP...)
"Generic Coupling" is a general coupling function, combining all coupling characteristics of
existing coupling types (coupled motion, master value coupling, electronic gearbox and
synchronous spindle).

The function allows flexible programming:

● Users can select the coupling properties required for their applications (building block
principle).

● Each coupling property can be programmed individually.

● The coupling properties of a defined coupling (e.g. coupling factor) can be changed.

● Later use of additional coupling properties is possible.

● The coordinate reference system of the following axis (base coordinate system or machine
coordinate system) is programmable.

● Certain coupling properties can also be programmed with synchronous actions.
References: Function Manual, Synchronized Actions

Note

Previous coupling calls for coupled motion (TRAIL*), Master value coupling (LEAD*), Electronic
Gearbox (EG*) and Synchronous spindle (COUP*) are supported via adaptive cycles.

Overview of all keywords and coupling characteristics
The following table gives an overview of all keywords of the generic coupling and the
programmable coupling characteristics:

Keyword Coupling characteristics / mean‐
ing

Syntax

CPDEF Creation of a coupling module CPDEF=(<FAx>)
CPDEL Deletion of a coupling module CPDEL=(<FAx>)
CPLA Definition of a leading axis CPLA[<FAx>]=(<LAx>)
CPLDEF Definition of a leading axis and

creation of a coupling module
(also possible with CPDEF +
CPLA)

CPLDEF[<FAx>]=(<LAx>)
or
CPDEF=(<FAx>) CPLA[<FAx>]=(<LAx>)

CPLDEL Deletion of a leading axis of a
coupling module
(also possible with CPDEF +
CPLA)

CPLDEL[<FAx>]=(<LAx>)
or
CPDEL=(<FAx>) CPLA[<FAx>]=(<LAx>)

CPON Switching on a coupling module CPON=(<FAx>)
CPOF Switching off a coupling module CPOF=(<FAx>)
CPLON Switching on a leading axis of a

coupling module
CPLON[<FAx>]=<LAx>

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
592 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Keyword Coupling characteristics / mean‐
ing

Syntax

CPLOF Switching off a leading axis of a
coupling module

CPLOF[<FAx>]=<LAx>

CPLNUM Numerator of the coupling factor CPLNUM[FAx,LAx]=<value>
CPLDEN Denominator of the coupling

factor
CPLDEN[FAx,LAx]=<value>

CPLCTID Number of the curve table CPLCTID[FAx,LAx]=<value>

CPLSETVAL Coupling reference CPLSETVAL[FAx,LAx]="<coupling reference>"

"<coupling
reference>":

"CMDPOS" Setpoint value coupling
"CMDVEL" Speed coupling
"ACTPOS" Actual value coupling

CPFRS Coordinate reference system CPFRS[FAx]="<coordinate reference>"
"<coordinate
reference>":

"BCS" Basic Coordinate System
"MCS" Machine Coordinate Sys‐

tem
CPBC Block change criterion CPBC[FAx]="<block change criterion>"

"<block change
criterion>":

"NOC" Block change is performed
irrespective of the coupling
status.

"IPOSTOP" Block change is performed
with setpoint synchronism.

"COARSE" Block change is performed
with actual value synchron‐
ism “coarse”.

"FINE" Block change is performed
with actual value synchron‐
ism "fine".

CPFPOS + CPON Synchronized position of the fol‐

lowing axis when switching on
CPON=FAx CPFPOS[FAx]=<value>

CPLPOS + CPON Synchronized position of the
leading axis when switching on

CPLPOS[FAx,LAx]=<value>

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 593

Keyword Coupling characteristics / mean‐
ing

Syntax

CPFMSON Synchronization mode CPFMSON[FAx]="<synchronization mode>"
"<synchronization
mode>":

"CFAST" The coupling is closed time-
optimized.

"CCOARSE" The coupling is only closed
when the following axis po‐
sition, required according
to the coupling rule, is in the
range of the current follow‐
ing axis position.

"NTGT" The next tooth gap is ap‐
proached time-optimized.

"NTGP" The next tooth gap is ap‐
proached path-optimized.

"NRGT" The next segment is ap‐
proached in a time-opti‐
mized manner, in accord‐
ance with the ratio of the
number of gears to the
number of teeth.

"NRGP" The next segment is ap‐
proached in a path-opti‐
mized manner, in accord‐
ance with the ratio of the
number of gears to the
number of teeth.

"ACN" For rotary axes only!
The rotary axis traverses to
the synchronized position
in the negative axis direc‐
tion. Synchronization is re‐
alized immediately.

"ACP" For rotary axes only!
The rotary axis traverses to
the synchronized position
in the positive axis direc‐
tion. Synchronization is re‐
alized immediately.

"DCT" For rotary axes only!
The rotary axis traverses to
the programmed synchron‐
ized position time-opti‐
mized. Synchronization is
realized immediately.

"DCP" For rotary axes only!
The rotary axis traverses to
the programmed synchron‐
ized position path-opti‐
mized. Synchronization is
realized immediately.

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
594 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Keyword Coupling characteristics / mean‐
ing

Syntax

CPFMON Behavior of the following axis
when switching on

CPFMON[FAx]= "<switch-on behavior>"
"<switch-on
behavior>":

"STOP" For spindles only!
An active motion of the fol‐
lowing spindle is stopped
before switch-on.

"CONT" For spindles and main tra‐
verse axes only!
The current motion of the
following axis/spindle is tak‐
en over into the coupling as
start motion.

"ADD" For spindles only!
The motion components of
the coupling operate in ad‐
dition to the currently over‐
laid motion, i.e. the current
motion of the following axis/
spindle is retained as over‐
laid motion.

CPFMOF Behavior of the following axis at
complete switch-off

CPFMOF[FAx]="<switch-off behavior>"
"<switch-off
behavior>":

"STOP" Stop of a following axis/
spindle.
An active overlaid motion is
also braked to standstill.
The coupling is then
opened

"CONT" For spindles and main tra‐
verse axes only!
The following spindle con‐
tinues to traverse at the
speed/velocity that applied
at the instant of deactiva‐
tion.

CPFPOS + CPOF Switch-off position of the follow‐
ing axis when switching off

CPOF=(FAx) CPFPOS[FAx]=<value>

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 595

Keyword Coupling characteristics / mean‐
ing

Syntax

CPMRESET Coupling behavior for RESET CPMRESET[FAx]="<Reset behavior>"
"<reset
behavior>":

"NONE" The current state of the cou‐
pling is retained.

"ON" When the appropriate cou‐
pling module is created, the
coupling is switched on. All
defined leading axis rela‐
tionships are activated.
This is also performed
when all or parts of these
leading axis relationships
are active, i.e. resynchroni‐
zation is performed even
with a completely activated
coupling.

"OF" An active overlaid motion is
also braked to standstill.
The coupling is then deacti‐
vated. When the relevant
coupling module was cre‐
ated without an explicit def‐
inition (CPDEF), the cou‐
pling module is deleted.
Otherwise it is retained, i.e.
it can still be used.

"OFC" Possible only in spindles!
The following spindle con‐
tinues to traverse at the
speed/velocity that applied
at the instant of deactiva‐
tion. The coupling is switch‐
ed off. When the relevant
coupling module was cre‐
ated without an explicit def‐
inition (CPDEF), the cou‐
pling module is deleted.
Otherwise it is retained, i.e.
it can still be used.

"DEL" An active overlaid motion is
also braked to standstill.
The coupling is then deacti‐
vated and then deleted.

"DELC" Possible only in spindles!
The following spindle con‐
tinues to traverse at the
speed/velocity that applied
at the instant of deactiva‐
tion. The coupling is deacti‐
vated and then deleted.

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
596 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Keyword Coupling characteristics / mean‐
ing

Syntax

CPMSTART Coupling behavior at part pro‐
gram start

CPMSTART[FAx]="<start behavior>"
"<start
behavior>":

"NONE" The current state of the cou‐
pling is retained.

"ON" Coupling switched-on. All
defined leading axis rela‐
tionships are activated.
This is also performed
when all or parts of these
leading axis relationships
are active, i.e. resynchroni‐
zation is performed even
with a completely activated
coupling.

"OF" The coupling is switched
off. When the relevant cou‐
pling module was created
without an explicit definition
(CPDEF), the coupling
module is deleted. Other‐
wise it is retained, i.e. it can
still be used.

"DEL" The coupling is deactivated
and then deleted.

CPMPRT Coupling response at part pro‐
gram start under block search
run via program test

CPMPRT[FAx]="<start behavior>"
"<start
behavior>":

see CPMSTART

CPLINTR Offset value of the input value

of a leading axis
CPLINTR[FAx,LAx]=<value>

CPLINSC Scaling factor of the input value
of a leading axis

CPLINSC[FAx,LAx]=<value>

CPLOUTTR Offset value for the output value
of a coupling

CPLOUTTR[FAx,LAx]=<value>

CPLOUTSC Scaling factor for the output val‐
ue of a coupling

CPLOUTSC[FAx,LAx]=<value>

CPSYNCOP Threshold value of position syn‐

chronism "Coarse"
CPSYNCOP[FAx]=<value>

CPSYNFIP Threshold value of position syn‐
chronism "Fine"

CPSYNFIP[FAx]=<value>

CPSYNCOP2 Second threshold value for the
"Coarse" position synchronism

CPSYNCOP2[FAx]=<value>

CPSYNFIP2 Second threshold value for the
"Fine" position synchronism

CPSYNFIP2[FAx]=<value>

CPSYNCOV Threshold value of velocity syn‐
chronism "Coarse"

CPSYNCOV[FAx]=<value>

CPSYNFIV Threshold value of velocity syn‐
chronism "Fine"

CPSYNFIV[FAx]=<value>

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 597

Keyword Coupling characteristics / mean‐
ing

Syntax

CPMBRAKE Response of the following axis
to certain stop signals and stop
commands

CPMBRAKE[FAx]=<bit-coded value>

CPMVDI Response of the following axis
to certain NC/PLC interface sig‐
nals

CPMVDI[FAx]=<bit-coded value>

CPMALARM Suppression of special cou‐
pling-related alarm outputs

CPMALARM[FAx]=<bit-coded value>

CPSETTYPE Coupling type CPSETTYPE[FAx]="<coupling type>"

"<coupling type>": "CP" Freely programmable
"TRAIL" Coupling type "Coupled

motion"
"LEAD" Coupling type "Master Val‐

ue Coupling"
"EG" Coupling type "Electronic

gearbox"
"COUP" Coupling type "Synchron‐

ized spindle"

FAx: Following axis/spindle
LAx: Leading axis/spindle

Note

Coupling characteristics, which are not explicitly programmed (in part program of synchronous
actions), become effective with their default settings.

Depending on the settings of the keyword CPSETTYPE instead of the default settings
(CPSETTYPE="CP") preset coupling characteristics can become effective.

References
For detailed information on generic couplings, see:

● Function Manual, Special Functions; M3: Axis couplings, Chapter: "Generic coupling"

Axis couplings
13.6 Generic coupling (CP...)

Job Planning
598 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF,
MASLOFS)

The "master/slave coupling" enables:

● The coupling of the slave axes to the master axis, when the axes involved are at standstill.

● The coupling/decoupling of rotating, speed-controlled spindles.

● The dynamic configuration.

Note
Positioning mode

For axes and spindles in the positioning mode, the coupling is only closed and opened at
standstill.

Syntax
MASLON(<slave_1>,<slave_2>,...)
MASLOF(<slave_1>,<slave_2>,...)
MASLOFS(<slave_1>,<slave_2>,...)

Dynamic configuration:
MASLDEF(<slave_1>,<slave_2>, ... ,<master>)
MASLDEL(<slave_1>,<slave_2>,...)

Meaning

MASLON:

Activating a temporary master/slave coupling
<Slave_x>,...: Slave axis 1 ... n

MASLOF:

Decoupling an active master/slave coupling
<slave_1>,...: Slave axis 1 ... n

MASLOFS:

Decoupling a master/slave coupling and automatically braking slave spindles (see note
"Coupling behavior for spindles! in speed control mode"!)
<slave_1>,...: Slave axis 1 ... n

MASLDEF:

Creating/changing a master/slave group from the part program
<slave_1>,...: Slave axis 1 ... n
<master>: Master axis

MASLDEL:

Separate master/slave coupling and delete the definition of the grouping
<slave_1>,...: Slave axis 1 ... n
Note:
The master/slave definitions configured in the machine data are retained.

Axis couplings
13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 599

Note
Coupling behavior for spindles in speed control mode

For spindles in the speed control mode, the coupling behavior of MASLON, MASLOF, MASLOFS
and MASLDEL are specified explicitly via the following machine data:

MD37263 $MA_MS_SPIND_COUPLING_MODE

For the default setting with MD37263 = 0, the slave axes are coupled-in and coupled-out only
when the axes involved are at standstill. MASLOFS corresponds to MASLOF.

For MD37263 = 1, the coupling instruction is immediately executed and therefore also the
motion. For MASLON the coupling is immediately closed and for MASLOFS or MASLOF
immediately opened. With MASLOF, the slave spindles rotating at this instant keep their speeds
until a new speed is programmed. However, with MASLOFS, they are braked automatically.

Note

For MASLOF/MASLOFS, the implicit preprocessing stop is not required. Because of the missing
preprocessing stop, the $P system variables for the slave axes do not provide updated values
until next programming.

Note

For the slave axis, the actual value can be synchronized to the same value of the master axis
using PRESETON. To do this, the permanent/slave coupling must be briefly switched off in order
to set the actual value of the non-referenced slave axis to the value of the master/axis with
POWER ON. Then the coupling is permanently re-established.

The permanent master/slave coupling is activated with the following MD setting:
MD37262 $MA_MS_COUPLING_ALWAYS_ACTIVE = 1
It has no effect on the language commands of the temporary coupling.

Examples

Example 1: Set actual value for the slave axis of a master/slave coupling
For a permanent master/slave coupling, PRESETON sets the actual value of the slave axis to
the value of the master axis.

Program code Comment
$MA_MS_COUPLING_ALWAYS_ACTIVE[AX2]=0 ; Deactivate the permanent coupling of

the slave axis
NEWCONF ; Activate machine data change
STOPRE
MASLOF(Y1) ; Deactivate temporary coupling
PRESETON(AX2,$VA_IM(M_AX)) ; Actual value of the slave axis = actual

value of the master axis
$MA_MS_COUPLING_ALWAYS_ACTIVE[AX2]=1 ; Activate the permanent coupling of the

slave axis

Axis couplings
13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)

Job Planning
600 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
NEWCONF ; Activate machine data change

Example 2: Dynamic configuration of a master/slave coupling
To enable coupling with another spindle after axis container rotation, the previous coupling
must be uncoupled, the configuration cleared, and a new coupling configured.

Figure 13-1 Prior to the axis container rotation

Figure 13-2 After axis container rotation by one slot

Program code Comment
MASLDEF(AUX,S3) ; AUX: Slave, S3: Master = AX3
MASLON(AUX) ; Coupling on
M3=3 S3=4000 ; Rotate master
MASLDEL(AUX) ; Disconnect and delete coupling
AXCTSWE(CT1) ; Enable axis container rotation
MASLDEF(AUX,S3) ; AUX: Slave, S3: Master = AX2

References
● Function Manual Special Functions, Chapter "TE3: Speed/torque coupling, master-slave"

● Function Manual Extended Functions, Chapter "B3: Distributed systems - only 840D sl" >
"NCU link" > "Axis container"

Axis couplings
13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 601

Axis couplings
13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)

Job Planning
602 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Synchronized actions 14
14.1 Definition of a synchronized action

A synchronized action is defined in a block of a part program. Any further commands that are
not part of the synchronized action, may not be programmed within this block.

A synchronized action consists of the following components:

Validity, ID no.
(optional)

Condition part
(optional)

Action part

Frequency G command
(optional)

Condition Keyword G command
(optional)

Actions

--- 1)

ID=<no.>
IDS=<no.>

--- 1)

WHENEVER
FROM
WHEN
EVERY

G... Logical expres‐
sion

DO G... Action 1
...

Action n

1) Not programmed

Syntax
DO <action 1> ... <action n>
<frequency> [<G function>] <condition> DO <action 1> ... <action n>
ID=<No> <frequency> [<G function>] <condition> DO <action 1> ...
<action n>
IDS=<No> <frequency> [<G function>] <condition> DO <action 1> ...
<action n>

References
A detailed description of the functionality of synchronized actions can be found in:

Function Manual, Synchronized Actions

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 603

Synchronized actions
14.1 Definition of a synchronized action

Job Planning
604 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Oscillation 15
15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL,

OSNSC, OSE, OSB)
An oscillating axis travels back and forth between two reversal points 1 and 2 at a defined
feedrate, until the oscillating motion is deactivated.

Other axes can be interpolated as desired during the oscillating motion. A continuous infeed
can be achieved via a path movement or with a positioning axis, however, there is no
relationship between the oscillating movement and the infeed movement.

Properties of asynchronized oscillation
● Asynchronous oscillation is active on an axis-specific basis beyond block limits.

● Block-oriented activation of the oscillation movement is ensured by the part program.

● Combined interpolation of several axes and superimposing of oscillation paths are not
possible.

Programming
The following commands can be used to activate and control asynchronous oscillation from
the part program.

The programmed values are entered in the corresponding setting data with block
synchronization during the main run and remain active until changed again.

Syntax
OSP1[<axis>]=<value> OSP2[<axis>]=<value>
OST1[<axis>]=<value> OST2[<axis>]=<value>
FA[<axis>]=<value>
OSCTRL[<axis>]=(<setting option>,<reset option>)
OSNSC[<axis>]=<value>
OSE[<axis>]=<value>
OSB[<axis>]=<value>
OS[<axis>] = 1
OS[<axis>] = 0

Meaning

<axis>: Name of oscillating axis
OS: Activate/deactivate oscillation

Value: 1 Switch oscillation on
0 Switch oscillation off

OSP1: Define position of reversal point 1

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 605

OSP2:

Define position of reversal point 2
Note:
If incremental movement is active, the position will be calculated incrementally to the last
corresponding reversal position programmed in the NC program.

OST1: Define stopping time in reversal point 1 in [s]
OST2: Define stopping time in reversal point 2 in [s]
 <value>: -2 Interpolation continues without wait for exact stop

-1 Wait for exact stop coarse
0 Wait for exact stop fine

>0 Wait for exact stop fine and then wait for specified stopping time
Note:
The unit for the stopping time is identical to that of the stopping time
programmed with G4.

FA: Define feedrate
The feedrate is the defined feedrate of the positioning axis. If no feedrate is defined, the
value stored in the machine data applies.

OSCTRL: Specify setting and reset options
Option values 0 to 3 encrypt the behavior at the reversal points on deactivation. One of
the variants from 0 to 3 can be selected. The remaining settings can be combined at will
with the selected variant. Multiple options are appended with plus characters (+).
<value>: 0 Stop at next reversal point on deactivation of oscillation (default)

Note:
Only possible if values 1 and 2 are reset.

1 When the oscillation is deactivated, stop at reversal point 1
2 When the oscillation is deactivated, stop at reversal point 2
3 When the oscillation is deactivated, do not approach reversal point

if no spark-out strokes are programmed
4 Approach end position after spark-out
8 If oscillation is canceled by deletion of distance-to-go, sparking-out

strokes will then need to be executed and the end position approach‐
ed if necessary.

16 If oscillation is canceled by deletion of distance-to-go, the corre‐
sponding reversal point will need to be approached as is the case
with shutdown.

32 New feed is only active after the next reversal point
64 FA equal to 0, FA = 0: Path overlay is active

FA not equal to 0, FA <> 0: Speed overlay is active
128 For rotary axis DC (shortest path)
256 The sparking-out stroke is a dual stroke (default). 1=Single stroke.
512 First approach start position

OSNSC: Define number of sparking-out strokes

Oscillation
15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE, OSB)

Job Planning
606 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

OSE: Define end position (in workpiece coordinate system) to be approached after deactivation
of oscillation.
Note:
When programming "OSE" option 4 becomes effective implicitly for "OSCTRL".

OSB: Define start position (in workpiece coordinate system) to be approached prior to activation
of oscillation.
The start position is approached before reversal point 1. If the start position coincides with
reversal position 1, reversal position 2 is approached next. No stopping time applies when
the start position is reached, even if this position coincides with reversal position 1; in‐
stead, the axis waits for the exact stop fine signal. Any exact stop condition configured is
fulfilled.
Note:
Bit 9 in setting data SD43770 $SA_OSCILL_CTRL_MASK must be set to initiate an ap‐
proach to the start position.

Examples

Example 1: Oscillating axis to oscillate between two reversal points
Oscillating axis Z is to oscillate between position 10 and 100. Reversal point 1 is to be
approached with exact stop fine, reversal point 2 with exact stop coarse. The feedrate for the
oscillating axis must be 250. 3 sparking-out strokes must be executed at the end of the
machining operation and the oscillating must approach end position 200. The feedrate for the
infeed axis must be 1 and the end of infeed in the X direction should be reached at position
15.

Program code Comment
WAITP(X,Y,Z) ; Initial setting.
G0 X100 Y100 Z100 ; Switch over to positioning axis opera-

tion.
WAITP(X,Z)
OSP1[Z]=10 OSP2[Z]=100 ; Reversal point 1, reversal point 2.
OSE[Z]=200 ; End position.
OST1[Z]=0 OST2[Z]=–1 ;Stopping time at U1: Exact stop fine

; Stopping time at U2: Exact stop coarse
FA[Z]=250 FA[X]=1 ; Feed for oscillating axis, infeed axis
OSCTRL[Z]=(4,0) ; Setting options.
OSNSC[Z]=3 ; 3 sparking-out strokes.
OS[Z]=1 ; Start oscillation.
WHEN $A_IN[3]==TRUE DO DELDTG(X) ; Deletion of distance-to-go.
POS[X]=15 ; Starting position X axis.
POS[X]=50 ; End position X axis.
OS[Z]=0 ; Stop oscillation.
M30

Note

The "OSP1[Z]=..." to "OSNCS[Z]=..." command sequence can also be programmed in a block.

Oscillation
15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE, OSB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 607

Example 2: Oscillation with online modification of the reversal position
The setting data necessary for asynchronous oscillation can be set in the part program.

If the setting data is described directly in the program, the change takes effect during
preprocessing. A synchronized response can be achieved by means of a preprocessing stop
(STOPRE).

Program code Comment
$SA_OSCILL_REVERSE_POS1[Z]=-10
$SA_OSCILL_REVERSE_POS2[Z]=10
G0 X0 Z0
WAITP(Z)
ID=1 WHENEVER $AA_IM[Z] < $$AA_OSCILL_REVERSE_
POS1[Z] DO $AA_OVR[X]=0
ID=2 WHENEVER $AA_IM[Z] < $$AA_OSCILL_REVERSE_
POS2[Z] DO $AA_OVR[X]=0

; If the actual value of the os-
cillating axis has exceeded the
reversal point, then the infeed
axis is stopped.

OS[Z]=1 FA[X]=1000 POS[X]=40 ; Activate oscillation.
OS[Z]=0 ; Deactivate oscillation.
M30

Further information

Oscillating axis
The following apply to the oscillating axis:

● Every axis may be used as an oscillation axis.

● Several oscillation axes can be active at the same time (maximum: the number of the
positioning axes).

● Linear interpolation G1is always active for the oscillating axis – irrespective of the G
command currently valid in the program.

The oscillating axis can:

● Act as an input axis for dynamic transformation

● Act as a guide axis for gantry and coupled-motion axes

● Be traversed:

– Without jerk limitation "BRISK"
or

– With jerk limitation "SOFT"
or

– With acceleration curve with a knee (as positioning axes)

Oscillation
15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE, OSB)

Job Planning
608 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Oscillation reversal points
The current offsets must be taken into account when oscillation positions are defined:

● Absolute specification
"OSP1[Z]=<value>"
Position of reversal point = sum of offsets + programmed value

● Relative specification
"OSP1[Z]=IC(<value>)"
Position of reversal point = reversal point 1 + programmed value

Example:

Program code
N10 OSP1[Z]=100 OSP2[Z]=110
...
N40 OSP1[Z]=IC(3)

WAITP
If oscillation is to be performed with a geometry axis, you must enable this axis for oscillation
with "WAITP".

When oscillation has finished, "WAITP" is used to enter the oscillating axis as a positioning
axis again, so that normal use can resume.

Oscillation with motion-synchronous actions and stopping times
Once the set stop times have expired, the internal block change is executed during oscillation
(indicated by the new distances to go of the axes). The deactivation function is checked when
the block changes. The deactivation function is defined according to the control setting for the
motion sequence (OSCTRL). This dynamic response can be influenced by the feed override.
An oscillation stroke may then be executed before the sparking-out strokes are started or the
end position approached. Although it appears as if the deactivation response has changed,
this is not in fact the case.

Oscillation
15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE, OSB)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 609

15.2 Oscillation controlled by synchronized actions (OSCILL)
With this mode of oscillation, an infeed motion may only be executed at the reversal points or
within defined reversal areas.

Depending on requirements, the oscillation movement can be

● Continued or

● Stopped until the infeed has finished executing.

Syntax
1. Define parameters for oscillation

2. Define motion-synchronous actions

3. Assign axes, define infeed

Meaning

OSP1[<oscillating axis>]= Position of reversal point 1
OSP2[<oscillating axis>]= Position of reversal point 2
OST1[<oscillating axis>]= Stopping time at reversal point 1 in seconds
OST2[<oscillating axis>]= Stopping time at reversal point 2 in seconds
FA[<oscillating axis>]= Feed for oscillating axis
OSCTRL[<oscillating axis>]= Set or reset options
OSNSC[<oscillating axis>]= Number of sparking-out strokes
OSE[<oscillating axis>]= End position
WAITP(<oscillating axis>) Enable axis for oscillation

Axis assignment, infeed
OSCILL[<oscillating axis>]=(<infeed axis 1>,<infeed axis 2>,<infeed
axis 3>)
POSP[<infeed axis>]=(<end position>,<partial length>,<mode>)

OSCILL: Assign infeed axis or axes for oscillating axis
POSP: Define complete and partial infeeds (see Section "File and Program Management")
End position: End position for the infeed axis after all partial infeeds have been traversed.
Partial
length:

Length of the partial infeed at reversal point/reversal area

Mode: Division of the complete infeed into partial infeeds
= Two residual steps of equal size (default);
= All partial infeeds of equal size

Motion-synchronous actions

WHEN… … DO when…, do…
WHENEVER … DO whenever…, do…

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
610 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
No infeed must take place at reversal point 1. At reversal point 2, the infeed is to start at a
distance of ii2 before reversal point 2 and the oscillating axis is not to wait at the reversal point
for the end of the partial infeed. Axis Z is the oscillation axis and axis X the infeed axis.

1. Parameters for oscillation

Program code Comment
DEF INT ii2 ; Define variable for reversal area 2
OSP1[Z]=10 OSP2[Z]=60 ; Define reversal points 1 and 2
OST1[Z]=0 OST2[Z]=0 ; Reversal point 1: Exact stop fine

Reversal point 2: Exact stop fine
FA[Z]=150 FA[X]=0.5 ; Oscillating axis Z feedrate, infeed axis X feedrate
OSCTRL[Z]=(2+8+16.1) ; Deactivate oscillating motion at reversal point 2; after

delete DTG spark-out and approach end position; after de-
lete DTG approach reversal position

OSNC[Z]=3 ; Sparking-out strokes
OSE[Z]=70 ; End position = 70
ii2=2 ; Set reversal point range
WAITP(Z) ; Enable oscillation for Z axis

2. Synchronized action

Program code Comment
WHENEVER $AA_IM[Z]<$SA_OSCILL_REVERSE_POS2[Z]
DO ->
 $AA_OVR[X]=0 $AC_MARKER[0]=0

; If the actual position of oscil-
lating axis Z in MCS is less than
the start of reversal range 2, then
always set the axial override of the
infeed axis X to 0% and the bit mem-
ory with index 0 to the value 0.

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 611

Program code Comment
WHENEVER $AA_IM[Z]>=$SA_OSCILL_REVERSE_POS2[Z]
DO $AA_OVR[Z]=0

; If the actual position of the os-
cillating axis Z in MCS is greater
than the reversal position 2, then
always set the axial override of the
oscillating axis Z to 0%.

WHENEVER $AA_DTEPW[X] == 0 DO $AC_MARKER[0]=1 ; If the remaining distance to go of
the partial infeed is 0, then always
set the bit memory with index 0 to
the value 1.

WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0
$AA_OVR[Z]=100

; Whenever the bit memory with index
0 is equal to 1, then set the axial
override of the infeed axis X to 0%.
As a consequence, a premature infeed
is prevented (oscillating axis Z has
still not left reversal area 2, but
infeed axis X is ready for a new in-
feed). Set the axial override of os-
cillating axis Z from 0% (action of
the 2nd synchronized action) back to
100% to move.

-> must be programmed in a single block

3. Start oscillation

Program code Comment
OSCILL[Z]=(X) POSP[X]=(5,1,1) ; Start the axes

Oscillating axis Z is assigned ax-
is X as infeed axis.
Up to end position 5, axis X
should travel in steps of 1.

M30 ; End of program

Further information
1. Define oscillation parameters

The parameters for oscillation should be defined before the movement block containing the
assignment of infeed and oscillating axes and the infeed definition (see "Asynchronized
oscillation").

2. Define motion-synchronized actions
The following synchronization conditions can be defined:
Suppress infeed until the oscillating axis is located within a reversal area
(ii1, ii2) or at a reversal point (U1, U2).
Stop oscillation motion during infeed at reversal point.
Restart oscillation movement on completion of partial infeed. Define
start of next partial infeed.

3. Assign oscillating and infeed axes as well as partial and complete infeed.

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
612 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Define oscillation parameters

Assignment of oscillating and infeed axes: OSCILL
OSCILL[<oscillating axis>]=(<infeed axis1>,<infeed axis2>,<infeed
axis3>)
The axis assignments and the start of the oscillation movement are defined with the "OSCILL"
command.

Up to 3 infeed axes can be assigned to an oscillating axis.

Note

Before oscillation starts, the synchronization conditions must be defined for the behavior of
the axes.

Define infeeds: POSP
POSP[<infeed axis>]=(<end position>,<partial length>,<mode>)
The following are declared to the control with the "POSP" command:

● Complete infeed (with reference to end position)

● The length of the partial infeed at the reversal point or in the reversal area

● The partial infeed response when the end position is reached (with reference to mode)

Mode = 0 The distance-to-go to the destination point for the last two partial infeeds is divided
into two equal steps (default setting).

Mode = 1 All partial infeeds are of equal size. They are calculated from the complete infeed.

Define motion-synchronized actions
The synchronized-motion actions listed below are used for general oscillation.

You are given example solutions for individual tasks, which you can use as modules for creating
user-specific oscillation movements

Note

In individual cases, the synchronization conditions can be programmed differentially.

Keywords

WHEN … DO … when…, do…
WHENEVER … DO whenever…, do…

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 613

Functions
You can implement the following functions with the language resources described in detail
below:

1. Infeed at reversal point.

2. Infeed at reversal area.

3. Infeed at both reversal points.

4. Stop oscillation movement at reversal point.

5. Restart oscillation movement.

6. Do not start partial infeed too early.

The following assumptions are made for all examples of synchronized actions presented here:

● Reversal point 1 < reversal point 2

● Z = oscillating axis

● X = infeed axis

Note

For more details, see the "Motion-synchronous actions" section.

Assign oscillating and infeed axes as well as partial and complete infeed

Infeed in reversal point range
The infeed motion must start within a reversal area before the reversal point is reached.

These synchronized actions inhibit the infeed movement until the oscillating axis is within the
reversal area.

The following instructions are used subject to the above assumptions:

Reversal range 1:
WHENEVER $AA_IM[Z]>$SA_OSCILL_RESERVE_POS1[Z]+ii1 DO $AA_OVR[X] = 0
Whenever the actual position of the oscillating axis in the MCS is greater than the start of
reversal range 1, then set the axial override of the infeed axis to 0%.

Reversal range 2:
WHENEVER $AA_IM[Z]<$SA_OSCILL_RESERVE_POS2[Z]+ii2 DO $AA_OVR[X] = 0
Whenever the actual position of the oscillating axis in the MCS is less than the start of reversal
range 2, then set the axial override of the infeed axis to 0%.

Infeed at reversal point
As long as the oscillation axis has not reached the reversal point, the infeed axis does not
move.

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
614 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The following instructions are used subject to the above assumptions:

Reversal range 1:
WHENEVER $AA_IM[Z]<>$SA_OSCILL_RESERVE_POS1[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of oscillating axis Z in MCS is greater or less than the position
reversal point 1, then set the axial override of the infeed axis X to 0% and the axial override
of the oscillating axis Z to 100%.

Reversal range 2:
For reversal point 2:
WHENEVER $AA_IM[Z]<>$SA_OSCILL_RESERVE_POS2[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of oscillating axis Z in MCS is greater or less than the position
reversal point 2, then set the axial override of the infeed axis X to 0% and the axial override
of the oscillating axis Z to 100%.

Stop oscillation movement at the reversal point
The oscillation axis is stopped at the reversal point, the infeed motion starts at the same time.
The oscillating motion is continued when the infeed movement is complete.

At the same time, this synchronized action can be used to start the infeed movement if this
has been stopped by a previous synchronized action, which is still active.

The following instructions are used subject to the above assumptions:

Reversal range 1:
WHENEVER $SA_IM[Z]==$SA_OSCILL_RESERVE_POS1[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of the oscillating axis in the MCS is the same as the reversal
position 1, then set the axial override of the oscillating axis to 0% and the axial override of the
infeed axis to 100%.

Reversal range 2:
WHENEVER $SA_IM[Z]==$SA_OSCILL_RESERVE_POS2[Z] DO $AA_OVR[X]=0
$AA_OVR[Z]=100
Whenever the actual position of the oscillating axis Z in the MCS is the same as the reversal
position 2, then set the axial override of the oscillating axis X to 0% and the axial override of
the infeed axis to 100%.

Online evaluation of reversal point
If there is a main run variable coded with $$ on the right of the comparison, then the two
variables are evaluated and compared with one another continuously in the IPO cycle.

Note

Please refer to Section "Motion-synchronized actions" for more information.

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 615

Oscillation movement restarting
The purpose of this synchronized action is to continue the movement of the oscillation axis on
completion of the part infeed movement.

The following instructions are used subject to the above assumptions:

WHENEVER $AA_DTEPW[X]==0 DO $AA_OVR[Z]= 100
Whenever the remaining distance for the partial infeed of infeed axis X in the WCS is equal to
zero, then set the axial override of the oscillating axis to 100%.

Next partial infeed
When infeed is complete, a premature start of the next partial infeed must be inhibited.

A channel-specific marker ($AC_MARKER[Index]) is used for this purpose. It is enabled at
the end of the partial infeed (partial distance-to-go ≡ 0) and deleted when the axis leaves the
reversal area. The next infeed movement is then prevented by a synchronized action.

On the basis of the given assumptions, the following instructions apply for reversal point 1:

1. Set marker:
WHENEVER $AA_DTEPW[X] == 0 DO $AC_MARKER[1]=1
Whenever the remaining distance for the partial infeed of infeed axis X in the WCS is equal to
zero, then set the bit memory with index 1 to 1.

2. Delete marker
WHENEVER $AA_IM[Z]<> $SA_OSCILL_RESERVE_POS1[Z] DO $AC_MARKER[1] = 0
Whenever the actual position of oscillating axis Z in the MCS is greater or less than the position
of reversal point 1, then set the bit memory 1 to 0.

3. Inhibit infeed
WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0
Whenever bit memory 1 is the same, then set the axial override of the infeed axis X to 0%.

Oscillation
15.2 Oscillation controlled by synchronized actions (OSCILL)

Job Planning
616 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Punching and nibbling 16
16.1 Activation/deactivation

16.1.1 Activate/deactivate punching and nibbling (SPOF, SON, PON, SONS, PONS,
PDELAYON, PDELAYOF, PUNCHACC)

Activate/deactivate punching and nibbling
PON and SON are used to activate the punching and nibble functions. SPOF terminates all
punching- and nibble-specific functions. Modal commands PON and SON are mutually
exclusive, i.e. PON deactivates SON and vice versa.

Punching/nibbling with leader
The functions SONS and PONS also switch-in the punching or nibbling functions.

Unlike SON/PON (stroke control at interpolation level), with these functions, signal-related
control of stroke initiation is at servo level. This enables higher stroke frequencies and, as a
result, increased punching capacity to be achieved.

While signals are being evaluated in the leader, all functions that cause the nibbling or punching
axes to change position (e.g. manual handwheel travel, changes to frames via PLC,
measurement functions) are inhibited.

Punching with delay
PDELAYON results in a delayed output of the punching stroke. The modally effective command
has a preparatory function and therefore is generally located before PON. Normal punching
resumes after PDELAYOF.

Note

The delay time is set in setting data SD42400 $SC_PUNCH_DWELLTIME.

Path-dependent acceleration
PUNCHACC can be used to specify an acceleration characteristic defining different rates of
acceleration dependent on the hole spacing.

Second punching interface
Machines which need to use a second punching interface (second punching unit or comparable
medium) alternately can be switched over to a second pair of fast digital inputs and outputs
on the control (I/O pair). Full punching/nibbling functionality is available on both interfaces. The

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 617

SPIF1 and SPIF2 commands are used to switch over between the first and second punching
interface.

Note

Requirement: A second I/O pair has to be defined for the punching functionality in the machine
data (→ see machine manufacturer's specifications).

Syntax
PON G... X... Y... Z...
SON G... X... Y... Z...
SONS G... X... Y... Z...
PONS G... X... Y... Z...
PDELAYON
PDELAYOF
PUNCHACC(<Smin>,<Amin>,<Smax>,<Amax>)
SPIF1/SPIF2
SPOF

Meaning

PON: Activate punching.
SON: Activate nibbling
PONS: Activate punching with leader.
SONS: Activate nibbling with leader.
SPOF: Deactivate punching/nibbling.
PDELAYON: Activate punching with delay.
PDELAYOF: Deactivate punching with delay.
PUNCHACC: Activate travel-dependent acceleration.

Parameter:
<Smin> Minimum hole spacing
<Amin> Initial acceleration

<Amin> can be greater than <Amax>.
<Smax> Maximum hole spacing
<Amax> Final acceleration

<Amax> can be greater than <Amin>.
SPIF1: Activate first punching interface.

The stroke is controlled using the first pair of fast I/O.
SPIF2: Activate second punching interface.

The stroke is controlled using the second pair of fast I/O.
 Note:

The first punch interface is always active after a RESET or control system power up.
If only one punching interface is used, then it need not be programmed.

Punching and nibbling
16.1 Activation/deactivation

Job Planning
618 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Examples

Example 1: Activate nibbling

Program code Comment
...
N70 X50 SPOF ; Position without punch initiation.
N80 X100 SON ; Activate nibbling, initiate a stroke before the mo-

tion (X=50) and on completion of the programmed move-
ment (X=100).

...

Example 2: Punching with delay

Program code Comment
...
N170 PDELAYON X100 SPOF ; Position without punch initiation, activate delayed

punch initiation.
N180 X800 PON ; Activate punching. The punch stroke is output with

a delay when the end position is reached.
N190 PDELAYOF X700 ; Deactivate punching with delay, normal punch ini-

tiation on completion of the programmed movement.
...

Example 3: Punching with two punching interfaces

Program code Comment
...
N170 SPIF1 X100 PON ; At the end of the block, a stroke is initiated at

the first fast output. The "Stroke active" signal is
monitored at the first input.

N180 X800 SPIF2 ; The second stroke is initiated at the second fast
output. The "Stroke active" signal is monitored at
the second input.

N190 SPIF1 X700 ; All further strokes are controlled with the first
interface.

...

Further information

Punching and nibbling with leader (PONS/SONS)
Punching and nibbling with leader is not possible in more than one channel simultaneously.
PONS or SONS can only be activated in one channel at a time.

Path-dependent acceleration (PUNCHACC)
Example:
PUNCHACC(2,50,10,100)
Distance between holes less than 2 mm:

Punching and nibbling
16.1 Activation/deactivation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 619

The axis accelerates at a rate corresponding to 50% of maximum acceleration.

Distance between holes from 2 mm to 10 mm:
Acceleration is increased to 100%, proportional to the spacing.

Distance between holes more than 10 mm:
Traverse at an acceleration of 100%.

Initiation of the first stroke
The instant at which the first stroke is initiated after activation of the function differs depending
on whether nibbling or punching is selected:

● PON/PONS:

– All strokes - even the one in the first block after activation - are executed at the block
end.

● SON/SONS:

– The first stroke after activation of the nibbling function is executed at the start of the
block.

– Each of the following strokes is initiated at the block end.

Punching and nibbling on the spot
A stroke is initiated only if the block contains traversing information for the punching or nibbling
axes (axes in active plane).

However, to initiate a stroke at the same position, one of the punching/nibbling axes can be
programmed with a traversing path of 0.

Punching and nibbling
16.1 Activation/deactivation

Job Planning
620 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Machining with rotatable tools

Note

Use the tangential control function if you wish to position rotatable tools at a tangent to the
programmed path.

Use of M commands
As in earlier versions, macro technology allows special M functions to be used instead of
language commands (compatibility). The M functions and equivalent language commands as
used in earlier systems are as follows:

M20, M23 ≙ SPOF
M22 ≙ SON
M25 ≙ PON
M26 ≙ PDELAYON

Example for macro file:

Program code Comment
DEFINE M25 AS PON ; Punching on
DEFINE M125 AS PONS ; Punching with leader on
DEFINE M22 AS SON ; Nibbling on
DEFINE M122 AS SONS ; Nibbling with leader on
DEFINE M26 AS PDELAYON ; Punching with delay on
DEFINE M20 AS SPOF ; Punching, nibbling off
DEFINE M23 AS SPOF ; Punching, nibbling off

Programming example:

Program code Comment
...
N100 X100 M20 ; Position without punch initiation.
N110 X120 M22 ; Activate nibbling, initiate stroke before and af-

ter motion.
N120 X150 Y150 M25 ; Activate punching, initiate stroke at end of mo-

tion.
...

Punching and nibbling
16.1 Activation/deactivation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 621

16.2 Automatic path segmentation

Segmentation into path segments
When punching or nibbling is activated, both SPP and SPN segment the total traversing section
programmed for the path axes into a number of path segments with the same length
(equidistant path segmentation). Internally, each path segment corresponds to a block.

Number of strokes
When punching, the first stroke is realized at the end point of the first path segment; but for
nibbling, at the starting point of the first path segment. Therefore the following numbers are
obtained over the complete traversing section:

Punching: Number of strokes = number of path segments

Nibbling: Number of strokes = number of path segments +1

Auxiliary functions
Auxiliary functions are executed in the first of the generated blocks.

Syntax
SPP=
SPN=

Meaning

SPP: Size of path segment (maximum distance between strokes); modal
SPN: Number of path segments per block; modally effective

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
622 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example 1
The programmed nibbling segments should be automatically split-up into path segments.

Program code Comment
N100 G90 X130 Y75 F60 SPOF ; Positioning at starting point 1
N110 G91 Y125 SPP=4 SON ; Nibbling on; maximum path seg-

ment length
for automatic path segmentation: 4
mm

N120 G90 Y250 SPOF ; Nibbling off; positioning to
starting point 2

N130 X365 SON ; Nibbling on; maximum path seg-
ment length
for automatic path segmentation: 4
mm

N140 X525 SPOF ; Nibbling off; positioning to
starting point 3

N150 X210 Y75 SPP=3 SON ; Nibbling on; maximum path seg-
ment length
for automatic path segmentation: 3
mm

N160 X525 SPOF ; Nibbling off; positioning to
starting point 4

N170 G02 X-62.5 Y62.5 I J62.5 SPP=3 SON ; Nibbling on; maximum path seg-
ment length
for automatic path segmentation: 3
mm

N180 G00 G90 Y300 SPOF ; Nibbling off

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 623

Example 2
Automatic path segmentation should be made for the individual series of holes. The maximum
path segment length (SPP value) is specified for the segmentation.

Program code Comment
N100 G90 X75 Y75 F60 PON ; Position to starting point 1;

punch a single hole
N110 G91 Y125 SPP=25 ; Maximum path segment length for

automatic path segmentation: 25 mm
N120 G90 X150 SPOF ; Punching off; positioning to

starting point 2
N130 X375 SPP=45 PON ; Punching on; maximum path segment length

for automatic path segmentation: 45 mm
N140 X275 Y160 SPOF ; Punching off; positioning to

starting point 3
N150 X150 Y75 SPP=40 PON ; Punching on, instead of the programmed path segment

length of 40 mm, the calculated path segment length of
37.79 mm is used.

N160 G00 Y300 SPOF ; Punching off; positioning

16.2.1 Path segmentation for path axes

Length of SPP path segment
 SPP is used to specify the maximum distance between strokes and thus the maximum length
of the path segments in which the total traversing distance is to be divided. The command is
deactivated with SPOF or SPP=0.

Example:

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
624 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

N10 SON X0 Y0

N20 SPP=2 X10
The total traversing distance of 10 mm will be divided into five path sections each of 2 mm
(SPP=2).

Note

The path segments effected by SPP are always equidistant, i.e. all segments are equal in
length. In other words, the programmed path segment size (SPP setting) is valid only if the
quotient of the total traversing distance and the SPP value is an integer. If this is not the case,
the size of the path segment is reduced internally such as to produce an integer quotient.

Example:

N10 G1 G91 SON X10 Y10
N20 SPP=3.5 X15 Y15
When the total traversing distance is 15 mm and the path segment length 3.5 mm, the quotient
is not an integer value (4.28). In this case, the SPP value is reduced down to the next possible
integer quotient. The result in this example would be a path segment length of 3 mm.

Number of SPN path segments
SPN defines the number of path segments to be generated from the total traversing distance.
The length of the segments is calculated automatically. Since SPN is non-modal, punching or
nibbling must be activated beforehand with PON or SON respectively.

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 625

16.2.2 Path segmentation for single axes
If single axes are defined as punching/nibbling axes in addition to path axes, then the automatic
path segmentation function can be activated for them.

Behavior of the single axis for SPP
The programmed path segment length (SPP) basically refers to the path axes. Therefore, in a
block in which in addition to the single-axis movement and the SPP value no path axis has
been programmed, then the SPP value is ignored.

If both individual and path axes are programmed in the block, then the behavior of the single
axis depends on the setting of the appropriate machine data.

1. Default setting
The path traversed by the single axis is distributed evenly among the intermediate blocks
generated by SPP.

Example:

N10 G1 SON X10 A0
N20 SPP=3 X25 A100
As a result of the stroke distance of 3 mm, for the total traversing distance of the X axis (path
axis) of 15 mm, 5 blocks are generated.

The A axis thus rotates through 20 degrees in every block.

1. Single axis without path segmentation
The single axis traverses its complete distance in the first of the generated blocks.

2. Different path segmentation
The behavior of the single axis is dependent on the interpolation of the path axes:

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
626 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● Circular interpolation: Path segmentation

● Linear interpolation: no path segmentation

Behavior for SPN
The programmed number of path segments also applies if a path axis is not simultaneously
programmed.

Precondition: The single axis is defined as punching-nibbling axis.

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 627

Punching and nibbling
16.2 Automatic path segmentation

Job Planning
628 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Grinding 17
17.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF)

With the predefined procedures TMON(...) and TMOF(...), the grinding-specific tool monitoring
is activated or deactivated (geometry and speed monitoring).

Requirement
The tool-specific parameters $TC_TPG1 to $TC_TPG9 must be set.

Syntax

TMON(<TNo>)
...
TMOF(<TNo>)

Meaning

TMON(...): Activate grinding-specific tool monitoring
The command must be programmed in the channel in which the grinding-specific tool
monitoring is to be activated.

TMOF(...): Deactivate grinding-specific tool monitoring
The command must be programmed in the channel in which the grinding-specific tool
monitoring is to be deactivated.

<TNo>: T number
Note:
Only required if the monitoring is to be switched on or off for an inactive grinding wheel
rather than the active grinding wheel that is currently in use.

TMOF(0): Deactivate monitoring for all tools

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 629

Grinding
17.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF)

Job Planning
630 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Additional functions 18
18.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING,

MODAXVAL)
"AXNAME" is used, e.g. to generate cycles that are generally valid, if the names of the axes
are not known.

"AX" is used to indirectly program geometry and synchronous axes. The axis identifier is saved
in a type AXIS variable or is supplied from a command such as "AXNAME" or "SPI".

"SPI" is used if axis functions are programmed for a spindle, e.g. a synchronous spindle.

"AXTOSPI" is used to convert an axis identifier into a spindle index (inverse function to "SPI").

"AXSTRING" is used to convert an axis identifier (data type AXIS) into a string (inverse function
to "AXNAME").

"ISAXIS" is used in universal cycles in order to ensure that a specific geometry axis exists and
thus that any following $P_AXNX call is not aborted with an error message.

"MODAXVAL" is used in order to determine the modulo position for modulo rotary axes.

Syntax
AXNAME("string")
AX[AXNAME("string")]
SPI(n)
AXTOSPI(A) or AXTOSPI(B) or AXTOSPI(C)
AXSTRING(SPI(n))
ISAXIS(<geometry axis number>)
<Modulo position>=MODAXVAL(<axis>,<axis position>)

Meaning

AXNAME: Converts an input string into axis identifiers; the input string must contain a valid
axis name.

AX: Variable axis identifier
SPI: Converts the spindle number into an axis identifier; the transfer parameter must

contain a valid spindle number.
n: Spindle number
AXTOSPI: Converts an axis identifier into an integer spindle index. "AXTOSPI" corresponds

to the inverse function to "SPI".
X, Y, Z: Axis identifier of AXIS type as variable or constant
AXSTRING: The string is output with the associated spindle number.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 631

ISAXIS: Checks whether the specified geometry axis exists.
MODAXVAL: For modulo rotary axes, determines the modulo position; this corresponds to

the modulo rest referred to the parameterized modulo range (in the default set‐
ting, this is 0 to 360 degrees; the start and size of the modulo range can be
changed using MD30340 MODULO_RANGE_START and MD30330
$MA_MODULO_RANGE).

Note
SPI extensions

The axis function SPI(n) can also be used to read and write frame components. This means
that frames can be written, e.g. with the syntax $P_PFRAME[SPI(1),TR]=2.22.

An axis can be traversed by additionally programming axis positions using the address
AX[SPI(1)]=<axis position>. The prerequisite is that the spindle is either in the
positioning or axis mode.

Examples

Example 1: AXNAME, AX, ISAXIS

Program code Comment
OVRA[AXNAME("Transverse axis")]=10 ; Override for transverse axis
AX[AXNAME("Transverse axis")]=50.2 ; End position for transverse axis
OVRA[SPI(1)]=70 ; Override for spindle 1
AX[SPI(1)]=180 ; End position for spindle 1
IF ISAXIS(1) == FALSE GOTOF CONTINUE ; Abscissa available?
AX[$P_AXN1]=100 ; Move abscissa
CONTINUE:

Example 2: AXSTRING
When programming with AXSTRING[SPI(n)], the axis index of the axis, which is assigned to
the spindle, is no longer output as spindle number, but instead the string "Sn" is output.

Program code Comment
AXSTRING[SPI(2)] ; String "S2" is output.

Example 3: MODAXVAL
The modulo position of modulo rotary axis A is to be determined.

Axis position 372.55 is the starting value for the calculation.

The parameterized modulo range is 0 to 360 degrees:

MD30340 MODULO_RANGE_START = 0

MD30330 $MA_MODULO_RANGE = 360

Program code Comment
R10=MODAXVAL(A,372.55) ; Calculated modulo position R10 = 12.55.

Additional functions
18.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)

Job Planning
632 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example 4: MODAXVAL
If the programmed axis identifier does not refer to a modulo rotary axis, then the value to be
converted (<axis position>) is returned unchanged.

Program code Comment
R11=MODAXVAL(X,372.55) ; X is a linear axis; R11 = 372.55.

Additional functions
18.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 633

18.2 Replaceable geometry axes (GEOAX)
The "Switchable geometry axes" function allows the geometry axes configured via machine
data to be replaced by other channel axes.

Syntax
GEOAX(<n>,<channel axis>,<n>,<channel axis>,<n>,<channel axis>)
GEOAX()

Meaning

GEOAX(...) Function for switching geometry axes.
Note:
GEOAX() without parameter specification activates the basic configuration of
the geometry axes parameterized in the machine data again.

<n> Number of the geometry axis that is to be replaced by the specified channel axis.
Range of values: 0, 1, 2, 3
Note:
0: The specified channel axis is removed from the geometry axis group without
being replaced
1: 1. geometry axis ≙ coordinate axis X (abscissa) of the WCS
2: 2. geometry axis ≙ coordinate axis Y (ordinate) of the WCS
3: 3. geometry axis ≙ coordinate axis Z (applicate) of the WCS

<channel axis> Name of the channel axis which is to added to the geometry axis group

Examples

Example 1: Switching two axes alternating as geometry axis
A tool slide can be traversed using channel axes X1, Y1, Z1, Z2:

Additional functions
18.2 Replaceable geometry axes (GEOAX)

Job Planning
634 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The geometry axes are configured so that after powering-up, initially Z1 is effective as 3rd
geometry axis under the geometry axis name "Z" and together with X1 and Y1 forms the
geometry axis group.

Axes Z1 and Z2 should now be used, alternating, as geometry axis Z in the part program:

Program code Comment
...
N100 GEOAX(3,Z2) ; Channel axis Z2 acts as 3rd geometry axis (Z).
N110 G1 ...
N120 GEOAX(3,Z1) ; Channel axis Z1 acts as 3rd geometry axis (Z).
...

Example 2: Changing over the geometry axes for six channel axes
A machine has six channel axes with the names XX, YY, ZZ, U, V, W.

The basic setting of the geometry axis configuration via machine data is:

Channel axis XX = 1st geometry axis (X axis)

Channel axis YY = 2nd geometry axis (Y axis)

Channel axis ZZ = 3rd geometry axis (Z axis)

Program code Comment
N10 GEOAX() ; The basic configuration of the geometry axes is ef-

fective.
N20 G0 X0 Y0 Z0 U0 V0 W0 ; All axes in rapid traverse to position 0.
N30 GEOAX(1,U,2,V,3,W) ; Channel axis U becomes the first (X), V the second

(Y)
; and W the third geometry axis (Z).

Additional functions
18.2 Replaceable geometry axes (GEOAX)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 635

Program code Comment
N40 GEOAX(1,XX,3,ZZ) ; Channel axis XX becomes the first (X), ZZ the third

; geometry axis (Z). Channel axis V remains the second
; geometry axis (Y).

N50 G17 G2 X20 I10 F1000 ; Full circle in the X/Y plane. Channel axes
; XX and V traverse.

N60 GEOAX(2,W) ; Channel axis W becomes the second geometry (Y).
N80 G17 G2 X20 I10 F1000 ; Full circle in the X/Y plane. Channel axes

; XX and W traverse.
N90 GEOAX() ; Reset to the initial state.
N100 GEOAX(1,U,2,V,3,W) ; Channel axis U becomes the first (X), V the second

; (Y) and W the third geometry axis (Z).
N110 G1 X10 Y10 Z10 XX=25 ; Channel axes U, V, W each traverse to

; position 10. XX as special axis traverses to posi-
tion 25.

N120 GEOAX(0,V) ; V is removed from the geometry axis group.
; U and W remain the first (X) and third
; geometry axis (Z).
; The second geometry (Y) axis remains unassigned.

N130 GEOAX(1,U,2,V,3,W) ; Channel axis U remains the first (X), V becomes
; the second (Y), W remains the third geometry axis
(Z).

N140 GEOAX(3,V) ; V becomes the third geometry axis (Z), whereby W
; is overwritten and therefore removed from the geom-
etry
; axis group. The second geometry axis (Y)
; still remains unassigned.

Machine data

Axis configuration
Assignment of geometry, special and machine axes to channel axes:

● MD10000 $MN_AXCONF_MACHAX_NAME_TAB

● MD20050 $MC_AXCONF_GEOAX_ASIGN_TAB

● MD20060 $MC_AXCONF_GEOAX_NAME_TAB

● MD20070 $MC_AXCONF_MACHAX_USED

● MD20080 $MC_AXCONF_CHANAX_NAME_TAB

● MD35000 $MA_SPIND_ASSIGN_TO_MACHAX

Reset behavior
Reset behavior of changed geometry axis assignments:

● MD20110 $MC_RESET_MODE_MASK, bit 12

● MD20118 $MC_GEOAX_CHANGE_RESET

Additional functions
18.2 Replaceable geometry axes (GEOAX)

Job Planning
636 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

NC start behavior
● MD20112 $MC_START_MODE_MASK, bit 12

Notification to the PLC user program
Parameterization option of the M command which is output on the NC/PLC interface when the
geometry axes are changed.

● MD22532 $MC_GEOAX_CHANGE_M_CODE

Supplementary conditions

No geometry axis changeover
● If one of the following functions is active, a geometry axis changeover is not possible:

– Transformation

– Spline interpolation

– Tool radius compensation

– Tool fine offset

● The geometry axis and another channel axis have the same name.

● One of the axes participating in the geometry axis changeover is involved in an action that
goes beyond block limits, e.g. block-wide positioning axis or following axis of an axis
coupling.

Rotary axes
Rotary axes cannot be programmed as geometry axes.

Axis state after replacing
An axis replaced by the changeover in the geometry axis group can be programmed as
supplementary axis after the changeover operation via its channel axis names.

Frames, protection areas, working area limits
All frames, protection areas and working area limits are deleted after changing over the
geometry axes.

Polar coordinates
Replacing the geometry axes with GEOAX sets analog to a level change with G17-G19, the
modal polar coordinates to a value of 0.

DRF, WO
A possible handwheel offset (DRF) or an external work offset (WO) remains effective after the
changeover.

Basic configuration of the geometry axes
The GEOAX() command calls the basic configuration of the geometry axis group.

The system automatically changes back to the basic configuration after POWER ON and when
changing over into the "reference point approach" mode.

Additional functions
18.2 Replaceable geometry axes (GEOAX)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 637

Tool length compensation
An active tool length compensation is also effective after the changeover operation. However,
for geometry axes that have been newly added or those where the position has been replaced,
it is still considered not to have been moved through. For the first motion command for these
geometry axes, the resulting traversing distance correspondingly comprises the sum of the
tool length compensation and the programmed traversing distance.

Geometry axes, which retain their position in the axis group after a replacement operation,
also retain their status with respect to tool length compensation.

Geometry axis configuration for active transformation
● The geometry axis configuration parameterized for an active transformation via

transformation machine data cannot be changed using the "Switchable geometry axes"
function.

● Different data sets must be parameterized in the transformation machine data for a different
geometry axis configuration for a transformation.

● A geometry axis configuration changed using GEOAX is deleted by activating a
transformation.

● With regard to the geometry axes, the transformation-specific geometry axis
parameterizations of active transformations have priority over the parameterizations
relevant for the changeover of geometry axes.
Example: A transformation is active. According to the machine data, the transformation
should be retained at a channel reset. At the same time, the basic configuration of the
geometry axes should be restored at a channel reset. The geometry axis configuration that
has been specified for the transformation is retained.

● If a transformation is switched off, the parameterized basic setting of the geometry axis
configuration takes effect again.

JOG mode, REF machine function
When switching over to the JOG mode, REF machine function (reference point approach), the
geometry axis configuration parameterized in the machine data takes effect

Additional functions
18.2 Replaceable geometry axes (GEOAX)

Job Planning
638 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.3 Axis container (AXCTSWE, AXCTSWED, AXCTSWEC)
The "AXCTSWE" or "AXCTSWED" commands enable the rotation of the specified axis
container.

Any previously set enable for axis container rotation is cancelled with the "AXCTSWEC"
command.

Syntax
AXCTSWE(<ID>)
AXCTSWED(<ID>)
AXCTSWEC(<ID>)

Meaning

AXCTSWE: Enable for rotation of the axis container
The program processing is not stopped by "AXCTSWE".
The rotation is performed as soon as all channels involved on the axis container have
been enabled.

AXCTSWED: Enable to rotate the axis container without consideration of the other channels in‐
volved on the axis container
Note
● Command variant to simplify the commissioning of the part program or

synchronized action.
● The behavior with regard to the other channels involved on axis container can be

specified via:
MD12760 $MN_ AXCT_FUNCTION_MASK, bit 0

AXCTSWEC: Canceling the enable to rotate the axis container
Note
The enable for rotating an axis container can only be cancelled when the rotation
has yet not been started:
$AN_AXCTSWA[<axis container>] == 0
For system variable, see "Axis container (AXCTSWE, AXCTSWED, AXCTSWEC)
(Page 639)"

<ID>: Identifier of the axis container or a container axis:
CT<number>: Default identifier of an axis container:

MD12750 $MN_AXCT_NAME_TAB
Example: "CT1"

<Container>: User-specific identifier of an axis container:
MD12750 $MN_AXCT_NAME_TAB
Example: "CONTAINER_1"

<axis>: Identifier of a known container axis in the channel

Additional functions
18.3 Axis container (AXCTSWE, AXCTSWED, AXCTSWEC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 639

Note
Increment

The increment of a axis container rotation is set via the setting data:

SD41700 $SN_AXCT_SWWIDTH

Further information

Diagnostics
The current status of a axis container can be read via the following system variables:

System variable Type Description
$AC_AXCTSWA[<name>] BOOL Channel-specific status of the axis container
$AN_AXCTSWA[<axis container>] BOOL NCU-specific status of the axis container
$AN_AXCTSWE[<axis container>] INT Slot-specific status of the axis container rotation

The system variable supplies the status of the axis
container slot bitwise. Each bit corresponds to a
slot.

$AN_AXCTAS[<axis container>] INT Number of locations (slots) through which the axis
container was just switched through.

Axis container rotation with implicit GET / GETD
The following machine data can be use to set that all container axes of the channel are brought
into the channel by means of an implicit "GET/GETD" with the "AXCTSWE" command. An axis
replacement is only possible again after the container rotation.

MD10722 $MN_AXCHANGE_MASK, bit 1 = 1

Note

An axis container rotation with implicit "GET/GETD" is not performed for an axis in the state
"main run axis" (e.g. PLC axis) because the axis would have to exit the state for the axis
container rotation.

Additional functions
18.3 Axis container (AXCTSWE, AXCTSWED, AXCTSWEC)

Job Planning
640 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.4 Wait for valid axis position (WAITENC)
Using the language command "WAITENC", the NC program waits until the synchronized or
restored axis positions are available for the axes configured with
MD34800 $MA_WAIT_ENC_VALID = 1.

An interruption can take place in the wait state, e.g. by starting an ASUB or by changing the
operating mode to JOG. When the program is continued, where relevant, the wait state is
resumed.

Note

In the user interface, the wait state is displayed using the hold state "Wait for measuring
system".

Syntax
"WAITENC" can be programmed in the program section of any NC program.

Programming must be realized in a dedicated block:

...
WAITENC
...

Example
"WAITENC" is for example used in an event-controlled user program, .../_N_CMA_DIR/
_N_PROG_EVENT_SPF, as shown in the following application example.

Application example: Tool withdrawal after POWER OFF with orientation transformation

Machining with tool orientation was interrupted due to a power failure.
When powering up again, the event-controlled user program .../_N_CMA_DIR/
_N_PROG_EVENT_SPF is called.

In the event-controlled user program, the system waits for synchronized or restored axis
positions using "WAITENC"; in order to then be able to calculate a frame, which aligns the
Work in the tool direction.

Program code Comment
...
IF $P_PROG_EVENT == 4 ; Run-up.
 IF $P_TRAFO <> 0 ; Transformation has been selected.
 WAITENC ; Wait for valid axis positions of the orientation

axes.
 TOROTZ ; Rotate the Z axis of the WCS towards the tool axis.
 ENDIF
 M17
ENDIF
...

Additional functions
18.4 Wait for valid axis position (WAITENC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 641

The tool can then be retracted in JOG mode by means of a retraction movement towards the
tool axis.

Additional functions
18.4 Wait for valid axis position (WAITENC)

Job Planning
642 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.5 Programmable parameter set changeover (SCPARA)
The changeover to a specific parameter set can be requested for an axis with the SCPARA
command.

Note
No parameter set changeover during thread cutting

During thread cutting G33 and tapping G331/G332, the parameter set is selected by the control
and cannot be changed.

Disabled parameter set changeover
A parameter set changeover can also be requested via the NC/PLC interface. In order to avoid
changeover conflicts, the parameter set changeover of the NC (SCPARA) can be disabled via
the NC/PLC interface:

DB31, ... DBX9.3 (parameter set specification disabled by NC)

Note

If a parameter set changeover is requested by SCPARA while the parameter set changeover
is disabled via the NC/PLC interface, the changeover is rejected without an error message.

Syntax
SCPARA[<axis>]=<value>

Meaning

SCPARA: Command: Change parameter set
<axis>: Axis identifier (channel axis)

Type: AXIS
<value>: Parameter set number: 1, 2, 3, ... max. parameter set number

Example

Program code Comment
...
N110 SCPARA[X]= 3 ; Select: Axis X, 3rd parameter set
...

Further information

Enable of the parameter set changeover
The parameter set changeover of the axis must be explicitly enabled:

MD35590 $MA_PARAMSET_CHANGE_ENABLE[<axis>]

Additional functions
18.5 Programmable parameter set changeover (SCPARA)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 643

Read parameter set number
The number of the selected parameter set (specified parameter set) can be read via the system
variable $AA_SCPAR.

References
Detailed information on the parameter sets can be found in:

Function Manual, Basic Functions; Section "Velocities, setpoint / actual value systems, closed-
loop control (G2)" > "Closed-loop control" > "Parameter sets of the position controller"

Additional functions
18.5 Programmable parameter set changeover (SCPARA)

Job Planning
644 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.6 Check scope of NC language present (STRINGIS)
Using the function "STRINGIS(...)" it can be checked as to whether the specified string is
available as element of the NC programming language in the actual language scope.

Definition
INT STRINGIS(STRING <Name>)

Syntax
STRINGIS(<Name>)

Meaning

STRINGIS: Function with return value
<name>: Name of the NC programming language element to be checked
Return value: The return value format is yxx (decimal).

Elements of the NC programming language
The following elements of the NC programming language can be checked:

● G commands of all existing G groups, e.g. "G0", "INVCW", "POLY", "ROT", "KONT",
"SOFT", "CUT2D", "CDON", "RMBBL", "SPATH"

● DIN or NC addresses, such as "ADIS", "RNDM", "SPN", "SR", "MEAS"

● Functions, e.g. "TANG(...)" or "GETMDACT"

● Procedures, e.g. "SBLOF".

● Keywords, e.g. "ACN", "DEFINE" or "SETMS"

● System data, e.g. machine data $M... , setting data $S... or option data $O...

● System variables $A... , $V... , $P...

● Arithmetic parameter R...

● Cycle names of activated cycles

● GUD and LUD variables

● Macro names

● Label names

Return value
Only the first three decimal positions of the return value are relevant. The return value format
is yxx, with y = basis information and xx = detailed information.

Return value Meaning
000 The 'name' string is not known in this system 1)

100 The 'name' string is an element of the NC programming language, but currently cannot be programmed
(option/function is inactive)

Additional functions
18.6 Check scope of NC language present (STRINGIS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 645

Return value Meaning
2xx The 'name' string is a programmable element of the NC programming language (option/function is active).

The detailed information xx contains additional information about the element type:
 xx Meaning
 01 DIN address or NC address2)

 02 G command (e.g. G04, INVCW)
 03 Function with return value
 04 Function without return value
 05 Keyword, e.g. DEFINE
 06 Machine ($M...), setting ($S...) or option data ($O...)
 07 System parameters, e.g. system variable ($...) or arithmetic parameter (R...)
 08 Cycle (the cycle must be loaded into the NC and the cycle program must be active 3))
 09 GUD variable (the GUD variable must be defined in the GUD definition files and the GUD variables

activated)
 10 Macro name (the macro must be defined in the macro definition files and macros activated) 4)

 11 LUD variable of the actual part program
 12 ISO G command (ISO language mode must be active)
400 The 'name' string is an NC address, that was not identified as xx == 01 or xx == 10 and is not G or R 2)

y00 No specific assignment possible
1) Depending on the control, under certain circumstances, only a subset of the Siemens NC language commands are known,
e.g. SINUMERIK 802D sl. For these controls, for strings that are principally Siemens NC language commands, a value of 0
is returned. This behavior can be changed using MD10711 $MN_NC_LANGUAGE_CONFIGURATION. For MD10711 = 1,
then a value of 100 is always returned for Siemens NC language commands.
2) NC addresses are the following letters: A, B, C, E, I, J, K, Q, U, V, W, X, Y, Z. These NC addresses can also be programmed
with an address extension. The address extension can be specified when checking with STRINGIS. Example: 201 ==
STRINGIS("A1").
The letters: D, F, H, L, M, N, O, P, S, T are NC addresses or auxiliary functions that are defined by the user. A value of 400
is always returned for these. Example: 400 == STRINGIS("D"). These NC addresses cannot be specified with address
extension when checking with STRINGIS.
 Example: 000 == STRINGIS("M02"), but 400 == STRINGIS("M").
3) Names of cycle parameters cannot be checked with STRINGIS.
4) Address, defined as macro, e.g. G, H, M, L are identified as macro.

Examples
In the following examples it is assumed that the NC language elements specified as string -
as long as nothing else is noted - can in principle be programmed in the control.

1. String "T" is defined as auxiliary function:
400 == STRINGIS("T")
000 == STRINGIS ("T3")

2. String "X" is defined as axis:
201 == STRINGIS("X")
201 == STRINGIS("X1")

3. String "A2" is defined as address with extension:
201 == STRINGIS("A")
201 == STRINGIS("A2")

4. String "INVCW" is defined as named G command:
202 == STRINGIS("INVCW")

Additional functions
18.6 Check scope of NC language present (STRINGIS)

Job Planning
646 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

5. String "$MC_GCODE_RESET_VALUES" is defined as machine data:
206 == STRINGIS("$MC_GCODE_RESET_VALUES")

6. String "GETMDACT" is an NC language function:
203 == STRINGIS("GETMDACT ")

7. String "DEFINE" is a keyword:
205 == STRINGIS("DEFINE")

8. String "$TC_DP3" is a system parameter (tool length component):
207 == STRINGIS("$TC_DP3")

9. String "$TC_TP4" is a system parameter (tool size):
207 == STRINGIS("$TC_TP4")

10.String "$TC_MPP4" is a system parameter (magazine location state):

– Tool magazine management is active: 207 == STRINGIS("$TC_MPP4") ;

– Tool magazine management is not active: 000 == STRINGIS("$TC_MPP4")
Also refer to the paragraph below: Tool magazine management.

11.String "MACHINERY_NAME" is defined as GUD variable:
209 == STRINGIS("MACHINERY_NAME")

12.String "LONGMACRO" is defined as macro:
210 == STRINGIS("LONGMACRO")

13.String "MYVAR" is defined as LUD variable:
211 == STRINGIS("MYVAR")

14.String "XYZ" is a command that is not known in the NC, GUD variable, macro or cycle name:
000 == STRINGIS("XYZ")

Tool magazine management
If the tool magazine management function is not active, supplies STRINGIS for the system
parameters of the tool magazine management, independent of the machine data

● MD10711 $MN_NC_LANGUAGE_CONFIGURATION

always a value of 000.

ISO mode
If the "ISO mode" function is active:

● MD18800 $MN_MM_EXTERN_LANGUAGE (activation, external NC languages)

● MD10880 $MN_ MM_EXTERN_CNC_SYSTEM (control system to be adapted)

STRINGIS checks the specified string initially as SINUMERIK G command. If the string is not
a SINUMERIK G command, then it is subsequently checked as ISO G command.

Programmed switchovers (G290 (SINUMERIK mode), G291 (ISO Mode)) have no effect on
STRINGIS.

Additional functions
18.6 Check scope of NC language present (STRINGIS)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 647

Example
The machine data, relevant for the function STRINGIS(...), has the following values:

● MD10711 $MN_NC_LANGUAGE_CONFIGURATION = 2 (only the NC language
commands whose options are set are considered to be known)

● MD19410 $ON_TRAFO_TYPE_MASK = 'H0' (option: transformations)

● MD10700 $MN_PREPROCESSING_LEVEL='H43' (preprocessing for cycles is active)

The following program example is executed without error message:

Program code Comment
N1 R1=STRINGIS("TRACYL") ; R1 == 0, because TRACYL is identified as

"not known" because of the missing transformation
option

N2 IF STRINGIS("TRACYL") == 204
N3 TRACYL(1,2,3) ; N3 is skipped
N4 ELSE
N5 G00 ; and instead, N5 is executed
N6 ENDIF
N7 M30

Additional functions
18.6 Check scope of NC language present (STRINGIS)

Job Planning
648 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.7 Interactively call the window from the part program (MMC)
Via the predefined subprogram MMC(...), user-specific dialogs can be displayed from an NC
program on the user interface of SINUMERIK Operate, for example.

The configuration of the dialogs can be done for the following types of dialogs:

● Run MyScreens

● Easy XML

● User XML

References
● Programming Manual Run MyScreens

● Programming Manual Easy XML

Syntax
MMC("<ADDRESS>,<COMMAND>,<FILE>,<DIALOG>","<QUIT>")

Meaning

MMC(...): Subprogram identifier
The parameters are specified position-coded and separated by a comma
within two strings, the command string and the acknowledgement string.

Parameters within the command string:
<ADDRESS>: Operating area in which the configured user dialog boxes are implemented

Function Operating areas
"Run MyScreens" user dialog CYCLES
"Easy XML" user dialog CYCLES
User XML XML
Pop-up window "Run MyScreens" POPUPDLG
Popup window "Easy XML" POPUPDLG

<COMMAND>: Command to be executed
Function Commands
"Run MyScreens" user dialog PICTURE_ON, PICTURE_OFF
"Easy XML" user dialog PICTURE_ON, PICTURE_OFF
User XML XML_ON, XML_OFF
Pop-up window "Run MyScreens" PICTURE_ON, PICTURE_OFF
Popup window "Easy XML" PICTURE_ON, PICTURE_OFF

Additional functions
18.7 Interactively call the window from the part program (MMC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 649

<FILE>: Name of the file in which the dialog to be displayed is programmed
Function Files
"Run MyScreens" user dialog <name>.com
"Easy XML" user dialog <name>.xml
User XML <name>.xml
Pop-up window "Run MyScreens" <name>.com
Popup window "Easy XML" <name>.xml
Popup window "Easy XML" with configura‐
tion direct in the NC program (see example
2)

xmldial_emb.xml

<DIALOG>: Name of the dialog to be displayed
Function Dialog name
All functions except popup window "Easy
XML" with configuration direct in the NC
program

Name of the dialog configured
in the <FILE> file

Popup window "Easy XML" with configura‐
tion direct in the NC program (see example
3)

main

Parameters within the acknowledgment string:
<QUIT>: Acknowledgment type

N: No acknowledgment.
Program execution is continued when the command has been
transmitted. There is no feedback if the command could not be
successfully executed.
Note
Acknowledgement type "N" must be used if a display time (dwell
time) is programmed in the NC program (see Example 2 below)

A: Asynchronous acknowledgment
The program execution is continued after the command is issued.
The return value is saved in a user-specific acknowledgement
variable (GUD variable), which is defined within the scope of the
dialog configuration, and can be read in the NC program.

Example

Example 1
Display of a dialog and response to the user operation in an NC program.

Program code Comment
; The acknowledgement variable QUIT has already been created as a global user varia-
ble (GUD)
; Of the type STRING when the dialog was configured:
; DEF NCK STRING[20] QUIT
QUIT = "XXX" ; Initialize acknowledgment variable
G4 F5

Additional functions
18.7 Interactively call the window from the part program (MMC)

Job Planning
650 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code Comment
MMC("CYCLES,PIC-
TURE_ON,test.com,test1","A")

; Display dialog
; - Operating area: CYCLES
; - Picture status: PICTURE_ON (display)
; - Dialog screen file: test.com
; - Dialog screen: test1

INPUT: ; Wait for user input
 STOPRE ; Preprocessing stop
 IF MATCH (QUIT,"RUN") >= 0 GOTOF WORK ; Softkey "RUN"
 IF MATCH (QUIT,"CHK") >= 0 GOTOF CHECK ; Softkey "CHK"
GOTOB INPUT ; => Wait

WORK: ; Softkey "RUN" pressed
MSG("Continue with processing -> NC
start")

; Output message

MMC("CYCLES,PICTURE_OFF","N") ; Close dialog
M0 ; Wait for NC start
GOTOF END ; => Program end

CHECK: ; Softkey "CHK" pressed
MSG("Approach position -> NC start") ; Output message
MMC("CYCLES,PICTURE_OFF","N") ; Close dialog
M0 ; Wait for NC start
GOTOF END ; => Program end

END:
...

Example 2
The display time of a dialog is defined in the NC program via a dwell time, for example.

Program code Comment
F1000 G94
...
MMC("POPUPDLG,PICTURE_ON,xmldial_emb.xml,main","N") ; Display dialog
X200
Z40
MMC("POPUPDLG,PICTURE_OFF","N") ; Close dialog

Example 3
Embedding a popup script in an NC program and its use.

Program code
PROC POPUP_TEST
; ----------------------------- Script -----------------------------
; <main_dialog entry="rpara_main">

Additional functions
18.7 Interactively call the window from the part program (MMC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 651

Program code
; <let name="xpos" />
; <let name="ypos" />
; <let name="field_name" type="string" />
; <let name="num" />
; <menu name="rpara_main">
; <open_form name="rpara_form"/>
; <softkey_back>
; <close_form />
; </softkey_back>
; </menu>
; <form name="rpara_form">
; <init>
; <caption>mask from NC part program</caption>
; <let name="count" >0</let>
; <op>
; xpos = 120;
; ypos = 34;
; "nck/Channel/Parameter/R[10]" = 10;
; </op>
; <!-- load the number of controls -->
; <op>
; num = "nck/Channel/Parameter/R[10]";
; </op>
; <while>
; <condition> count < num</condition>
; <print name="field_name" text="edit%d">count</print>
; <op>
; ypos = ypos + 24;
; count = count + 1;
; </op>
; </while>
; </init>
; <paint>
; <op>
; xpos = 8;
; ypos = 36;
; count = 0;
; </op>
; <while>
; <condition>count < num</condition>
; <print name="field_name" text="R-Parameter%d">count</print>
; <text xpos = "$xpos" ypos = "$ypos" >$$$field_name</text>
; <op>
; ypos = ypos + 24;

Additional functions
18.7 Interactively call the window from the part program (MMC)

Job Planning
652 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program code
; count = count + 1;
; </op>
; </while>
; </paint>
; </form>
; </main_dialog>
; ========================= Program section ===========================
...
G94 F100
MMC("POPUPDLG,PICTURE_ON,xmldial_emb.xml,main","N")
G4 F4
X200
MMC("POPUPDLG,PICTURE_OFF","N")
G4 F2
X0
...

Supplementary conditions
● The definition files *.com of the dialogs must be saved in the "proj" folder.

● The Easy XML definition files *.xml of the dialogs must be saved in the "appl" folder.
If the definition files are saved in a different directory, the path must be specified indirectly,
starting from the "appl" directory.

● User-defined dialogs cannot be simultaneously displayed from different channels.

Additional functions
18.7 Interactively call the window from the part program (MMC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 653

18.8 Program runtime/part counter
Information on the program runtime and workpiece counter are provided to support the
machine tool operator.

This information can be processed as system variables in the NC and/or PLC program. This
information is also available to be displayed on the operator interface.

18.8.1 Program runtime
The "program runtime" function provides internal NC timers to monitor technological
processes, which can be read into the part program and into synchronized actions via the NC
and channel-specific system variables.

The trigger for the runtime measurement ($AC_PROG_NET_TIME_TRIGGER) is the only
system variable of the function that can be written to – and is used to selectively measure
program sections. This means, by writing $AC_PROG_NET_TIME_TRIGGER in the NC
program, the time measurement can be enabled and disabled again:

System variable Meaning Activity

NC-specific
$AN_SETUP_TIME Time since the last control power up with default values

("cold restart") in minutes.
Is automatically reset to "0" every time the control pow‐
ers up with default values.

● Always active

$AN_POWERON_TIME Time since the last normal control power up ("warm
restart") in minutes.
Is automatically reset to "0" every time the control pow‐
ers up normally.

Channel-specific
$AC_OPERATING_TIME Total runtime of NC programs in automatic mode in

seconds.
The value is automatically reset to "0" every time the
control powers up.

● Activated via
MD27860

● Only AUTOMATIC
mode

$AC_CYCLE_TIME Runtime of the selected NC program in seconds.
The value is automatically reset to "0" every time a new
NC program starts up.

$AC_CUTTING_TIME Processing time in seconds
The runtime of the path axes (at least one is active) is
measured in all NC programs between NC start and
end of program/NC reset without rapid traverse active.
The measurement is interrupted when a dwell time is
active.
The value is automatically reset to "0" every time the
control powers up with default values.

Additional functions
18.8 Program runtime/part counter

Job Planning
654 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

System variable Meaning Activity
$AC_ACT_PROG_NET_TIME Actual net runtime of the current NC program in sec‐

onds.
Is automatically reset to "0" when a new NC program
starts.

● Always active
● Only AUTOMATIC

mode

$AC_OLD_PROG_NET_TIME Net runtime in seconds of the program that has just be
correctly ended with M30

$AC_OLD_PROG_NET_TIME_COUNT Changes to $AC_OLD_PROG_NET_TIME
After POWER ON,
$AC_OLD_PROG_NET_TIME_COUNT is at "0".
$AC_OLD_PROG_NET_TIME_COUNT is always in‐
creased if the control has newly written to
$AC_OLD_PROG_NET_TIME.

$AC_PROG_NET_TIME_TRIGGER Trigger for the runtime measurement: ● Only AUTOMATIC
mode0 Neutral state

The trigger is not active.
1 Exit

Ends the measurement and copies the value from
$AC_ACT_PROG_NET_TIME into
$AC_OLD_PROG_NET_TIME.
$AC_ACT_PROG_NET_TIME is set to "0" and
then continues to run.

2 Start
Starts the measurement and in so doing sets
$AC_ACT_PROG_NET_TIME to "0".
$AC_OLD_PROG_NET_TIME is not changed.

3 Stop
Stops the measurement. Does not change
$AC_OLD_PROG_NET_TIME and keeps
$AC_ACT_PROG_NET_TIME constant until it re‐
sumes

4 Resume
The measurement is resumed, i.e. a measure‐
ment that was previously stopped is continued.
$AC_ACT_PROG_NET_TIME continues.
$AC_OLD_PROG_NET_TIME is not changed.

All system variables are reset to 0 as a result of POWER ON!

Additional functions
18.8 Program runtime/part counter

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 655

Note
Machine manufacturer

Machine data MD27860 $MC_PROCESSTIMER_MODE is used to switch-in the timer that can
be activated.

The behavior of active time measurements for certain functions (e.g. GOTOS, override = 0%,
active test run feed, program test, ASUB, PROG_EVENT, …) is configured using machine
data MD27850 $MC_PROG_NET_TIMER_MODE and
MD27860 $MC_PROCESSTIMER_MODE.

References:
Function Manual, Basic Functions; BAG, Channel, Program Operation, Reset Response (K1),
Chapter: Program runtime

Note
Residual time for a workpiece

If the same workpieces are machined one after the other, using the following timer values, the
remaining residual time for a workpiece can be determined.
● Processing time for the last workpiece produced (see $AC_OLD_PROG_NET_TIME)
● Current processing time (see $AC_ACT_PROG_NET_TIME)

The residual time is displayed on the user interface in addition to the current processing time.

Note
Using STOPRE

The system variables $AC_OLD_PROG_NET_TIME and
$AC_OLD_PROG_NET_TIME_COUNT do not generate any implicit preprocessing stop. This
is uncritical when used in the part program if the value of the system variables comes from the
previous program run. However, if the trigger for the runtime measurement
($AC_PROG_NET_TIME_TRIGGER) is written very frequently and as a result
$AC_OLD_PROG_NET_TIME changes very frequently, then an explicit STOPRE should be
used in the part program.

Supplementary conditions
● Block search

No program runtimes are determined through block searches.

● REPOS
The duration of a REPOS process is added to the current processing time
($AC_ACT_PROG_NET_TIME).

Additional functions
18.8 Program runtime/part counter

Job Planning
656 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Examples

Example 1: Measuring the duration of "mySubProgrammA"

Program code
...
N50 DO $AC_PROG_NET_TIME_TRIGGER=2
N60 FOR ii= 0 TO 300
N70 mySubProgrammA
N80 DO $AC_PROG_NET_TIME_TRIGGER=1
N95 ENDFOR
N97 mySubProgrammB
N98 M30

After the program has processed line N80, the net runtime of "mySubProgrammA" is located
in $AC_OLD_PROG_NET_TIME.

The value from $AC_OLD_PROG_NET_TIME:

● is kept beyond M30.

● is updated each time the loop is run through.

Example 2: Measuring the duration of "mySubProgrammA" and "mySubProgrammC"

Program code
...
N10 DO $AC_PROG_NET_TIME_TRIGGER=2
N20 mySubProgrammA
N30 DO $AC_PROG_NET_TIME_TRIGGER=3
N40 mySubProgrammB
N50 DO $AC_PROG_NET_TIME_TRIGGER=4
N60 mySubProgrammC
N70 DO $AC_PROG_NET_TIME_TRIGGER=1
N80 mySubProgrammD
N90 M30

18.8.2 Workpiece counter
The "Workpiece counter" function makes available various counters which can be used in
particular internally in the control to count workpieces.

Additional functions
18.8 Program runtime/part counter

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 657

The counters exist as channel-specific system variables with read and write access in a range
of values from 0 to 999 999 999.

System variable Meaning
$AC_REQUIRED_PARTS Number of workpieces to be produced (setpoint number of workpieces)

In this counter the number of workpieces at which the actual workpiece
count ($AC_ACTUAL_PARTS) will be reset to "0" can be defined.

$AC_TOTAL_PARTS Total number of completed workpieces (actual workpiece total)
This counter specifies the total number of all workpieces produced since
the start time. The value is only automatically reset to "0" when the
control powers up with default values.

$AC_ACTUAL_PARTS Number of completed workpieces (actual workpiece total)
This counter registers the total number of all workpieces produced since
the start time. On condition that $AC_REQUIRED_PARTS > 0, the
counter is automatically reset to "0" when the required number of work‐
pieces ($AC_REQUIRED_PARTS) is reached.

$AC_SPECIAL_PARTS Number of workpieces selected by the user
This counter supports user-specific workpiece counts. An alarm can be
defined to be output when the setpoint number of workpieces is reached
($AC_REQUIRED_PARTS). Users must reset the counter themselves.

Note

All workpiece counters are set to "0" when the control powers up with default values and can
be read and written independent of their activation.

Note

Channel-specific machine data can be used to control counter activation, counter reset timing
and the counting algorithm.

Note
Workpiece counting with user-defined M command

Machine data can be set so that the count pulses for the various workpiece counters are
triggered using user-defined M commands rather than the end of the program (M2/M30).

Additional functions
18.8 Program runtime/part counter

Job Planning
658 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.9 Process DataShare - Output to an external device/file (EXTOPEN,
WRITE, EXTCLOSE):

The writing of data from a part program to an external device/file is performed in three steps:

1. Open the external device/file
The external device/file is opened for the channel for writing using the EXTOPEN command.

2. Writing data
The output data can be processed using the string functions of the NC language, e.g.
SPRINT. The WRITE command is used for writing.

3. Close the external device/file
The external device/file assigned in the channel is released again using the EXTCLOSE
command, when the end of the program is reached (M30) or for a channel reset.

Syntax

DEF INT <Result>
DEF STRING[<n>] <Output>
…
EXTOPEN(<Result>,<ExtDev>,<SyncMode>,<AccessMode>,<WriteMode>)
…
<Output>="data output"
WRITE(<Result>,<ExtDev>,<Output>)
…
EXTCLOSE(<Result>,<ExtDev>)

Additional functions
18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 659

Meaning

EXTOPEN: Pre-defined procedure to open an external device/file
<Result>: Parameter 1: Result variable

By using the result variable value, it can be evaluated in the program as to wheth‐
er the operation was successful and processing is then appropriately continued.
Type: INT
Values: 0 No error

1 External device cannot be opened
2 External device is not configured
3 External device with invalid path configured
4 No access rights for external device
5 Usage mode: External device already "exclusively" occupied
6 Usage mode: External device already being "shared"
7 File length longer than LOCAL_DRIVE_MAX_FILESIZE
8 Maximum number of external devices has been exceeded
9 Option for LOCAL_DRIVE not set
11 V.24 interface has already been assigned with Easy-Message

function (only 828D)
12 Write mode: Data contradicts extdev.ini
16 Invalid external path has been programmed
22 External device not mounted

Additional functions
18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):

Job Planning
660 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

<ExtDev>: Parameter 2: Symbolic identifier for the external device/file to be opened
Type: STRING
The symbolic identifier comprises:
1. the logical device name
2. where relevant, followed by a file path (attached using "/").
The following logical device names have been defined:
"LOCAL_DRIVE": Local CF card (pre-defined)
"CYC_DRIVE": Reserved drive name for use in SIEMENS cycles (pre-

defined)
"/dev/ext/1", ...
"/dev/ext/9":

Available network drives
Note:
It is necessary to configure in the extdev.ini file!

"/dev/cyc/1",
"/dev/cyc/2":

Reserved drive names for use in SIEMENS cycles
Note:
It is necessary to configure in the extdev.ini file!

"/dev/v24": V.24 interface
Note:
It is necessary to configure in the extdev.ini file!

File path:
● A file path must be specified for "LOCAL_DRIVE" and "CYC_DRIVE" e.g.

"LOCAL_DRIVE/my_dir/my_file.txt"
● The logical device names "/dev/ext/1...9" and "/dev/cyc/1...2" can be

configured:
– To already refer to a file, in which case only the logical device names may

be specified, e.g.:
"/dev/ext/4"

– Or to a directory, in which case a file path must be specified, e.g.:
"/dev/ext/5/my_dir/my_file.txt"

● It is not permissible that a file path is attached to "/dev/v24".
Note:
For the logical device names "/dev/ext/1...9", "/dev/v24" and "/dev/cyc/1...2" up‐
percase/lowercase is ignored; uppercase/lowercase is significant for specifying
a path to a file. Only uppercase letters are permissible for "LOCAL_DRIVE" and
"CYC_DRIVE".

Additional functions
18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 661

<SyncMode>: Parameter 3: Processing mode for the WRITE commands to this device/file
Type: STRING
Values: "SYN": Synchronous writing

Program execution is stopped until the write operation
has been completed.
Successfully completing the synchronous write opera‐
tion can be checked by evaluating the error variables of
the WRITE command.

"ASYN": Asynchronous writing
Program execution is not interrupted by the WRITE
command.
Note.
In this mode, the result variable of the WRITE command
does not provide any information and always has the
value 0 (no error). In this particular mode, there is no
certainty that the WRITE command was successful.

<AccessMode>: Parameter 4: Usage mode for this device/file
Type: STRING
Values: "SHARED": Device/file is requested in the "shared" mode. Other

channels can also use the device, i.e. also open in this
mode.

"EXCL": Device/file is exclusively used in the channel; no other
channel can use the device.

<WriteMode>:

Parameter 5: Write mode for the WRITE commands to this file/device (optional)
Type: STRING
Values: "APP": Attaching

The file is always kept regarding its contents; write calls
are attached at the end.

"OVR": Overwrite
The contents of the file are deleted and re-generated
using the subsequent write calls.

Note:
Using this parameter, the write mode configured in the extdev.ini file cannot be
overwritten. In the case of a conflict, then the EXTOPEN call is acknowledged
with error.

WRITE: Pre-defined procedure to write output data

Additional functions
18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):

Job Planning
662 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

EXTCLOSE: Pre-defined procedure to close an external device/file that has been opened
<Result>: Parameter 1: Result variable

Type: INT
Values: 0 No error

16 Invalid external path has been programmed
21 Error when closing the external device

<ExtDev>: Parameter 2: Symbolic identifier for the external device/file description to be
closed, see EXTOPEN!
Note:
The identifier must be identical to the identifier specified in the EXTOPEN call!

Example

Program code
N10 DEF INT RESULT
N20 DEF BOOL EXTDEVICE
N30 DEF STRING[80] OUTPUT
N40 DEF INT PHASE
N50 EXTOPEN(RESULT,"LOCAL_DRIVE/my_file.txt","SYN","SHARED")
N60 IF RESULT > 0
N70 MSG("Error for EXTOPEN:" << RESULT)
N80 ELSE
N90 EXTDEVICE=TRUE
N100 ENDIF
…
N200 PHASE=4
N210 IF EXTDEVICE
N220 OUTPUT=SPRINT("End phase: %D",PHASE)
N230 WRITE(RESULT,"LOCAL_DRIVE/my_file.txt",OUTPUT)
N240 ENDIF
…

See also
String operations (Page 84)

Write file (WRITE) (Page 145)

Additional functions
18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 663

18.10 Alarms (SETAL)
Alarms can be set in an NC program. Alarms are displayed in a separate field at the user
interface. An alarm always goes hand in hand with a response from the control according to
the alarm category.

References:
For further information on alarm responses, refer to the Commissioning Manual.

Syntax
SETAL(<alarm number>[,<character string>])

Meaning

SETAL: Keyword to program an alarm.
SETAL must be programmed in a separate NC block.

<alarm number>: Type INT variable. Contains the alarm number.
The valid range for alarm numbers lies between 60000 and 69999, of which
60000 to 64999 are reserved for SIEMENS cycles and 65000 to 69999 are
available to users.

<character
string>:

When programming user cycle alarms, in addition, a character string with up
to four parameters can be specified.
Variable user texts can be defined in these parameters.
However, the following predefined parameters are available:
Parameter Meaning
%1 Channel number
%2 Block number, label
%3 Text index for cycle alarms
%4 Additional alarm parameters

Note

Alarm texts must be configured in the user interface.

Note

If an alarm is to be output in the language active at the user interface, then the user requires
information about the language that is currently set at the HMI. This information can be
interrogated in the part program and in the synchronized actions using system variable
$AN_LANGUAGE_ON_HMI (see "Currently set language in the HMI (Page 914)").

Example

Program code Comment
...
N100 SETAL (65000) ;Set alarm no. 65000
...

Additional functions
18.10 Alarms (SETAL)

Job Planning
664 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.11 Extended stop and retract (ESR)
The extended stop and retract function - subsequently called ESR - offers the possibility of
flexibly responding when a fault situation occurs as a function of the process:

● Extended stop
Assuming that the specific fault situation permits it, all of the axes, enabled for extended
stopping, are stopped in an orderly way.

● Retraction
The tool currently in use is retracted from the workpiece as quickly as possible.

● Generator operation (SINAMICS drive function "Vdc control")
If a parameterizable value of the DC-link voltage is fallen below, e.g. because the line
voltage fails, the electrical energy required for retraction is generated by recovering the
braking energy of the drive intended for this purpose (generator operation).

Trigger sources

General sources (NC-external/global or mode group-/channel-specific):
● Digital inputs (e.g. on NCU module or the control-internal digital output image that can be

read back ($A_IN, $A_OUT)

● Channel state ($AC_STAT)

● VDI signals ($A_DBB)

● Group messages of a number of alarms ($AC_ALARM_STAT)

Axial sources
● Emergency retraction threshold of the following axis (synchronism of electronic coupling,

$VA_EG_SYNCDIFF[<following axis>])

● Drive: DC-link warning threshold (imminent undervoltage), $AA_ESR_STAT[<axis>]

● Drive: Generator minimum speed threshold (no further regenerative rotation energy
available), $AA_ESR_STAT[<axis>].

Gating logic of the static synchronized actions: Source/response link
The static synchronized actions' flexible gating possibilities are used to trigger specific
reactions relatively quickly according to the sources.

Linking all relevant sources using static synchronized actions is the responsibility of the user.
They can selectively evaluate the source system variables as a whole or by means of bit masks,
and then make a logic operation with their desired reactions. The static synchronous actions
are effective in all operating modes.

References:
Function Manual, Synchronized Actions

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 665

Activation

Function enable
The functions generator operation, shutdown, retraction are released by setting the
corresponding control signal $AA_ESR_ENABLE. This control signal can be changed by
synchronized actions.

Function triggering
ESR is triggered jointly for all enabled axes by setting the system variable
$AC_ESR_TRIGGER.

Generator operation is "automatically" activated in the drive when an imminent DC-link
undervoltage is detected.

Drive-independent stopping and/or retraction become active when a communication failure
(between the NC and drive) is detected and when a DC-link undervoltage is detected in the
drive (configuration and enable required).

Drive-independent stopping and/or retraction can also be triggered by the NC by setting the
appropriate control signal $AN_ESR_TRIGGER (broadcast command to all drives).

References
For detailed information on ESR, see:

Function Manual, Special Functions; Extended Stop and Retract (R3)

18.11.1 NC-controlled ESR

18.11.1.1 NC-controlled retraction (POLF, POLFA, POLFMASK, POLFMLIN)
Certain initial conditions are required for NC-controlled retraction (see "NC-controlled
retraction (POLF, POLFA, POLFMASK, POLFMLIN) (Page 666)"). When these requirements
have been satisfied, then the rapid lift (LIFTFAST) configured for retraction axis(axes) in the
channel is activated by setting the system variable $AC_ESR_TRIGGER (or
$AA_ESR_TRIGGER for single axes).

Syntax
POLF(<axis>)=<position>
POLFA(<axis>,<type>,<position>)
POLFMASK(<axis_1>,<axis_2>,...)
POLFMLIN(<axis_1>,<axis_2>,...)

The following abbreviated forms are permitted for POLFA:
POLFA(<axis>,<type>) ; Abbreviated form for single axis retraction
POLFA(axis,0/1/2) ; Quick deactivation or activation
POLFA(axis,0,$AA_POLFA[axis]) ; Causes a preprocessing stop
POLFA(axis,0) ; Does not cause a preprocessing stop

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
666 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

POLF:

Address for specifying the target position of the retraction axis
POLF is modal.
<axis>: Name of the geometry or channel/machine axis that retracts
<position>:

Retraction position
Type: REAL
WCS is valid for geometry axes, otherwise MCS.
With the same identifiers for geometry and channel/machine
axes, retraction is in the WCS.

POLFA:

Predefined subprogram call for the specification of the retraction position of single
axes
<axis>: Channel axis identifier
<type>:

Position specification mode
Type: INT
Value:

0: Mark position value as invalid
1: Position value is absolute
2: Position value is incremental (distance)

Note:
If an axis is not a single axis or if the type is missing or type=0,
then a corresponding alarm is output.

<position>:

Retraction position (see above)
Note:
The position value is also accepted with type=0. Only this value
is marked as invalid and has to be reprogrammed for retraction.

POLFMASK:

Predefined subprogram call for selection of the axes that are to be retracted after
tripping of rapid lift independently of one another.
<axis_1>,…: Names of the axes that are to be traversed to their positions

defined with POLF during rapid lift.
All the axes specified must be in the same coordinate system.

POLFMASK() without specification of an axis deactivates the rapid lift for all axes
that have been retracted independently of one another.

POLFMLIN:

Predefined subprogram call for selection of the axes that are to be retracted after
tripping of rapid lift in linear relation.
<axis_1>,…: See above.
POLFMLIN() without specification of an axis deactivates the rapid lift for all axes
that have been retracted in linear relation.

Note

Before rapid retraction to a fixed position can be enabled via POLFMASK or POLFMLIN, a
position must have been programmed with POLF for the selected axes.

Note

If axes are enabled one after the other with POLFMASK, POLFMLIN or POLFMLIN, POLFMASK,
then the last definition always applies for the particular axis.

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 667

Note

The positions programmed with POLF and the activation by POLFMASK or POLFMLIN are
deleted when the part program is started. This means that the user must reprogram the values
for POLF and the selected axes in POLFMASK or POLFMLIN in each part program.

Note

If, when using the abbreviated form POLFA only the type is changed, then the user must ensure
that either the retraction position or the retraction path contains a practical and sensible value.
In particular, the retraction position and the retraction path have to be set again after Power
On.

Example
Retracting an individual axis:

Program code Comment
MD37500 $MA_ESR_REACTION[AX1]=21 ; NC-controlled retraction.
...
$AA_ESR_ENABLE[AX1]=1
POLFA(AX1,1,20.0) ; AX1 is assigned the axial retraction

position 20.0 (absolute).
$AA_ESR_TRIGGER[AX1]=1 ; Retraction starts from here.

Further information

Requirements for NC-controlled retraction
● A retraction axis is configured for the NC-controlled retraction in the channel:

MD37500 $MA_ESR_REACTION = 21

● ESR must be must be enabled for this axis:
$AA_ESR_ENABLE = 1

● Delay times are defined:
MD21380 $MC_ESR_DELAY_TIME1
MD21381 $MC_ESR_DELAY_TIME2

● The axis-specific retraction positions have been configured with POLF in the part program.

● The axes are selected with POLFMASK/POLFMLIN for the NC-controlled retraction.

● The activate signals must be set for the retraction movement and remain set.

Enable and start NC-controlled reactions
If system variable $AC_ESR_TRIGGER = 1 is set and if a retraction axis is configured in this
channel (i.e. MD37500 $MA_ESR_REACTION = 21) and $AA_ESR_ENABLE = 1 is set for
this axis, then rapid lift (LIFTFAST) is activated in this channel.

The lift movement configured with POLF (or POLF) for the axes selected with POLFMASK or
POLFMLIN replaces the path motion defined for these axes in the part program.

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
668 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

The sum of the MD21380 $MC_ESR_DELAY_TIME1 and MD21381
$MC_ESR_DELAY_TIME2 times is the maximum available for the retraction. When this time
has expired, rapid deceleration with follow-up is also initiated for the retraction axis.

Note

The extended retraction (i.e. LIFTFAST/LFPOS triggered by $AC_ESR_TRIGGER) cannot
be interrupted and can only be terminated prematurely via an emergency stop.

Note

Retraction initiated via $AC_ESR_TRIGGER is locked, in order to prevent multiple retractions.

Single axis retraction
With single axis retraction, the retraction position of the single axis must have been
programmed with POLFA and the following conditions must be satisfied:

● $AA_ESR_ENABLE = 1

● <Axis> must be a single axis at the time of triggering ($AAAA_ESR_TRIGGER = 1).

● <Type> must be either 1 or 2.

Retraction direction during rapid lift
The frame valid at the time when the lift fast is activated is taken into consideration.

Note

Frames with rotation also affect the direction of lift via POLF.

Axis replacement
Retraction axes must always be assigned to exactly one NC channel and may not be switched
among the channels. When an attempt is made to exchange a retraction axis in another
channel, an alarm is output. Only once this axis has been deactivated again using
$AA_ESR_ENABLE[AX] = 0 can it be exchanged in a new channel. Once the axis has been
exchanged, axes can be acted upon again with $AA_ESR_ENABLE[AX] = 1.

Neutral axes
Neutral axes cannot undertake NC-controlled ESR.

18.11.1.2 NC-controlled stopping
The NC-controlled stopping is activated for the stopping axes configured in the channel by
setting system variable $AC_ESR_TRIGGER (or $AA_ESR_TRIGGER for single axes).

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 669

Requirements
● A stopping axis is configured for the NC-controlled stopping in the channel:

MD37500 $MA_ESR_REACTION = 22

● ESR must be enabled for this axis:
$AA_ESR_ENABLE = 1

● Delay times are defined:
MD21380 $MC_ESR_DELAY_TIME1 (delay time, ESR axes)
MD21381 $MC_ESR_DELAY_TIME2 (ESR time for interpolatory braking)

Execution
This axis continues interpolating as programmed for the time period set in MD21380: After the
time delay specified in MD21380 has expired, controlled braking (ramp stop) is initiated: The
time period in MD21381 is the maximum available for the interpolatory controlled braking. After
this period expires, fast braking with subsequent tracking is initiated.

Example
Stopping a single axis:

Program code Comment
MD37500 $MC_ESR_REACTION[AX1] = 22 ; NC-controlled stopping.
MD21380 $MC_ESR_DELAY_TIME1[AX1] = 0.3
MD21381 $MC_ESR_DELAY_TIME2[AX1] = 0.06
...
$AA_ESR_ENABLE[AX1]=1
$AA_ESR_TRIGGER[AX1]=1 ; Stopping starts from here.

18.11.2 Drive-integrated ESR

18.11.2.1 Configuring drive-integrated stopping (ESRS)
The drive parameters for "stopping" of the drive-integrated ESR function are configured using
the ESRS(...) function.

Syntax
ESRS(<access_1>,<stopping time_1>[,...,<axis_n>,<stopping time_n>])

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
670 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Meaning

ESRS(...): Function to write to the drive parameters for the ESR function "stop‐
ping"
The function:
● Must be alone in the block.
● Triggers a preprocessing stop.
● Cannot be used in synchronized actions.

<axis_1>,
...,
<axis_n>:

Axis for which drive-integrated stopping should be configured
For this axis, drive parameter p0888 (configuration) is written to in the
drive:
p0888 = 1
Type: AXIS
Range of values: Channel axis identifier

<stopping time_1>,
...,
<stopping time_n>:

Time during which the drive continues to travel with the actual speed
setpoint after a fault has occurred
For the specified axis, drive parameter p0892 (timer) is written to in
the drive:
p0892 = <stopping time>
Unit: s
Type: REAL
Range of values: 0.00 - 20.00

A maximum of 5 axes can be programmed in a function call; n = 5

18.11.2.2 Configuring drive-integrated retraction (ESRS)
The drive parameters for "retraction" of the drive-integrated ESR function are configured using
the ESRR(...) function.

Syntax
ESRR(<axis_1>,<retraction distance_1>,<retraction
velocity_1>[,...,<axis_n>,<retraction distance_n>,<retraction
velocity_n>])

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 671

Meaning

ESRR(...): Function to write to the drive parameters for the ESR function "re‐
tract"
The function:
● Must be alone in the block.
● Triggers a preprocessing stop.
● Cannot be used in synchronized actions.

<axis_1>,
...,
<axis_n>:

Axis for which drive-integrated retraction should be configured
For this axis, drive parameter p0888 (configuration) is written to in
the drive:
p0888 = 2
Type: AXIS
Range of values: Channel axis identifier

<retraction distance_1>,
...,
<retraction distance_n>:

For the drive, the retraction distance is converted into a retraction
speed. For the specified axis, the value is written to drive parameter
p0893 (speed):
p0893 = (<retraction distance _n> converted into retraction speed)
Unit: mm/min, inch/min, degrees/min (depending

on the unit of the axis)
Type: REAL
Range of values: MIN - MAX

<retraction
velocity_1>,
...,
<retraction
velocity_n>:

For the drive, the retraction velocity is converted into a time. For the
specified axis, the value is written to drive parameter p0892 (timer)
[s]:
p0892 = <retraction distance_n> / <retraction velocity _n>
Unit: mm/min, inch/min, degrees/min (depending

on the unit of the axis)
Type: REAL
Range of values: 0.00 - MAX

A maximum of 5 axes can be programmed in a function call; n = 5

Additional functions
18.11 Extended stop and retract (ESR)

Job Planning
672 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.12 Define blank (WORKPIECE)
The controller must know the shape and size of a blank to be able to display it in the graphical
simulation. The user therefore has the capability of defining blanks via the user interface or
directly in the NC program. The definitions of blanks are retained beyond a (program end/
channel/BAG) reset. They are automatically deleted the next time that the control system
powers up.

Syntax
WORKPIECE("<WP>", "<RefP>", "<ZeroOffset>", "<Type>", <Par5>,
<Par6>, ..., <Par12>)

Meaning

WORKPIECE(...): Predefined procedure for defining a blank
Preprocessing
stop:

Yes

Alone in the
block:

Yes

Parameters:
1 "<WP>": Name of the workpiece (optional)

Data type: STRING
A specification is only necessary if there can be several workpieces
in one channel. Without specifying, "WORKP<n>" is automatically
accepted, with <n> being the number of the declaring channel.

2 "<RefP>": Clamping (optional, only for milling machines)
Data type: STRING
Range of values: "Table" Clamping of the fixed table

"A" Clamping on rotary axis A
"B" Clamping on rotary axis B
"C" Clamping on rotary axis C

Precondition:
The table or the rotary axis must be enabled via the corresponding
machine data for the clamping of the blank (see SINUMERIK Oper‐
ate Commissioning Manual).

3 "<ZeroOffset>": Settable work offset for positioning the blank (not programmable)
The selection of a settable work offset for positioning the blank is
only offered for the blank entry via the user interface. For the direct
definition of the blank in the part program, the blank always relates
to the currently valid work offset.

Additional functions
18.12 Define blank (WORKPIECE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 673

4 "<Type>": Blank shape
Data type: STRING
Range of values: "CYLINDER": Cylinder

"PIPE": Pipe
"RECTANGLE": Centered cuboid
"BOX": Cuboid
"N_CORNER": Polygon with n edges

5 ... 12 <Par5> ... <Par12>: Parameters for description of the blank shape
Data type: REAL
The number of parameters required and their meaning depend on
the respective blank shape and the value of the bit parameter.
See:
● "Parameters for description of the blank shape" table
● "Bit parameters" table

WORPIECE(): A WORKPIECE call without parameters deletes all blank definitions.
WORPIECE(<WP>): A WORKPIECE call with workpiece name only deletes this blank

definition.

Table 18-1 Parameters for description of the blank shape

Blank shape

Parameter
<Par5> <Par6> <Par7> <Par8> <Par9> <Par10> <Par11> <Par12>

Cylinder Bit parameter
Real value that
is interpreted as
bit-coded inte‐
ger value. The
bits define the
meaning of the
following param‐
eters (see "Bit
parameters" ta‐

ble).

Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Outer di‐
ameter d0

- Rotation
about ro‐
tary axis

-

Pipe Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Outer di‐
ameter d0

Wall thick‐
ness

(inc) / in‐
ner diame‐
ter d1 (abs)

Rotation
about ro‐
tary axis

-

Centered cuboid Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Width W Length L Rotation
about ro‐
tary axis

-

Cuboid Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

X0 Y0 X1 Y1

Polygon with n
edges

Refer‐
ence point

Z0

Length Z1 Machin‐
ing dimen‐

sion ZB

Number
of corners

Width
across

flats

Rotation
about ro‐
tary axis

-

Additional functions
18.12 Define blank (WORKPIECE)

Job Planning
674 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Table 18-2 Bit parameter

Bit Meaning
4 (0x0010) Cuboid: X1

= 0 inc
= 1 abs

5 (0x0020) Cuboid: Y1

= 0 inc
= 1 abs

6 (0x0040) Length Z1 (final dimension)
= 0 inc
= 1 abs

Bit 7 (0x0080) Machining dimension ZB

= 0 inc
= 1 abs

Bit 8 (0x0100) Pipe: Wall thickness / inner diameter
= 0 inc
= 1 abs

9 (0x0200) Polygon with n edges
= 0 Width across flats
= 1 Edge length

12 (0x1000) Clamping for turning machines
= 0 Main spindle
= 1 Counterspindle

13 (0x2000) Counterspindle
= 0 with mirroring
= 1 without mirroring

Examples

Example 1: Cylinder-shaped blank on a turning machine

Program code Comment
...

Additional functions
18.12 Define blank (WORKPIECE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 675

Program code Comment
WORKPIECE(,,,"CYLINDER",0,0,-200,-150,100) ; Blank definition:

; Blank shape: Cylinder
; Bit parameter=0(no bit set) →
Values for length and machining
dimension are incremental, blank
on main spindle
; Reference point(Z0)=0
; Length(Z1)=-200
; Machining dimension(ZB)=-150
; Outer diameter(d0)=100

...

Example 2: Pipe-shaped blank on a turning machine

Program code Comment
...
WORKPIECE(,,,"PIPE",256,0,-200,-150,100,80) ; Blank definition:

; Blank shape: Pipe
; Bit parameter=256(Bit8=1) → In-
ner diameter is absolute; length
and machining dimension are in-
cremental, blank on main spindle
; Reference point(Z0)=0
; Length(Z1)=-200
; Machining dimension(ZB)=-150
; Outer diameter(d0)=100
; Inner diameter(d1)=80

...

Additional functions
18.12 Define blank (WORKPIECE)

Job Planning
676 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

18.13 Switch language mode (G290, G291)
The controller gives you the capability of reading in part programs from external CNC systems
and processing them. The prerequisite is that the corresponding NC language mode (ISO
dialect) has been defined during commissioning.

Reference:
Function Manual ISO Dialects

The ISO dialect mode can be activated separately for each channel. For example, channel 1
can run in ISO dialect mode while channel 2 is active in SINUMERIK mode.

The switchover between SINUMERIK mode and ISO dialect mode is done in the NC program
via the commands of the G-group 47. The active tool, tool compensation and work offsets are
not influenced by the switchover.

Syntax

G291
...
G290

Meaning

G290: Activate SINUMERIK language mode
Alone in the block: Yes
Effective: Modal

G291: Activate ISO language mode
Alone in the block: Yes
Effective: Modal

Conditions

SINUMERIK mode
● The default of the G commands can be defined for each channel via machine data.

● No language commands from the ISO dialects can be programmed in SINUMERIK mode.

ISO dialect mode
● The ISO dialect mode can be set with machine data as the basic setting of the control

system. In ISO dialect mode, the control system then reboots by default.

● Only G commands from the ISO dialect can be programmed. The programming of
SINUMERIK G functions is not possible in ISO dialect mode.

● ISO dialect and SINUMERIK language cannot be mixed in the same NC block.

● G commands cannot be used to switch between ISO dialect M (milling) and ISO dialect T
(turning).

Additional functions
18.13 Switch language mode (G290, G291)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 677

● Subprograms that are programmed in SINUMERIK mode can be called.

● If SINUMERIK functions are to be used, a switchover to SINUMERIK mode must first be
made (see example).

Example

Compression of linear blocks in the ISO dialect mode

Program code Comment
N5 G290 ; Activate SINUMERIK language mode.
N10 COMPON ; COMPON is a command in the Siemens lan-

guage and activates a compressor function
that replaces the successive linear
blocks with polynomial blocks with path
lengths that are as long as possible.

N15 G291 ; Activate ISO language mode.
N20 G01 X100 Y100 F1000 ; Since COMPON has been activated in SIN-

UMERIK mode, even linear blocks in the
ISO dialect mode can be compressed with
this function.

...

Additional functions
18.13 Switch language mode (G290, G291)

Job Planning
678 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

User stock removal programs 19
19.1 Supporting functions for stock removal

Preprogrammed stock removal programs are provided for stock removal. Beyond this, you
have the possibility of generating your own stock removal programs using the following listed
functions:

● Generate contour table (CONTPRON)

● Generate coded contour table (CONTDCON)

● Deactivate contour preparation (EXECUTE)

● Determine point of intersection between two contour elements (INTERSEC)
(Only for tables that were generated using CONTPRON)

● Execute contour elements of a table block-by-block (EXECTAB)
(Only for tables that were generated using CONTPRON)

● Calculate circle data (CALCDAT)

Note

You can use these functions universally, not just for stock removal.

Requirements
The following must be done before calling the CONTPRON or CONTDCON functions:

● A starting point that permits collision-free machining must be approached.

● The cutting radius compensation must be deactivated with G40.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 679

19.2 Generate contour table (CONTPRON)
CONTPRON switches on the contour preparation. The NC blocks that are subsequently called
are not executed, but are split-up into individual movements and stored in the contour table.
Each contour element corresponds to one row in the two-dimensional array of the contour
table. The number of relief cuts is returned.

Syntax
Activate contour preparation:
CONTPRON(<contour table>,<machining type>,<relief cuts>,
<machining direction>)
Deactivate contour preparation and return to the normal execution mode:
EXECUTE(<ERROR>)
See "Deactivate contour preparation (EXECUTE) (Page 695)"

Meaning

CONTPRON: Predefined procedure to activate the contour preparation to
generate a contour table

<contour table>: Name of contour table
<machining type>: Parameter for the machining type

Type: CHAR
Value: "G": Longitudinal turning: Internal machin‐

ing
"L": Longitudinal turning: External machin‐

ing
"N": Face turning: Internal machining
"P": Face turning: External machining

<relief cuts>: Result variable for the number of relief cut elements that
occur
Type: INT

<machining direction>: Parameters for the machining direction
Type: INT
Value: 0 Contour preparation, forward (default val‐

ue)
1 Contour preparation in both directions

Example 1
Generating a contour table with:

● Name "KTAB"

● Max. 30 contour elements (circles, straight lines)

● One variable for the number of relief cut elements that occur

● One variable for error messages

User stock removal programs
19.2 Generate contour table (CONTPRON)

Job Planning
680 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

NC program:

Program code Comment
N10 DEF REAL KTAB[30,11] ; Contour table with the name KTAB and

max. 30 contour elements, parameter value
11 (number of table columns) is a fixed
quantity.

N20 DEF INT ANZHINT ; Variable for the number of relief cut
elements with the name ANZHINT.

N30 DEF INT ERROR ; Variable for error feedback signal
(0=no error, 1=error).

N40 G18
N50 CONTPRON(KTAB,"G",ANZHINT) ; Activate contour preparation.
N60 G1 X150 Z20
N70 X110 Z30
N80 X50 RND=15
N90 Z70
N100 X40 Z85
N110 X30 Z90
N120 X0

; N60 to N120: Contour description

N130 EXECUTE(ERROR) ; End filling the contour table, switch-
over to normal program mode.

N140 … ; Continue to process the table.

Contour table KTAB:

Index
Line

Column

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
7 7 11 0 0 20 150 0 82.40535663 0 0

User stock removal programs
19.2 Generate contour table (CONTPRON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 681

0 2 11 20 150 30 110 -1111 104.0362435 0 0
1 3 11 30 110 30 65 0 90 0 0
2 4 13 30 65 45 50 0 180 45 65
3 5 11 45 50 70 50 0 0 0 0
4 6 11 70 50 85 40 0 146.3099325 0 0
5 7 11 85 40 90 30 0 116.5650512 0 0
6 0 11 90 30 90 0 0 90 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

Explanation of the column contents:

(0) Pointer to next contour element (to the row number of that column)
(1) Pointer to previous contour element
(2) Coding the contour mode for motion

Possible values for X = abc
a = 102 G90 = 0 G91 = 1
b = 101 G70 = 0 G71 = 1
c = 100 G0 = 0 G1 = 1 G2 = 2 G3 = 3

(3), (4) Starting point of contour elements
(3) = abscissa, (4) = ordinate of the current plane

(5), (6) Starting point of the contour elements
(5) = abscissa, (6) = ordinate of the current plane

(7) Max/min indicator: Identifies local maximum and minimum values on the contour
(8) Maximum value between contour element and abscissa (for longitudinal machin‐

ing) or ordinate (for face cutting). The angle depends on the type of machining
programmed.

(9), (10) Center point coordinates of contour element, if it is a circle block.
(9) = abscissa, (10) = ordinate

Example 2
Generating a contour table with

● Name KTAB

● Max. 92 contour elements (circles, straight lines)

● Operating mode: Longitudinal turning, external machining

● Preparation, forward and backward

User stock removal programs
19.2 Generate contour table (CONTPRON)

Job Planning
682 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

NC program:

Program code Comment
N10 DEF REAL KTAB[92,11] ; Contour table with name KTAB and max.

92 contour elements, parameter value 11
is a fixed quantity.

N20 DEF CHAR BT="L" ; Mode for CONTPRON: Longitudinal turn-
ing, external machining

N30 DEF INT HE=0 ;Number of relief cut elements=0
N40 DEF INT MODE=1 ; Preparation, forward and backward
N50 DEF INT ERR=0 ; Error feedback signal
...
N100 G18 X100 Z100 F1000
N105 CONTPRON(KTAB,BT,HE,MODE) ; Activate contour preparation.
N110 G1 G90 Z20 X20
N120 X45
N130 Z0
N140 G2 Z-15 X30 K=AC(-15) I=AC(45)
N150 G1 Z-30
N160 X80
N170 Z-40

N180 EXECUTE(ERR) ; End filling the contour table, switch-
over to normal program mode.

...

User stock removal programs
19.2 Generate contour table (CONTPRON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 683

Contour table KTAB:
After contour preparation is finished, the contour is available in both directions.

Index Column
Line (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 61) 72) 11 100 100 20 20 0 45 0 0
1 03) 2 11 20 20 20 45 -3 90 0 0
2 1 3 11 20 45 0 45 0 0 0 0
3 2 4 12 0 45 -15 30 5 90 -15 45
4 3 5 11 -15 30 -30 30 0 0 0 0
5 4 7 11 -30 30 -30 45 -1111 90 0 0
6 7 04) 11 -30 80 -40 80 0 0 0 0
7 5 6 11 -30 45 -30 80 0 90 0 0
8 15) 26) 0 0 0 0 0 0 0 0 0
 ...
83 84 07) 11 20 45 20 80 0 90 0 0
84 90 83 11 20 20 20 45 -1111 90 0 0
85 08) 86 11 -40 80 -30 80 0 0 0 0
86 85 87 11 -30 80 -30 30 88 90 0 0
87 86 88 11 -30 30 -15 30 0 0 0 0
88 87 89 13 -15 30 0 45 -90 90 -15 45
89 88 90 11 0 45 20 45 0 0 0 0
90 89 84 11 20 45 20 20 84 90 0 0
91 839) 8510) 11 20 20 100 100 0 45 0 0

Explanation of column contents and comments for lines 0, 1, 6, 8, 83, 85 and 91
The explanations of the column contents given in example 1 apply.

Always in table line 0:

1) Predecessor: Line n contains the contour end (forward)

2) Successor: Line n is the contour table end (forward)

Once each within the contour elements forward:

3) Predecessor: Contour start (forward)

4) Successor: Contour end (forward)

Always in line contour table end (forward) +1:

5) Predecessor: Number of relief cuts (forward)

6) Successor: Number of relief cuts (backward)

Once each within the contour elements backward:

7) Successor: Contour end (backward)

8) Predecessor: Contour start (backward)

Always in last line of table:

9) Predecessor: Line n is the contour table start (backward)

User stock removal programs
19.2 Generate contour table (CONTPRON)

Job Planning
684 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

10) Successor: Line n contains the contour start (backward)

Further information

Permitted traversing commands, coordinate system
The following G commands can be used for the contour programming:

● G group 1: G0, G1, G2, G3
In addition, the following are possible:

● Rounding and chamfer

● Circle programming using CIP and CT
The spline, polynomial and thread functions result in errors.

Changes to the coordinate system by activating a frame are not permissible between
CONTPRON and EXECUTE. The same applies for a change between G70 and G71 or G700 and
G710.

Replacing the geometry axes with GEOAX while preparing the contour table produces an alarm.

Relief cut elements
The contour description for the individual relief cut elements can be performed either in a
subprogram or in individual blocks.

Stock removal independent of the programmed contour direction
The contour preparation with CONTPRON was expanded so that after it has been called, the
contour table is available independent of the programmed direction.

User stock removal programs
19.2 Generate contour table (CONTPRON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 685

19.3 Generate coded contour table (CONTDCON)
With the contour preparation activated with CONTDCON, the following NC blocks that are called
are saved in a coded form in a 6-column contour table to optimize memory use. Each contour
element corresponds to one row in the contour table. When familiar with the coding rules
specified below, e.g. you can combine DIN code programs for cycles from the table lines. The
data of the output point is saved in the table line with the number 0.

Syntax
Activate contour preparation:
CONTDCON(<contour table>,<machining direction>)
Deactivate contour preparation and return to the normal execution mode:
EXECUTE(<ERROR>)
See "Deactivate contour preparation (EXECUTE) (Page 695)"

Meaning

CONTDCON: Predefined procedure to activate the contour preparation to
generate a coded contour table

<contour table>: Name of the contour table
<machining direction>: Parameter for machining direction

Type: INT
Value: 0 Contour preparation according to the se‐

quence of contour blocks (default value)
1 Not permissible

Note

The G commands permitted for CONTDCON in the program section to be included in the table
are more comprehensive than for CONTPRON. Further, feedrates and feedrate type are saved
for each contour section.

Example
Generating a contour table with:

● Name "KTAB"

● Contour elements (circles, straight lines)

● Operating mode: Turning

● Machining direction: Forward

User stock removal programs
19.3 Generate coded contour table (CONTDCON)

Job Planning
686 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

NC program:

Program code Comment
N10 DEF REAL KTAB[9,6] ;Contour table with name KTAB and 9

table cells. These allow 8 contour
sets. The parameter value 6 (column
number in table) is a fixed size.

N20 DEF INT MODE = 0 ; Variable for the machining direc-
tion. Standard value 0: Only in the
programmed direction of the contour.

N30 DEF INT ERROR = 0 ; Variable for the error feedback sig-
nal.

...
N100 G18 G64 G90 G94 G710
N101 G1 Z100 X100 F1000
N105 CONTDCON (KTAB, MODE) ; Contour preparation call (MODE can

be omitted).
N110 G1 Z20 X20 F200
N120 G9 X45 F300
N130 Z0 F400

; Contour description.

N140 G2 Z-15 X30 K=AC(-15) I=AC(45)F100
N150 G64 Z-30 F600
N160 X80 F700
N170 Z-40 F800

N180 EXECUTE(ERROR) ; End filling the contour table,
switchover to normal program mode.

...

User stock removal programs
19.3 Generate coded contour table (CONTDCON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 687

Contour table KTAB:

 Column index
0 1 2 3 4 5

Line index Contour
mode

End point
abscissa

End point
ordinate

Center point
abscissa

Center point
ordinate

Feedrate

0 30 100 100 0 0 7
1 11031 20 20 0 0 200
2 111031 20 45 0 0 300
3 11031 0 45 0 0 400
4 11032 -15 30 -15 45 100
5 11031 -30 30 0 0 600
6 11031 -30 80 0 0 700
7 11031 -40 80 0 0 800
8 0 0 0 0 0 0

Explanation of the column contents:

Line 0 Coding for the starting point:
 Column 0: 100 (ones digit): G0 = 0
 101 (tens digit): G70 = 0, G71 = 1, G700 = 2, G710 = 3
 Column 1: Starting point abscissa
 Column 2: Starting point ordinate
 Column 3-4: 0
 Column 5: Line index of last contour piece in the table

Lines 1-n: Entries for contour pieces
 Column 0: 100 (ones digit): G0 = 0, G1 = 1, G2 = 2, G3 = 3
 101 (tens digit): G70 = 0, G71 = 1, G700 = 2, G710 = 3
 102 (hundreds digit): G90 = 0, G91 = 1
 103 (thousands digit): G93 = 0, G94 = 1, G95 = 2, G96 = 3
 104 (ten thousands digit): G60 = 0, G44 = 1, G641 = 2, G642 = 3
 105 (hundred thousands digit): G9 = 1
 Column 1: End point abscissa
 Column 2: End point ordinate
 Column 3: Center point abscissa for circular interpolation
 Column 4: Center point ordinate for circular interpolation
 Column 5: Feedrate

User stock removal programs
19.3 Generate coded contour table (CONTDCON)

Job Planning
688 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Further information

Permitted traversing commands, coordinate system
The following G groups and G commands can be used for the contour programming:

G group 1: G0, G1, G2, G3
G group 10: G60, G64, G641, G642
G group 11: G9
G group 13: G70, G71, G700, G710
G group 14: G90, G91
G group 15: G93, G94, G95, G96, G961
In addition, the following are possible:

● Rounding and chamfer

● Circle programming using CIP and CT
The spline, polynomial and thread functions result in errors.

Changes to the coordinate system by activating a frame are not permissible between
CONTDCON and EXECUTE. The same applies for a change between G70 and G71 or G700 and
G710.

Replacing the geometry axes with GEOAX while preparing the contour table produces an alarm.

Machining direction
The contour table generated using CONTDCON is used for stock removal in the programmed
direction of the contour.

User stock removal programs
19.3 Generate coded contour table (CONTDCON)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 689

19.4 Determine point of intersection between two contour elements
(INTERSEC)

INTERSEC determines the point of intersection of two normalized contour elements from the
contour tables generated using CONTPRON.

Syntax
<Status>=INTERSEC(<contour table_1>[<contour element_1>],
<contour table_2>[<contour element_2>],<intersection
point>,<machining type>)

Meaning

INTERSEC: Predefined function to determine the point of intersection between
two contour elements from the contour tables generated with
CONTPRON

<Status>: Variable for the point of intersection status
Type: BOOL
Value: TRUE Point of intersection found

FALSE No intersection found
<contour table_1>: Name of the first contour table
<contour element_1>: Number of the contour element of the first contour table
<contour table_2>: Names of the second contour table
<contour element_2>: Number of the contour element of the second contour table
<point of intersection>: Intersection coordinates in the active plane (G17 / G18 / G19)

Type: REAL
<machining type>: Parameter for the machining type

Type: INT
Value: 0 Point of intersection calculation in the active

plane with parameter 2
(standard value)

1 Point of intersection calculation independent of
the transferred plane

Note

Please note that the variables must be defined before they are used.

The values defined with CONTPRON must be observed when transferring the contours:

Parameter Meaning
2 Coding of contour mode for the movement
3 Contour start point abscissa
4 Contour start point ordinate
5 Contour end point abscissa
6 Contour end point ordinate

User stock removal programs
19.4 Determine point of intersection between two contour elements (INTERSEC)

Job Planning
690 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameter Meaning
9 Center point coordinates for abscissa (only for circle contour)
10 Center point coordinates for ordinate (only for circle contour)

Example
Calculate the intersection of contour element 3 in table TABNAME1 and contour element 7 in
table TABNAME2. The intersection coordinates in the active plane are stored in the variables
ISCOORD (1st element = abscissa, 2nd element = ordinate). If no intersection exists, the
program jumps to NOCUT (no intersection found).

Program code Comment
DEF REAL TABNAME1[12,11] ; Contour table 1
DEF REAL TABNAME2[10,11] ; Contour table 2
DEF REAL ISCOORD [2] ; Variable for the intersection coor-

dinates.
DEF BOOL ISPOINT ; Variable for the intersection sta-

tus.
DEF INT MODE ; Variable for the machining type.
…
MODE=1 ; Calculation independent of the ac-

tive plane.
N10 ISPOINT=INTERSEC(TABNAME1[3],TABNAME2[7],
ISCOORD,MODE)

; Intersection of the contour ele-
ments call.

N20 IF ISPOINT==FALSE GOTOF NOCUT ; Jump to NOCUT.
…

User stock removal programs
19.4 Determine point of intersection between two contour elements (INTERSEC)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 691

19.5 Execute the contour elements of a table block-by-block (EXECTAB)
Using EXECTAB, you can execute the contour elements of a table – that were generated, e.g.
with CONTPRON – block-by-block.

Syntax
EXECTAB(<contour table>[<contour element>])

Meaning

EXECTAB: Predefined procedure to execute a contour element
<contour table>: Name of the contour table
<contour element>: Number of the contour element

Example
Contour elements 0 to 2 in table KTAB should be executed block-by-block.

Program code Comment
N10 EXECTAB(KTAB[0]) ; Traverse element 0 of table KTAB.
N20 EXECTAB(KTAB[1]) ; Traverse element 1 of table KTAB.
N30 EXECTAB(KTAB[2]) ; Traverse element 2 of table KTAB.

User stock removal programs
19.5 Execute the contour elements of a table block-by-block (EXECTAB)

Job Planning
692 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

19.6 Calculate circle data (CALCDAT)
With CALCDAT, you can calculate the radius and the circle center point coordinates from the
three or four points known along the circle. The specified points must be different.

Where four points do not lie directly on the circle an average value is formed for the circle
center point and the radius.

Note
Calculation regulation for the averaging

The arc calculation is performed four times:
1. With circle points 1, 2, 3
2. With circle points 1, 2, 4
3. With circle points 1, 3, 4
4. With circle points 2, 3, 4

The values of the circle center point coordinates abscissa and ordinate are calculated by
adding the abscissa and ordinate values of the four arc calculations and dividing by four.

The radius is calculated by forming the root from the sum of the four radii from the arc
calculations and multiplying the result with 0.5.

Syntax
<Status>=CALCDAT(<circle points>[<number>,<type>],<number>,<result>)

Meaning

CALCDAT: Predefined function to calculate the radius and center point coordinates
of a circle from three or four points

<Status>: Variable for the circle calculation status
Type: BOOL
Value: TRUE The specified points lie on a circle.

FALSE The specified points do not lie on a circle.
<circle points>[]: Variable to specify the circle points

using parameters
<number>: Number of circle points (3 or 4)
<type>: Type of coordinate data,

e.g. 2 for 2-point coordinates
<number>: Parameter for the number of the points used for the calculation (3 or 4)
<result>[3]: Variable for result:

Circle center point coordinates and radius
0 Circle center point coordinate: Abscissa value
1 Circle center point coordinate: Ordinate value
2 Radius

User stock removal programs
19.6 Calculate circle data (CALCDAT)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 693

Note

Please note that the variables must be defined before they are used.

Example
Using three points it should be determined as to whether they are located on a circle segment.

Program code Comment
N10 DEF REAL PT[3,2]=(20,50,50,40,65,20) ; Variable to specify the points

of a circle.
N20 DEF REAL RES[3] ; Variable for result.
N30 DEF BOOL STATUS ; Variable for status.
N40 STATUS=CALCDAT(PKT,3,ERG) ; Call of the determined circle

data.
N50 IF STATUS == FALSE GOTOF ERROR ; Jump to error.

User stock removal programs
19.6 Calculate circle data (CALCDAT)

Job Planning
694 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

19.7 Deactivate contour preparation (EXECUTE)
EXECUTE deactivates the contour preparation and at the same time the system returns to the
normal execution mode.

Syntax
EXECUTE(<ERROR>)

Meaning

EXECUTE: Predefined procedure to terminate contour preparation
<ERROR>: Variable for the error feedback signal

Type: INT
The value of the variable indicates whether the contour was able to be prepared error-
free:
0 Error
1 No error

Example

Program code
...
N30 CONTPRON(...)
N40 G1 X... Z...
...
N100 EXECUTE(...)
...

User stock removal programs
19.7 Deactivate contour preparation (EXECUTE)

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 695

User stock removal programs
19.7 Deactivate contour preparation (EXECUTE)

Job Planning
696 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Programming cycles externally 20
20.1 Technology cycles

20.1.1 Introduction

Contents
This section contains a description of the cycles for the turning, milling, and grinding
technologies.

Structure
The description of a cycle is structured as follows:

● Syntax
Cycle name and call sequence of the transfer parameters

● Parameters
Tables to explain the individual parameters

Parameter description
The following data is specified in the table for a parameter: Name, description, value range,
and dependencies on other parameters.

The column for reference to the parameter in the screen form is provided to more easily locate
values programmed on the control when externally generated cycle calls are recompiled.

"For interface only" parameters
Certain parameters are marked "for interface only" in the table. These are not relevant to
operation of the cycle. They are only needed in order to be able to recompile cycle calls
completely. If they are not programmed the cycle can still be recompiled; the fields are then
identified by color and must be completed in the mask.

"Reserved" parameters
Parameters that are described as "reserved" must be programmed with the value 0 or a comma
so that the assignment of the following call parameters matches the internal cycle parameters.
Exception: string parameters with the value "" or a comma.

Repeating cycles on a position pattern
Drilling and milling cycles can be repeated on the position pattern (modal calls). In such cases
MCALL should be written in the same line before the cycle, e.g. MCALL CYCLE83(...).

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 697

Note

If certain transfer parameters (e.g. <_VARI>, <_GMODE>, <_DMODE>, <_AMODE>) have
been indirectly programmed as parameters, the screen form is opened on recompiling but it
cannot be stored as there is no unambiguous assignment to defined selection fields.

20.1.2 Technology-specific overview
The following overview table lists all available externally programmable technology cycles and
the technology assigned to each of them:

Technology Technology cycle
Drilling ● CYCLE81 - drilling, centering (Page 737)

● CYCLE82 - drilling, counterboring (Page 738)
● CYCLE85 - reaming (Page 747)
● CYCLE86 - boring (Page 748)
● CYCLE83 - deep-hole drilling (Page 741)
● CYCLE830 - deep-hole drilling 2 (Page 771)
● CYCLE84 - tapping without compensating chuck (Page 744)
● CYCLE840 - tapping with compensating chuck (Page 780)
● CYCLE78 - Drill thread milling (Page 733)
● CYCLE802 - arbitrary positions (Page 769)
● HOLES1 - row of holes (Page 700)
● CYCLE801 - grid or frame (Page 767)
● HOLES2 - hole circle (Page 700)

Turning ● CYCLE951 - stock removal (Page 791)
● CYCLE930 - groove (Page 786)
● CYCLE940 - undercut forms (Page 788)
● CYCLE99 - thread turning (Page 757)
● CYCLE98 - thread chain (Page 753)
● CYCLE92 - cut-off (Page 749)

Contour turning ● CYCLE62 - contour call (Page 719)
● CYCLE952 - contour grooving (Page 794)

Programming cycles externally
20.1 Technology cycles

Job Planning
698 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Technology Technology cycle
Milling ● CYCLE61 - Face milling (Page 717)

● POCKET3 - milling a rectangular pocket (Page 702)
● POCKET4 - milling a circular pocket (Page 705)
● CYCLE76 - rectangular spigot milling (Page 729)
● CYCLE77 - circular spigot milling (Page 731)
● CYCLE79 - multi-edge (Page 735)
● SLOT1 - longitudinal slot (Page 707)
● SLOT2 - circumferential slot (Page 710)
● CYCLE899 - Milling open slot (Page 783)
● LONGHOLE - elongated hole (Page 712)
● CYCLE70 - thread milling (Page 723)
● CYCLE60 - engraving cycle (Page 714)

Contour milling ● CYCLE62 - contour call (Page 719)
● CYCLE72 - Path milling (Page 725)
● CYCLE63 - Milling contour pocket (Page 720)
● CYCLE64 - Predrilling contour pocket (Page 722)

Grinding ● CYCLE495 - form-truing (Page 762)
● CYCLE435 - Set dresser coordinate system (Page 762)
● CYCLE4071 - longitudinal grinding with infeed at the reversal

point (Page 800)
● CYCLE4072 - longitudinal grinding with infeed at the reversal

point and cancel signal (Page 801)
● CYCLE4073 - longitudinal grinding with continuous infeed

(Page 805)
● CYCLE4074 - longitudinal grinding with continuous infeed and

cancel signal (Page 806)
● CYCLE4075 - surface grinding with infeed at the reversal point

(Page 809)
● CYCLE4077 - surface grinding with infeed at the reversal point

and cancel signal (Page 812)
● CYCLE4078 - surface grinding with continuous infeed

(Page 815)
● CYCLE4079 - surface grinding with intermittent infeed

(Page 817)
Other ● CYCLE800 - swiveling (Page 764)

● CYCLE832 - High-Speed Settings (Page 777)
All ● GROUP_BEGIN - beginning of program block (Page 819)

● GROUP_END - end of program block (Page 820)
● GROUP_ADDEND - End of trial cut addition (Page 820)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 699

20.1.3 HOLES1 - row of holes

Syntax
HOLES1(<SPCA>, <SPCO>, <STA1>, <FDIS>, <DBH>, <NUM>, <_VARI>,
<_UMODE>, <_HIDE>, <_NSP>, <_DMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <SPCA> REAL Reference point for row of holes along the 1st axis (abs)
2 Y0 <SPCO> REAL Reference point for row of holes along the 2nd axis (abs)
3 α0 <STA1> REAL Basic angle of rotation (angle to 1st axis)
4 L0 <FDIS> REAL Distance from 1st hole to reference point
5 L <DBH> REAL Spacing between the holes
6 N <NUM> INT Number of holes
7 <_VARI> INT Reserved
8 <_UMODE> INT Reserved
9 <_HIDE> STRING

[200]
Hidden positions
● Max. 198 characters
● Specification of consecutive position numbers, e.g. "1,3" (positions

1 and 3 are not executed)
10 <_NSP> INT Reserved
11 <_DMODE> INT

Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

20.1.4 HOLES2 - hole circle

Syntax
HOLES2(<CPA>, <CPO>, <RAD>, <STA1>, <INDA>, <NUM>, <_VARI>,
<_UMODE>, <_HIDE>, <_NSP>, <_DMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
700 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <CPA> REAL Center point for circle of holes along the 1st axis
(abs)
Reference point in the 1st axis

(for XY)
(for XA, YB, ZC)

2 Y0 <CPO> REAL Center point for circle of holes along the 2nd axis
(abs)
Reference point in the 2nd axis

(for XY)
(for XA, YB, ZC)

3 R <RAD> REAL Radius of the circle of holes (for XY)
4 α0 <STA1> REAL Starting angle

or 1st rotary axis position
(for XY)
(for XA, YB, ZC)

5 α1 <INDA> REAL Advance angle (for pitch circle only) (for XY, XA, YB,
ZC)

 < 0 = Clockwise
> 0 = Counter-clockwise

6 N <NUM> INT Number of positions
7

<_VARI>

INT Machining type
UNITS: Reserved
TENS: Positioning type

0 = Approach position - linear
1 = Approach position - circular path

HUNDREDS: Reserved
THOUSANDS: Circular pattern

0 = Compatibility mode, if INDA = 0 then full
circle, INDA <> 0 then pitch circle

1 = Full circle
2 = Pitch circle

TEN THOUSANDS: Position pattern with rotary axis
0 = XY (without rotary

axis)
(for XY)

1 = XA (X axis and ro‐
tary axis around X)

(only for XA)

2 = YB (Y axis and ro‐
tary axis around Y)

(only for YB)

3 = ZC (Z axis and ro‐
tary axis around C)

(only for ZC)

ONE MILLION +
HUNDRED THOU‐
SANDS:

Offset (for several rotary axes around the same
axis; if index too large, then 1st axis)
00 = 1. A, B or C axis
01 = 2. A, B or C axis
...
10 = 20. A, B or C axis

8 <_UMODE> INT Reserved

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 701

No. Parameter
mask

Parameter
internal

Data type Meaning

9 <_HIDE> STRING
[200]

Reserved

10 <_NSP> INT Reserved
11 <_DMODE> INT Display mode

UNITS: Machining plane G17/18/19
0 = Compatibility, the plane effective before

the cycle call remains active
1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

20.1.5 POCKET3 - milling a rectangular pocket

Syntax
POCKET3(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_LENG>, <_WID>, <_CRAD>,
<_PA>, <_PO>, <_STA>, <_MID>, <_FAL>, <_FALD>, <_FFP1>, <_FFD>,
<_CDIR>, <_VARI>, <_MIDA>, <_AP1>, <_AP2>, <_AD>, <_RAD1>, <_DP1>,
<_UMODE>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Pocket depth (abs/inc), see <_AMODE>
5 L <_LENG> REAL Pocket length (inc, to be entered with sign)
6 W <_WID> REAL Pocket width (inc, to be entered with sign)
7 R <_CRAD> REAL Corner radius of pocket
8 X0 <_PA> REAL Reference point 1st axis (abs)
9 YO <_PO> REAL Reference point 2nd axis (abs)
10 α0 <_STA> REAL Angle of rotation, angle between longitudinal axis (L) and 1st axis
11 DZ <_MID> REAL Maximum depth infeed
12 UXY <_FAL> REAL Finishing allowance, plane
13 UZ <_FALD> REAL Finishing allowance, depth
14 F <_FFP1> REAL Feedrate in the plane
15 FZ <_FFD> REAL Depth infeed rate
16 <_CDIR> INT Milling direction: 0 = Down-cut

1 = Up-cut

Programming cycles externally
20.1 Technology cycles

Job Planning
702 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_VARI> INT Machining type
UNITS:

1 = Roughing
2 = Finishing
4 = Edge finishing
5 = Chamfering

TENS:
0 = Predrilled, infeed with G0
1 = Vertically, infeed with G1
2 = Helical
3 = Oscillation on pocket longitudinal

axis
HUNDREDS: Reserved

18 DXY <_MIDA> REAL Maximum plane infeed, for unit, see <_AMODE>
19 L1 <_AP1> REAL Length of premachining (inc)
20 W1 <_AP2> REAL Width of premachining (inc)
21 AZ <_AD> REAL Depth of premachining (inc)
22 ER <_RAD1> REAL

Radius of helical path on helical insertion

EW Maximum insertion angle for oscillation
23 EP <_DP1> REAL Helical pitch on helical insertion
24 <_UMODE> INT Reserved
25 FS <_FS> REAL Chamfer width (inc)
26 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 703

No. Parameter
mask

Parameter
internal

Data type Meaning

27 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Dimensioning via center/corner
0 = Compatibility mode
1 = Dimensioning via center
2 = Dimensioning of corner point,

pocket position +LENG/+WID
3 = Dimensioning of corner point,

pocket position -LENG/+WID
4 = Dimensioning of corner point,

pocket position +LENG/-WID
5 = Dimensioning of corner point,

pocket position -LENG/-WID
TEN THOUSANDS: Complete machining/remachining

0 = Compatibility mode (process
<_AP1>, <_AP2> and <_AD>
as before)

1 = Complete machining
2 = Post machining

28 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
704 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

29 <_AMODE> INT Alternative mode
UNITS: Pocket depth (Z1)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for plane infeed (DXY)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (ZFS)
0 = Absolute
1 = Incremental

20.1.6 POCKET4 - milling a circular pocket

Syntax
POCKET4(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_CDIAM>, <_PA>, <_PO>,
<_MID>, <_FAL>, <_FALD>, <_FFP1>, <_FFD>, <_CDIR>, <_VARI>, <_MIDA>,
<_AP1>, <_AD>, <_RAD1>, <_DP1>, <_UMODE>, <_FS>, <_ZFS>, <_GMODE>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Pocket depth (abs/inc), see <_AMODE>
5 ∅ <_CDIAM> REAL Pocket diameter or radius, see <_DMODE>
6 X0 <_PA> REAL Reference point 1st axis (abs)
7 Y0 <_PO> REAL Reference point 2nd axis (abs)
8 DZ <_MID> REAL Maximum depth setting, see <_VARI> = by planes

Maximum helical setting, see <_VARI> = helically
9 UXY <_FAL> REAL Finishing allowance, plane
10 UZ <_FALD> REAL Finishing allowance, depth
11 F <_FFP1> REAL Feedrate for surface machining
12 FZ <_FFD> REAL Depth infeed rate
13 <_CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 705

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_VARI> INT Machining type
UNITS: Machining

1 = Roughing
2 = Finishing
4 = Edge finishing
5 = Chamfering

TENS: Infeed type (roughing and finishing)
0 = Predrilled, infeed with G0 (pocket

is premachined)
1 = Vertically, infeed with G1
2 = Helical

HUNDREDS: Reserved
THOUSANDS:

0 = Plane-by-plane
1 = Helical

15 DXY <_MIDA> REAL Maximum plane infeed, see <_AMODE>,
0 = 0.8 x tool diameter

16 ∅ <_AP1> REAL Diameter/radius of premachining (inc)
17 AZ <_AD> REAL Depth of premachining (inc)
18 ER <_RAD1> REAL Radius of helical path on helical insertion
19 EP <_DP1> REAL Helical pitch on insertion on helical path
20 <_UMODE> INT Reserved
21 FS <_FS> REAL Chamfer width (inc)
22 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
23 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Machining/calculation of start point

0 = Compatibility mode
1 = Normal machining

THOUSANDS: Reserved
TEN THOUSANDS: Complete machining/remachining

0 = Compatibility mode (process
<_AP1> and <_AD> as before)

1 = Complete machining
2 = Post machining

Programming cycles externally
20.1 Technology cycles

Job Planning
706 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

HUNDREDS:
0 = Compatibility mode (enter

<_CDIAM>/<_AP1> as radius)
1 = Enter <_CDIAM>/<_AP1> as di‐

ameter
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

25 <_AMODE> INT Alternative mode
UNITS: Pocket depth (Z1)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for infeed width (DXY)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (ZFS)
0 = Absolute
1 = Incremental

20.1.7 SLOT1 - longitudinal slot

Syntax
SLOT1 (<RTP>, <RFP>, <SDIS>, <_DP>, <_DPR>, <NUM>, <LENG>, <WID>,
<_CPA>, <_CPO>, <RAD>, <STA1>, <INDA>, <FFD>, <FFP1>, <_MID>,
<CDIR>, <_FAL>, <VARI>, <_MIDF>, <FFP2>, <SSF>, <_FALD>, <_STA2>,
<_DP1>, <_UMODE>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 707

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point of tool axis (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Slot depth (abs)
5 <_DPR> REAL Slot depth (inc) with respect to Z0 (enter without sign)
6 <NUM> INT Number of slots = 1
7 L <LENG> REAL Slot length
8 W <WID> REAL Slot width
9 X0 <_CPA> REAL Reference point in the 1st axis of the plane
10 Y0 <_CPO> REAL Reference point in the 2nd axis of the plane
11 <RAD> REAL Reserved
12 α <STA1> REAL Angle of rotation
13 <INDA> REAL Reserved
14 FZ <FFD> REAL Depth infeed rate
15 F <FFP1> REAL Feedrate
16 DZ <_MID> REAL Maximum depth infeed
17 <CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
18 UXY <_FAL> REAL Finishing allowance on plane or slot edge
19 <VARI> INT Machining type

UNITS:
0 = Reserved
1 = Roughing
2 = Finishing
4 = Edge finishing (only machine the

edge)
5 = Chamfering

TENS: Approach
0 = Predrilled, infeed with G0 (slot is

premachined)
1 = Vertically, infeed with G1
2 = Helical
3 = Oscillation

HUNDREDS: Reserved
20 DZF <_MIDF> REAL Reserved
21 FF <FFP2> REAL Reserved
22 SF <SSF> REAL Reserved
23 UZ <_FALD> REAL Finishing allowance, depth
24 ER <_STA2> REAL Radius of helical path on helical insertion

EW Maximum insertion angle for oscillation
25 EP <_DP1> REAL Insertion depth per rev for helix

Programming cycles externally
20.1 Technology cycles

Job Planning
708 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

26 <_UMODE> INT Reserved
27 FS <_FS> REAL Chamfer width (inc) for chamfering
28 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
29 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
1 = Normal machining

THOUSANDS: Dimensioning of reference point, slot
length
0 = Center
1 = Inner left-hand +L
2 = Inner right-hand -L
3 = Left-hand edge +L
4 = Right-hand edge -L

30 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Software version identification

1 = Function extension SLOT1
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

31 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (abs/inc)

0 = Compatibility
1 = Z1 (inc)
2 = Z1 (abs)

TENS: Reserved
HUNDREDS: Insertion depth for chamfering ZFS

0 = ZFS (abs)
1 = ZFS (inc)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 709

Note

The cycle is provided with new functions that are not on earlier software versions.
Consequently certain parameters in the screen form (<NUM>, <RAD>, <INDA>) are no
longer displayed. Multiple slots on one position pattern can be programmed using "MCALL"
and calling the desired position pattern, e.g. HOLES2.

20.1.8 SLOT2 - circumferential slot

Syntax
SLOT2(<RTP>, <RFP>, <SDIS>, <_DP>, <_DPR>, <NUM>, <AFSL>, <WID>,
<_CPA>, <_CPO>, <RAD>, <STA1>, <INDA>, <FFD>, <FFP1>, <_MID>,
<CDIR>, <_FAL>, <VARI>, <_MIDF>, <FFP2>, <SSF>, <_FFCP>, <_UMODE>,
<_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point of tool axis (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Slot depth (abs)
5 <_DPR> REAL Slot depth (inc) with respect to Z0 (enter without sign)
6 N <NUM> INT Number of slots
7 α1 <AFSL> REAL Opening angle of the slot
8 W <WID> REAL Slot width
9 X0 <_CPA> REAL Reference point = Center point of circle, 1st axis of the plane
10 Y0 <_CPO> REAL Reference point = Center point of circle, 2nd axis of the plane
11 R <RAD> REAL Radius of the circle
12 α0 <STA1> REAL Starting angle
13 α2 <INDA> REAL Incrementing angle
14 FZ <FFD> REAL Depth infeed rate
15 F <FFP1> REAL Feedrate
16 DZ <_MID> REAL Maximum depth infeed
17 <CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
18 UXY <_FAL> REAL Finishing allowance on plane or slot edge

Programming cycles externally
20.1 Technology cycles

Job Planning
710 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

19 <VARI> INT Machining type
UNITS:

0 = Complete machining
1 = Roughing
2 = Finishing
3 = Edge finishing
5 = Chamfering

TENS:
0 = Intermediate positioning with G0

line
1 = Intermediate positioning on circu‐

lar path
HUNDREDS: Reserved
THOUSANDS:

0 = Compatibility mode, if <INDA>
= 0 then full circle, <INDA> <> 0
then pitch circle

1 = Full circle
2 = Pitch circle

20 DZF <_MIDF> REAL Reserved
21 <FFP2> REAL Reserved
22 <SSF> REAL Reserved
23 FF <_FFCP> REAL Reserved
24 <_UMODE> INT Reserved
25 FS <_FS> REAL Chamfer width (inc)
26 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
27 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
0 = Compatibility mode
1 = Normal machining

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 711

No. Parameter
mask

Parameter
internal

Data type Meaning

28 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Software version identification

1 = SLOT2 functions as of software
version 2.5

TEN THOUSANDS: Technology scaling in cycle screen
forms (Page 820)
0 = Input: Complete
1 = Input: Simple

29 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (abs/inc)

0 = Compatibility
1 = Z1 (inc)
2 = Z1 (abs)

TENS: Reserved
HUNDREDS: Insertion depth for chamfering ZFS

0 = ZFS (abs)
1 = ZFS (inc)

20.1.9 LONGHOLE - elongated hole

Syntax
LONGHOLE(<RTP>, <RFP>, <SDIS>, <_DP>, <_DPR>, <NUM>, <LENG>, <_CPA>,
<_CPO>, <RAD>, <STA1>, <INDA>, <FFD>, <FFP1>, <MID>, <_VARI>,
<_UMODE>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)

Programming cycles externally
20.1 Technology cycles

Job Planning
712 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

4 Z1 <_DP> REAL Long hole depth (abs)
5 <_DPR> REAL Long hole depth (inc) with respect to Z0 (enter without sign)
6 <NUM> INT Number of long holes = 1
7 L <LENG> REAL Length of long hole
8 X0 <_CPA> REAL Reference point 1st axis of the plane
9 Y0 <_CPO> REAL Reference point 2nd axis of the plane
10 <RAD> REAL Reserved
11 α0 <STA1> REAL Angle of rotation
12 <INDA> REAL Reserved
13 FZ <FFD> REAL Depth infeed rate
14 F <FFP1> REAL Feedrate
15 DZ <MID> REAL Maximum depth infeed
16 <_VARI> INT Machining type

UNITS: Infeed type
1 = Vertically with G1
3 = Oscillation

HUNDREDS: Reserved
17 <_UMODE> INT Reserved
18 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Dimensioning of reference point, slot
length
0 = Center
1 = Inner left-hand +L
2 = Inner right-hand -L
3 = Left-hand edge +L
4 = Right-hand edge -L

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 713

No. Parameter
mask

Parameter
internal

Data type Meaning

19 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

HUNDREDS: Reserved
THOUSANDS: Software version identification

1 = Function extension LONGHOLE
(dimensioning of reference point)

20 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (abs/inc)

0 = Compatibility
1 = Z1 (inc)
2 = Z1 (abs)

Note

The cycle is provided with new functions that are not on earlier software versions.
Consequently certain parameters in the screen form (<NUM>, <RAD>, <INDA>) are no
longer displayed. Multiple slots on one position pattern can be programmed using "MCALL"
and calling the desired position pattern, e.g. HOLES2.

20.1.10 CYCLE60 - engraving cycle

Syntax
CYCLE60(<_TEXT>, <_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DPR>, <_PA>,
<_PO>, <_STA>, <_CP1>, <_CP2>, <_WID>, <_DF>, <_FFD>, <_FFP1>,
<_VARI>, <_CODEP>, <_UMODE>, <_GMODE>, <_DMODE>, <_AMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
714 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_TEXT> STRING
[200]

Text to be engraved (up to 100 characters)

2 RP <_RTP> REAL Retraction plane (abs)
3 Z0 <_RFP> REAL Reference point of tool axis (abs)
4 SC <_SDIS> REAL Safety clearance (to be added to the reference plane, enter without sign)
5 Z1 <_DP> REAL Depth (abs), see <_AMODE>
6 Z1 <_DPR> REAL Depth (inc), see <_AMODE>
7 X0 <_PA> REAL

Reference point 1st axis of plane (abs) - right-angled, see <_VARI>

R Reference point, length (radius) - polar, see <_VARI>
8 Y0 <_PO> REAL

Reference point 2nd axis of plane (abs) - right-angled, see <_VARI>

α0 Reference point, angle with respect to 1st axis - polar, see <_VARI>
9 α1 <_STA> REAL Text direction, angle of line of text with respect to 1st axis), see <_VARI>
10 XM <_CP1> REAL

Center of the text circle, 1st axis of plane (abs) - right-angled, see
<_VARI>

LM Center of circle of text, length (radius) with respect to WNP - polar,
see <_VARI>

11 YM <_CP2> REAL

Center of the text circle, 2nd axis of plane (abs) - right-angled, see
<_VARI>

αM Center of text circle, angle with respect to 1st axis axis - polar, see
<_VARI>

12 W <_WID> REAL Height of characters (enter without sign)
13 DX1

DX2
<_DF> REAL

Distance between characters / overall width, see <_VARI>

α2 Opening angle, see <_VARI>
14 FZ <_FFD> REAL Depth infeed rate, see <_DMODE>
15 F <_FFP1> REAL Feedrate for surface machining

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 715

No. Parameter
mask

Parameter
internal

Data type Meaning

16 <_VARI> INT Machining (alignment and reference point for engraved text)
UNITS: Reference point

0 = Right-angled
1 = Polar

TENS: Text alignment
0 = Text on one line
1 = Text in an upward pointing arc
2 = Text in a downward curving arc

HUNDREDS: Reserved
THOUSANDS: Reference point of the text, horizontal

0 = Left
1 = Center
2 = Right

TEN THOUSANDS: Reference point of the text, vertical
0 = Bottom
1 = Center
2 = Top

HUNDRED THOUSANDS: Text length
0 = Character spacing
1 = Overall text width (linear text only)
2 = Opening angle (only for circular

text)
ONE MILLION: Circle center

0 = Right-angled (Cartesian)
1 = Polar

TEN MILLIONS: Mirror writing
0 = Compatibility
1 = Mirror writing ON
2 = Mirror writing OFF

17 <_CODEP> INT Code page number for writing (currently only 1252)
18 <_UMODE> INT Reserved
19 _GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

Programming cycles externally
20.1 Technology cycles

Job Planning
716 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

20 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

21 <_AMODE> INT Alternative mode
UNITS: Final depth (<_DP>, <_DPR>)

0 = Compatibility
1 = Incremental (<_DPR>)
2 = Absolute (<_DP>)

20.1.11 CYCLE61 - Face milling

Syntax
CYCLE61(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_PA>, <_PO>, <_LENG>,
<_WID>, <_MID>, <_MIDA>, <_FALD>, <_FFP1>, <_VARI>, <_LIM>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis, height of blank (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Height of finished part (abs/inc), see <_AMODE>
5 X0 <_PA> REAL Corner point 1 in 1st axis (abs)
6 Y0 <_PO> REAL Corner point 1 in 2nd axis (abs)
7 X1 <_LENG> REAL Corner point 2 in 1st axis (abs/inc), see <_AMODE>
8 Y1 <_WID> REAL Corner point 2 in 2nd axis (abs/inc), see <_AMODE>
9 DZ <_MID> REAL Maximum depth infeed
10 DXY <_MIDA> REAL Maximum plane infeed (for unit, see <_AMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 717

No. Parameter
mask

Parameter
internal

Data type Meaning

11 UZ <_FALD> REAL Finishing allowance, depth
12 F <_FFP1> REAL Machining feedrate
13 <_VARI> INT Machining type

UNITS: Machining
1 = Roughing
2 = Finishing

TENS: Machining direction
1 = Parallel to the 1st axis, in one di‐

rection
2 = Parallel to the 2nd axis, in one di‐

rection
3 = Parallel to the 1st axis, varying

direction
4 = Parallel to the 2nd axis, varying

direction
14 <_LIM> INT Limits

UNITS: Limit 1st axis negative
0 = No
1 = Yes

TENS: Limit 1st axis positive
0 = No
1 = Yes

HUNDREDS: Limit 2nd axis negative
0 = No
1 = Yes

THOUSANDS: Limit 2nd axis positive
0 = No
1 = Yes

15 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Programming cycles externally
20.1 Technology cycles

Job Planning
718 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

16 <_AMODE> INT Alternative mode
UNITS: Final depth (<_DP>)

0 = Absolute
1 = Incremental

TENS: Units for plane infeed (<_MIDA>)
0 = mm
1 = % of tool diameter

HUNDREDS: Reserved
THOUSANDS: Length of surface

0 = Incremental
1 = Absolute

TEN THOUSANDS: Width of surface
0 = Incremental
1 = Absolute

20.1.12 CYCLE62 - contour call

Syntax
CYCLE62(<_KNAME>,<_TYPE>, <_LAB1>, <_LAB2>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG/CON <_KNAME> STRING
[140]

Contour name or subprogram name does not have to be programmed
in _TYPE = 2

2 <_TYPE> INT Determination of contour input
 0 = Subprogram

1 = Contour name
2 = Labels
3 = Labels in the subprogram

3 LAB1 <_LAB1> STRING[32] Label 1, start of contour
4 LAB2 <_LAB2> STRING[32] Label 2, end of contour

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 719

20.1.13 CYCLE63 - Milling contour pocket

Syntax
CYCLE63(<_PRG>, <_VARI>, <_RP>, <_Z0>, <_SC>, <_Z1>, <_F>, <_FZ>,
<_DXY>, <_DZ>, <_UXY>, <_UZ>, <_CDIR>, <_XS>, <_YS>, <_ER>, <_EP>,
<_EW>, <_FS>, <_ZFS>, <_TR>, <_DR>, <_UMODE>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG <_PRG> STRING
[100]

Name of removal program

2 <_VARI> INT Machining type
UNITS: Machining process

1 = Roughing
3 = Base finishing
4 = Edge finishing
5 = Chamfering

TENS: Infeed type
0 = Central insertion
1 = Helical insertion
2 = Oscillating insertion

HUNDREDS: Reserved
THOUSANDS: Lift mode

0 = Lift off to retraction plane
1 = Lift off to reference point + safety

clearance
TEN THOUSANDS: Start point for roughing and finishing base

0 = Auto
1 = Manual

3 RP <_RP> REAL Retraction plane (abs)
4 Z0 <_Z0> REAL Reference point of tool axis (abs)
5 SC <_SC> REAL Safety clearance (to be added to reference point, enter without sign)
6 Z1 <_Z1> REAL Final depth (see <_AMODE> UNITS)
7 F <_F> REAL Feedrate in the plane during roughing/finishing
8 FZ <_FZ> REAL Depth infeed rate
9 DXY <_DXY> REAL Infeed plane - unit (see <_AMODE> TENS)
10 DZ <_DZ> REAL Depth infeed
11 UXY <_UXY> REAL Finishing allowance, plane
12 UZ <_UZ> REAL Finishing allowance, depth
13 <_CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut

Programming cycles externally
20.1 Technology cycles

Job Planning
720 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

14 XS <_XS> REAL Starting point X, absolute
15 YS <_YS> REAL Starting point Y, absolute
16 ER <_ER> REAL Helical insertion: Radius
17 EP <_EP> REAL Helical insertion: Pitch
18 EW <_EW> REAL Oscillating insertion: Maximum insertion angle
19 FS <_FS> REAL Chamfer width (inc) for chamfering
20 ZFS <_ZFS> REAL Insertion depth of tool tip when chamfering (see <_AMODE> HUN‐

DREDS)
21 TR <_TR> STRING[32] Reference tool name when machining residual material
22 DR <_DR> INT Reference tool D number when machining residual material
23 <_UMODE> INT Reserved
24 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Normal machining (no compatibil‐

ity mode needed)
1 = Normal machining
2 = Reserved

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Technology mode

1 = Pocket
2 = Spigot

THOUSANDS: Machine residual material
0 = No
1 = Yes

TEN THOUSANDS: Technology scaling in cycle screen
forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 721

No. Parameter
mask

Parameter
internal

Data type Meaning

26 <_AMODE> INT Alternative mode
UNITS: Final depth (Z1)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for plane infeed (DXY)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (ZFS)
0 = Absolute
1 = Incremental

THOUSANDS: --- Reserved

20.1.14 CYCLE64 - Predrilling contour pocket

Syntax
CYCLE64(<_PRG>, <_VARI>, <_RP>, <_Z0>, <_SC>, <_Z1>, <_F>, <_DXY>,
<_UXY>, <_UZ>, <_CDIR>, <_TR>, <_DR>, <_UMODE>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG <_PRG> STRING
[100]

Name of drilling/centering program

2 <_VARI> INT Machining type
UNITS: Reserved
TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Lift mode

0 = Lift off to retraction plane
1 = Lift off to reference point + safety

clearance
3 RP <_RP> REAL Retraction plane (abs)
4 Z0 <_Z0> REAL Reference point (abs)
5 SC <_SC> REAL Safety clearance (to be added to reference point, enter without sign)
6 Z1 <_Z1> REAL Drilling/centering depth (see <_AMODE> UNITS)
7 F <_F> REAL Drilling/centering feedrate
8 DXY <_DXY> REAL Infeed plane - unit (see <_AMODE> TENS)
9 UXY <_UXY> REAL Finishing allowance, plane
10 UZ <_UZ> REAL Finishing allowance, depth

Programming cycles externally
20.1 Technology cycles

Job Planning
722 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

11 <_CDIR> INT Milling direction 0 = Down-cut
1 = Up-cut

12 TR <_TR> STRING[20] Reference tool name
13 DR <_DR> INT Reference tool D number
14 <_UMODE> INT Reserved
15 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Normal machining (no compatibil‐

ity mode needed)
1 = Normal machining
2 = Reserved

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Technology mode
1 = Predrilling
2 = Centering

26 <_AMODE> INT Alternative mode
UNITS: Drilling/centering depth Z1

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Unit for plane infeed (DXY)
0 = mm
1 = % of tool diameter

20.1.15 CYCLE70 - thread milling

Syntax
CYCLE70(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DIATH>, <_H1>, <_FAL>,
<_PIT>, <_NT>, <_MID>, <_FFR>, <_TYPTH>, <_PA>, <_PO>, <_NSP>,
<_VARI>, <_PITA>, <_PITM>, <_PTAB>, <_PTABA>, <_GMODE>, <_DMODE>,
<_AMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 723

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Thread length (abs, inc), see <_AMODE>

Take account of runout at base of hole (at least half pitch)
5 ∅ <_DIATH> REAL Nominal diameter of the thread
6 H1 <_H1> REAL Thread depth
7 U <_FAL> REAL Finishing allowance
8 P <_PIT> REAL Pitch (select <_PITA>: mm, inch, MODULE, threads/inch)
9 NT <_NT> INT Number of teeth on the tool tip

Tool length is always with respect to bottom tooth.
10 DXY <_MID> REAL Maximum infeed per cut

<_MID> > <_H1>: All in one cut
11 F <_FFR> REAL Milling feed
12 <_TYPTH> INT Thread type 0 = Internal thread

1 = External thread
13 X0 <_PA> REAL Circle center 1st axis (abs)
14 Y0 <_PO> REAL Circle center 2nd axis (abs)
15 αS <_NSP> REAL Start angle (multi-start thread)
16 <_VARI> INT Machining type

UNITS:
1 = Roughing
2 = Finishing

TENS:
1 = From top to bottom
2 = From bottom to top

HUNDREDS:
0 = Right-hand thread
1 = Left-hand thread

17 <_PITA> INT Evaluation of thread pitch
 0 = Compatibility mode

1 = Pitch in mm
2 = Pitch in threads per inch (TPI)
3 = Pitch in inches
4 = Pitch as MODULE

18 <_PITM> STRING[15] String as marker for pitch input (for the interface only)
19 <_PTAB> STRING[20] String for thread table ("", "ISO", "BSW", "BSP", "UNC") (for the interface

only)
20 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...) (for the

interface only)

Programming cycles externally
20.1 Technology cycles

Job Planning
724 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

21 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Machining/calculation of start point

0 = Compatibility mode
1 = Normal machining

22 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

23 <_AMODE> INT Alternative mode
UNITS: Thread length (<_DP>)

0 = Absolute
1 = Incremental

20.1.16 CYCLE72 - Path milling

Syntax
CYCLE72(<_KNAME>, <_RTP>, <_RFP>, <_SDIS>, <_DP>, <_MID>, <_FAL>,
<_FALD>, <_FFP1>, <_FFD>, <_VARI>, <_RL>, <_AS1>, <_LP1>, <_FF3>,
<_AS2>, <_LP2>,<_UMODE>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_KNAME> STRING
[141]

Name of the contour subprogram

2 RP <_RTP> REAL Retraction plane (abs)
3 Z0 <_RFP> REAL Reference point of tool axis (abs)
4 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
5 Z1 <_DP> REAL End point, final depth (abs/inc), see <_AMODE>
6 DZ <_MID> REAL Maximum depth infeed (inc; enter without sign)
7 UXY <_FAL> REAL Finishing allowance, plane (inc), allowance at edge contour
8 UZ <_FALD> REAL Finishing allowance depth (inc), allowance at base (enter without sign)
9 FX <_FFP1> REAL Feedrate on contour
10 FZ <_FFD> REAL Feedrate for depth infeed (or spatial infeed)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 725

No. Parameter
mask

Parameter
internal

Data type Meaning

11 <_VARI> INT Machining type
UNITS: Machining

1 = Roughing
2 = Finishing
5 = Chamfering

TENS:
0 = Intermediate paths with G0
1 = Intermediate paths with G1

HUNDREDS: Retraction at the end of contour
0 = Retraction at the end of contour

to reference point
1 = Retraction at the end of contour

to reference point + <_SDIS>
2 = Retraction at the end of contour

by <_SDIS>
3 = No retraction at the end of con‐

tour, approach next start point
with contour feed

THOUSANDS: Reserved
TEN THOUSANDS: Machine contour

0 = Machine contour forward
1 = Machine contour backward

Restrictions with backward ma‐
chining:
● Max 170 contour elements

(including chamfers or
rounding)

● Only values in the (X/Y) and
F planes are evaluated

12 <_RL> INT Machining direction
 40 = Center of contour (G40, ap‐

proach and retract: straight line
or vertical)

41 = Left of contour (G41, approach
and retract: straight line or circle)

42 = Right of contour (G42, approach
and retract: straight line or circle)

Programming cycles externally
20.1 Technology cycles

Job Planning
726 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

13 <_AS1> INT Contour approach movement
UNITS:

1 = Straight line
2 = Quadrant
3 = Semi-circle
4 = Approach and retraction vertically

TENS:
0 = Last movement, in the plane
1 = Last movement, spatial

14 L1 <_LP1> REAL Approach path or approach radius (inc; enter without sign)
15 FZ <_FF3> REAL Feedrate for intermediate paths (G94/G95 as to contour)
16 <_AS2> INT Contour approach movement (not vertical approach/retract)

UNITS:
1 = Straight line
2 = Quadrant
3 = Semi-circle

TENS:
0 = Last movement, in the plane
1 = Last movement, spatial

17 L2 <_LP2> REAL Retract path or retract radius (inc, to be entered without sign)
18 <_UMODE> INT Reserved
19 FS <_FS> REAL Chamfer width (inc)
20 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
21 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 727

No. Parameter
mask

Parameter
internal

Data type Meaning

22 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of feedrate: G group (G94/G95) for
surface and depth feedrate
0 = Compatibility mode
1 = G command as before cycle call.

G94/G95 same for surface and
depth feedrate

THOUSANDS:
0 = Compatibility mode: Contour

name is in <_KNAME>
1 = Contour name is programmed in

CYCLE62 and transferred to
_SC_CONT_NAME

23 <_AMODE> INT Alternative mode
UNITS: End point Z1 (<_DP>)

0 = Absolute (compatibility mode)
1 = Incremental

TENS: Units for plane infeed
0 = mm, inch
1 = Reserved

HUNDREDS: Insertion depth for chamfering (<_ZFS>)
0 = Absolute
1 = Incremental

Note

If the following transfer parameters are programmed indirectly (as parameters), the screen
form is not reset:

<_VARI>, <_RL>, <_AS1>, <_AS2>, <_UMODE>, <_GMODE>, <_DMODE>,
<_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
728 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

20.1.17 CYCLE76 - rectangular spigot milling

Syntax
CYCLE76(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DPR>, <_LENG>, <_WID>,
<_CRAD>, <_PA>, <_PO>, <_STA>, <_MID>, <_FAL>, <_FALD>, <_FFP1>,
<_FFD>, <_CDIR>, <_VARI>, <_AP1>, <_AP2>, <_FS>, <_ZFS>, <_GMODE>,
<_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Spigot depth (abs)
5 <_DPR> REAL Spigot depth (inc) with respect to Z0 (enter without sign)
6 L <_LENG> REAL Spigot length, see <_GMODE> (enter without sign)
7 W <_WID> REAL Spigot width, see <_GMODE> (enter without sign)
8 R <_CRAD> REAL Spigot corner radius (enter without sign)
9 X0 <_PA> REAL Reference point for spigot in 1st axis of plane (abs)
10 Y0 <_PO> REAL Reference point for spigot in 2nd axis of plane (abs)
11 α0 <_STA> REAL Angle of rotation, angle between longitudinal axis (L) and 1st axis of

plane
12 DZ <_MID> REAL Maximum depth infeed (inc; enter without sign)
13 UXY <_FAL> REAL Finishing allowance, plane (inc), allowance at edge contour
14 UZ <_FALD> REAL Finishing allowance depth (inc), allowance at base (enter without sign)
15 FX <_FFP1> REAL Feedrate on contour
16 FZ <_FFD> REAL Depth infeed rate
17 <_CDIR> INT Milling direction (enter without sign)

UNITS:
0 = Down-cut
1 = Up-cut

18 <_VARI> INT Machining
UNITS:

1 = Roughing
2 = Finishing
5 = Chamfering

19 L1 <_AP1> REAL Length of blank spigot
20 W1 <_AP2> REAL Width of blank spigot
21 FS <_FS> REAL Chamfer width (inc)
22 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs, inc), see <_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 729

No. Parameter
mask

Parameter
internal

Data type Meaning

23 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Dimensioning of spigot acc. to center or
corner
0 = Compatibility mode
1 = Dimensioning via center
2 = Dimensioning of corner point,

spigot +L +W
3 = Dimensioning of corner point,

spigot -L +W
4 = Dimensioning of corner point,

spigot +L -W
5 = Dimensioning of corner point,

spigot -L -W
TEN THOUSANDS: Complete machining or remachining

0 = Compatibility mode
1 = Complete machining
2 = Post machining

24 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
730 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

25 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (DP)

0 = Compatibility
1 = Incremental
2 = Absolute

TENS: Reserved
HUNDREDS: Insertion depth for chamfering (ZFS)

0 = Absolute
1 = Incremental

20.1.18 CYCLE77 - circular spigot milling

Syntax
CYCLE77(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_DPR>, <_CDIAM>, <_PA>,
<_PO>, <_MID>, <_FAL>, <_FALD>, <_FFP1>, <_FFD>, <_CDIR>, <_VARI>,
<_AP1>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Spigot depth (abs)
5 <_DPR> REAL Spigot depth (inc) with respect to Z0 (enter without sign)
6 ∅ <_CDIAM> REAL Spigot diameter (enter without sign)
7 X0 <_PA> REAL Reference point for spigot in 1st axis of plane (abs)
8 Y0 <_PO> REAL Reference point for spigot in 2nd axis of plane (abs)
9 DZ <_MID> REAL Maximum depth infeed (inc; enter without sign)
10 UXY <_FAL> REAL Finishing allowance, plane (inc), allowance at edge contour
11 UZ <_FALD> REAL Finishing allowance depth (inc), allowance at base (enter without sign)
12 FX <_FFP1> REAL Feedrate on contour
13 FZ <_FFD> REAL Depth infeed rate
14 <_CDIR> INT Milling direction (enter without sign)

UNITS:
0 = Down-cut
1 = Up-cut

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 731

No. Parameter
mask

Parameter
internal

Data type Meaning

15 <_VARI> INT Machining type
UNITS: Machining

1 = Roughing to final machining al‐
lowance

2 = Finishing (allowance X/Y/Z=0)
5 = Chamfering

16 ∅1 <_AP1> REAL Diameter of blank spigot
17 FS <_FS> REAL Chamfer width (inc)
18 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
19 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
0 = Compatibility mode
1 = Normal machining

THOUSANDS: Reserved
TEN THOUSANDS: Complete machining/remachining

0 = Compatibility mode (process
<_AP1> as before)

1 = Complete machining
2 = Post machining

20 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
732 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

21 <_AMODE> INT Alternative mode
UNITS: Final depth Z1 (DP)

0 = Absolute (compatibility mode)
1 = Incremental
2 = Absolute

TENS: Reserved
HUNDREDS: Insertion depth for chamfering (ZFS)

0 = Absolute
1 = Incremental

20.1.19 CYCLE78 - Drill thread milling

Syntax
CYCLE78(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_ADPR>, <_FDPR>, <_LDPR>,
<_DIAM>, <_PIT>, <_PITA>, <_DAM>, <_MDEP>, <_VARI>, <_CDIR>, <_GE>,
<_FFD>, <_FRDP>, <_FFR>, <_FFP2>, <_FFA>, <_PITM>, <_PTAB>,
<_PTABA>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Final drilling depth (abs/inc), see <_AMODE>
5 <_ADPR> REAL Predrilling depth with reduced drilling feedrate (inc) effective with

<_VARI> TEN THOUSANDS
6 D <_FDPR> REAL Maximum depth infeed (inc)

D ≥ Z1 ⇒ One infeed to the final drilling depth
D < Z1 ⇒ Deep drilling cycle with multiple infeeds and chip removal

7 ZR <_LDPR> REAL Remaining drilling depth when through-drilling (inc) with FR feed
8 ∅ <_DIAM> REAL Nominal diameter of the thread
9 P <_PIT> REAL Pitch as a numerical value
10 <_PITA> INT Evaluation of thread pitch P

 1 = Pitch in mm/rev
2 = Pitch in threads/inch
3 = Pitch in inch/rev
4 = Pitch as MODULE

11 DF <_DAM> REAL Absolute value / percentage for each additional infeed (degression),
see<_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 733

No. Parameter
mask

Parameter
internal

Data type Meaning

12 V1 <_MDEP> REAL Minimum infeed (inc), only active for degression
13 <_VARI> INT Machining type

UNITS: Reserved
TENS: Swarf removal before thread milling

0 = No chip removal before thread
milling (only active at final drilling
depth)

1 = Chip removal before thread mill‐
ing (only active at final drilling
depth)

HUNDREDS: Right-hand/left-hand threads
0 = Right-hand thread
1 = Left-hand thread

THOUSANDS: Remaining drilling depth with drilling fee‐
drate
0 = No remaining drilling depth with

drilling feedrate FR
1 = Remaining drilling depth with drill‐

ing feedrate FR
TEN THOUSANDS: Predrilling with reduced feedrate

0 = No predrilling with reduced fee‐
drate

1 = Predrilling with reduced feedrate
Predrilling feedrate = 0.3 F1, if
F1 < 0.15 mm/rev
Predrilling feedrate = 0.1 mm/rev,
if F1 ≥ 0.15 mm/rev

14 <_CDIR> INT Milling direction 0 = Down-cut
1 = Up-cut
4 = Up-cut + down-cut (combined

roughing + finishing)
15 Z2 <_GE> REAL Retraction distance before thread milling (inc)
16 F1 <_FFD> REAL Drilling feedrate (mm/min or in/min or mm/rev)
17 FR <_FRDP> REAL Drilling feedrate for remaining drilling depth (mm/min or mm/rev)
18 F2 <_FFR> REAL Feedrate for thread milling (mm/min or mm/tooth)
19 FS <_FFP2> REAL Finishing feedrate for <_CDIR> =4 (mm/min or mm/tooth)
20 <_FFA> INT Evaluation of feedrates

UNITS: Drilling feed F1
TENS: Drilling feedrate for remaining drilling

depth FR
HUNDREDS: Feedrate for thread milling F2
THOUSANDS: Finishing feedrate FS

21 <_PITM> STRING[15] String as marker for pitch input (for the interface only)1)

22 <_PTAB> STRING[20] String for thread table ("", "ISO", "BSW", "BSP", "UNC") (for the interface
only)1)

Programming cycles externally
20.1 Technology cycles

Job Planning
734 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

23 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...) (for the
interface only)1)

24 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data), re‐
served

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

26 <_AMODE> INT Alternative mode
UNITS: Drilling depth = Final drilling depth Z1

abs/inc
0 = Absolute
1 = Incremental

TENS: Absolute value / percentage DF for each
additional infeed (degression)
0 = Absolute value
1 = Percentage (0.001 to 100%)

Note
1) Parameters 21, 22 and 23 are only used for thread selection in the screen form thread tables.
The thread tables cannot be accessed via cycle definition in the cycle run time.

20.1.20 CYCLE79 - multi-edge

Syntax
CYCLE79(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_NUM>, <_SWL>, <_PA>,
<_PO>, <_STA>, <_RC>, <_AP1>, <_MIDA>, <_MID>, <_FAL>, <_FALD>,
<_FFP1>, <_CDIR>, <_VARI>, <_FS>, <_ZFS>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 735

No. Parameter
mask

Parameter
internal

Data type Meaning

4 Z1 <_DP> REAL Multiple-edge depth (abs/inc), see <_AMODE>
5 N <_NUM> INT Number of edges (1...n)
6

SW/L <_SWL> REAL Width across flats or edge length (depending on <_VARI>)
("SW" for width across flats, "L" for edge length)
Width across flats only if even number of edges, and single edge

7 X0 <_PA> REAL Spigot reference point, 1st axis (abs)
8 Y0 <_PO> REAL Spigot reference point, 2nd axis (abs)
9 α0 <_STA> REAL Angle of rotation, center of edge against 1st axis (X axis)
10 R1/FS1 <_RC> REAL Corner rounding with <_NUM> > 2 (radius/chamfer, see <_AMODE>)

(inc, to be entered without sign)
("R1" for radius, "FS1" for chamfer)

11 ∅ <_AP1> REAL Unmachined diameter of spigot
12 DXY <_MIDA> REAL Maximum infeed width (for unit, see <_AMODE>)
13 DZ <_MID> REAL Maximum depth infeed
14 UXY <_FAL> REAL Finishing allowance, plane
15 UZ <_FALD> REAL Finishing allowance, depth
16 F <_FFP1> REAL Machining feedrate
17 <_CDIR> INT Milling direction 0 = Down-cut

1 = Up-cut
18 <_VARI> INT Machining type

UNITS: Machining
1 = Roughing
2 = Finishing
3 = Edge finishing
5 = Chamfering

TENS: Width across flats or edge length
0 = Width across flats
1 = Edge length

19 FS <_FS> REAL Chamfer width (inc)
20 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>
21 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining or just calculation of

start point
1 = Normal machining

Programming cycles externally
20.1 Technology cycles

Job Planning
736 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

22 <_DMODE> INT Display mode
UNITS: Machining plane G17/18/19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

23 <_AMODE> INT Alternative mode
UNITS: Final depth (<_DP>)

0 = Absolute
1 = Incremental

TENS: Units for plane infeed (<_MIDA>)
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering (<_ZFS>)
0 = Absolute
1 = Incremental

THOUSANDS: Corner rounding (<_RC>)
0 = Radius
1 = Chamfer

20.1.21 CYCLE81 - drilling, centering

Syntax
CYCLE81(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <_GMODE>,
<_DMODE>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 737

No. Parameter
mask

Parameter
internal

Data type Meaning

3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1/∅ <DP> REAL Drilling depth (abs) / centering diameter (abs), see <_GMODE>
5 Z1 <DPR> REAL Drilling depth (inc)
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>
7 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Centering with respect to depth/diameter

0 = Compatibility, depth
1 = Diameter

8 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

9 <_AMODE> INT Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from DP/DPR pro‐
gramming

1 = Incremental
2 = Absolute

TENS: Dwell time at final drilling depth DT in
seconds/revolutions
0 = Compatibility, from DTB sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

20.1.22 CYCLE82 - drilling, counterboring

Syntax
CYCLE82(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <_GMODE>,
<_DMODE>, <_AMODE>, <_VARI>, <S_ZA>, <S_FA>, <S_ZD>, <S_FD>)

Programming cycles externally
20.1 Technology cycles

Job Planning
738 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>
7 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Drilling depth with respect to tip/shank

0 = Compatibility, tip
1 = Shank

8 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Basic

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 739

No. Parameter
mask

Parameter
internal

Data type Meaning

9 <_AMODE> INT Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from DP/DPR pro‐
gramming

1 = Incremental
2 = Absolute

TENS: Dwell time DT at final drilling depth in
seconds/revolutions
0 = Compatibility, from DT sign (> 0

seconds / < 0 revolutions)
1 = In seconds
2 = In revolutions

HUNDREDS: Drilling depth ZA abs/inc
0 = Incremental
1 = Absolute

THOUSANDS: Evaluation of predrilling feedrate
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

TEN THOUSANDS: Remaining drilling depth ZD abs/inc
0 = Incremental
1 = Absolute

HUNDRED THOUSANDS: Evaluation of remaining drilling feedrate
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

10 <_VARI> INT Predrilling/through-drilling machining type
UNITS: Reserved
TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Through drilling

0 = Through drilling "No"
1 = Through drilling "Yes"

TEN THOUSANDS: Predrilling
0 = Predrilling "No"
1 = Predrilling "Yes"

11 ZA <S_ZA> REAL Incremental predrilling depth in relation to reference point or absolute
(see <_AMODE> HUNDREDS)

12 FA <S_FA> REAL Predrilling feedrate as value or in % (in conjunction with <_AMODE>
THOUSANDS)

Programming cycles externally
20.1 Technology cycles

Job Planning
740 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

13 ZD <S_ZD> REAL Incremental remaining drilling depth in relation to final drilling depth or
absolute (see <_AMODE> TEN THOUSANDS)

14 FD <S_FD> REAL Remaining drilling feedrate as value or in % (in conjunction with
<_AMODE> HUNDRED THOUSANDS)

20.1.23 CYCLE83 - deep-hole drilling

Syntax
CYCLE83(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <FDEP>, <FDPR>, <_DAM>,
<DTB>, <DTS>, <FRF>, <VARI>, <_AXN>, <_MDEP>, <_VRT>, <_DTD>,
<_DIS1>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Final drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Final drilling depth (inc), see <_AMODE>
6 D <FDEP> REAL 1st drilling depth (abs), see <_AMODE>
7 D <FDPR> REAL 1st drilling depth (inc), see <_AMODE>
8 DF <_DAM> REAL Degression value / percentage for each additional infeed, see

<_AMODE>
9 DTB <DTB> REAL Dwell time at drilling depth, see <_AMODE>
10 DTS <DTS> REAL Dwell time at start point (for chip removal only), see <_AMODE>
11 FD1 <FRF> REAL Percentage for the feedrate for the first infeed, see <_AMODE>
12 <VARI> INT Machining type

UNITS: Chip breaking/removal
0 = Chip breaking
1 = Swarf removal

13 <_AXN> INT Tool axis
 0 = 3rd geometry axis

1 = 1st geometry axis
2 = 2nd geometry axis
> 2 3rd geometry axis

14 V1 <_MDEP> REAL Minimum infeed (only for degression percentage)
15 V2 <_VRT> REAL Retraction distance after each machining step (for chip breaking only)

 > 0 Variable retraction distance
0 = Default value 1 mm

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 741

No. Parameter
mask

Parameter
internal

Data type Meaning

16 DT <_DTD> REAL Dwell time at final drilling depth, see <_AMODE>
17 V3 <_DIS1> REAL Limit distance (for chip removal only), see <_AMODE>
18 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Reserved
TENS: Drilling depth with respect to tip/shank

0 = Tip
1 = Shank

19 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
742 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

20 <_AMODE> INT

Alternative mode
UNITS: Drilling depth = Final drilling depth Z1

(abs/inc)
0 = Compatibility, from programming

<DP>/<DPR>
1 = Incremental
2 = Absolute

TENS: Dwell time at drilling depth DTB in sec‐
onds/revolutions
0 = Compatibility, from DTB sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

HUNDREDS: Dwell time at start point of DTS in sec‐
onds/revolutions
0 = Compatibility, from DTS sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

THOUSANDS: Dwell time at final drilling depth DTD in
seconds/revolutions
0 = Compatibility, from DTD sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

TEN THOUSANDS: 1st drilling depth D (abs/inc)
0 = Compatibility, from programming

<FDEPF>/<DPR>
1 = Incremental
2 = Absolute

HUNDRED THOUSANDS: Degression value / percentage <_DAM>
for each additional infeed
0 = Compatibility, from <_DAM> sign

(> 0 degression value or < 0 fac‐
tor 0.001 to 1.0)

1 = Degression value
2 = Percentage (0.001 to 100%)

ONE MILLION: Limit distance V3 automatic/manual
0 = Compatibility from <_DIS1> sign

(= 0 automatic or > 0 manual)
1 = Automatic (calculated in the cy‐

cle)
2 = Manual (programmed value)

TEN MILLIONS: Feedrate factor for first infeed <FRF> as
factor/percentage

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 743

No. Parameter
mask

Parameter
internal

Data type Meaning

0 = Compatibility, as a factor (0.001
to 1.0, FRF = 0 means 100%)

1 = Percentage (0.001 to 999.999%)

20.1.24 CYCLE84 - tapping without compensating chuck

Syntax
CYCLE84(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <SDAC>, <MPIT>,
<PIT>, <POSS>, <SST>, <SST1>, <_AXN>, <_PITA>, <_TECHNO>, <_VARI>,
<_DAM>, <_VRT>, <_PITM>, <_PTAB>, <_PTABA>, <_GMODE>, <_DMODE>,
<_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth = final drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth = final drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at drilling depth in seconds
7 SDE <SDAC> INT Direction of rotation after end of cycle
8 <MPIT> REAL Thread size for "ISO metric" only (pitch is calculated internally during run

time)
9 P <PIT> REAL Pitch as a value, for unit see <_PITA>
10 αS1) <POSS> REAL Spindle position for oriented spindle stop
11 S <SST> REAL Spindle speed for tapping
12 SR <SST1> REAL Spindle speed for retraction
13 <_AXN> INT Drilling axis 0 = 3rd geometry axis

1 = 1st geometry axis
2 = 2nd geometry axis
≥ 3 = 3rd geometry axis

Programming cycles externally
20.1 Technology cycles

Job Planning
744 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_PITA> INT Pitch unit (evaluation of <PIT> and <MPIT>)
 0 = Pitch in mm - evalua‐

tion<MPIT>/
<PIT>

1 = Pitch in mm - evaluation<PIT>
2 = Pitch in TPI - evaluation of

<PIT>
(threads per inch)

3 = Pitch in inches - evaluation<PIT>
4 = MODULUS - evaluation<PIT>

15 <_TECHNO> INT Technology1)

UNITS: Exact stop response
0 = Exact stop response active as before cy‐

cle call
1 = Exact stop G601
2 = Exact stop G602
3 = Exact stop G603

TENS: Feedforward control
0 = With/without feedforward control active

as before cycle call
1 = With feedforward control FFWON
2 = Without feedforward control FFWOF

HUNDREDS: Acceleration
0 = SOFT/BRISK/DRIVE active as before cy‐

cle call
1 = With jerk limitation SOFT
2 = Without jerk limitation BRISK
3 = Reduced acceleration DRIVE

THOUSANDS: MCALL spindle mode
0 = Reactivate spindle operation for MCALL
1 = For MCALL remain in position control

16 <_VARI> INT Machining type
UNITS: 0 = 1 cut

1 = Chip breaking (deep hole tapping)
2 = Chip removal (deep hole tapping)

THOUSANDS: ISO/SIEMENS mode not relevant for screen form
0 = Call from ISO compatibility
1 = Call from SIEMENS context

17 D <_DAM> REAL Maximum depth infeed (for chip removal/breaking only)
18 V2 <_VRT> REAL Retraction distance after each machining step (for chip breaking only),

see <_AMODE>
19 <_PITM> STRING[15] String as marker for pitch input2)

20 <_PTAB> STRING[5] String for thread table ("", "ISO", "BSW", "BSP", "UNC")2)

21 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...)2)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 745

No. Parameter
mask

Parameter
internal

Data type Meaning

22 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved

23 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective before
the cycle call remains active

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Compatibility mode (for recompilation screen

form only),
if MD 52216 bit0 = 11)

0 = Technology parameters are displayed
(compatibility): TECHNO parameters ef‐
fective

1 = Technology parameters are not dis‐
played: Technology active "as before cy‐
cle call"

TEN THOUSANDS: Technology scaling in cycle screen forms
(Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
746 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_AMODE> INT Alternative mode
UNITS: Drilling depth = Final drilling depth Z1 (abs/inc)

0 = Compatibility, from programming <DP>/
<DPR>

1 = Incremental
2 = Absolute

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Thread direction of rotation right/left

0 = Compatibility, from PIT/MPTI sign
1 = Right
2 = Left

TEN THOUSANDS: Reserved
HUNDRED THOU‐
SANDS:

Reserved

ONE MILLION: Retraction distance after each machining step
V2 manual/automatic
0 = Compatibility, from <_VRT> program‐

ming (> 0 variable value or ≤ 0 standard
value 1 mm / 0.0394 inch)

1 = Automatic (standard value 1 mm / 0.0394
inch)

2 = Manual (programmed as under V2)
1) Technology fields may be hidden, depending on the setting date SD52216 $MCS_FUNCTION_MASK_DRILL
2) Parameters 19, 20 and 21 are only used for thread selection in the screen form thread tables. The thread tables cannot
be accessed via cycle definition in the cycle run time.

20.1.25 CYCLE85 - reaming

Syntax
CYCLE85(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <FFR>, <RFF>,
<_GMODE>, <_DMODE>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 747

No. Parameter
mask

Parameter
internal

Data type Meaning

6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>
7 F <FFR> REAL Feedrate
8 FR <RFF> REAL Feedrate during retraction
9 <_GMODE> INT Reserved
10 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

11 <_AMODE> INT

Alternative mode (drilling)
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from DP/DPR pro‐
gramming

1 = Incremental
2 = Absolute

TENS: Dwell time DT at final drilling depth in
seconds/revolutions
0 = Compatibility, from DT sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

20.1.26 CYCLE86 - boring

Syntax
CYCLE86(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <SDIR>, <RPA>,
<RPO>, <RPAP>, <POSS>, <_GMODE>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time at final drilling depth, see <_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
748 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

7 DIR <SDIR> INT Direction of spindle rotation 3 = M3
4 = M4

8 DX <RPA> REAL Lift-off distance in X direction
9 DY <RPO> REAL Lift-off distance in the Y direction
10 DZ <RPAP> REAL Lift-off distance in the Z direction
11 SPOS <POSS> REAL Spindle position for lift-off (for oriented spindle stop, in degrees)
12 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Lift mode
0 = Lift off, compatibility
1 = Do not lift off contour

13 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

14 <_AMODE> INT

Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from program‐
ming<DP>/<DPR>

1 = Incremental
2 = Absolute

TENS: Dwell time at final drilling depth DT in
seconds/revolutions
0 = Compatibility, from DT sign (> 0

seconds or < 0 revolutions)
1 = In seconds
2 = In revolutions

20.1.27 CYCLE92 - cut-off

Syntax
CYCLE92(<_SPD>, <_SPL>, <_DIAG1>, <_DIAG2>, <_RC>, <_SDIS>, <_SV1>,
<_SV2>, <_SDAC>, <_FF1>, <_FF2>, <_SS2>, <_DIAGM>, <_VARI>, <_DN>,
<_DMODE>, <_AMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 749

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <_SPD> REAL Reference point (abs, always diameter)
2 Y0 <_SPL> REAL Reference point (abs)
3 X1 <_DIAG1> REAL Depth for speed reduction, see <_AMODE> (UNITS)
4 X2 <_DIAG2> REAL Final depth, see <_AMODE> (TENS)
5 R/FS <_RC> REAL Rounding status or chamfer width, see <_AMODE> (THOUSANDS)
6 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
7 S <_SV1> REAL Constant spindle speed, see <_AMODE> (TEN THOUSANDS)

V Constant cutting rate
8 SV <_SV2> REAL Maximum speed at constant cutting speed
9 DIR <_SDAC> INT Direction of spindle rotation 3 = For M3

4 = For M4
10 F <_FF1> REAL Infeed as far as depth for speed reduction
11 FR <_FF2> REAL Reduced infeed as far as final depth
12 SR <_SS2> REAL Reduced speed as far as final depth
13 XM <_DIAGM> REAL Depth to withdraw parts gripper (abs, always diameter)
14 <_VARI> INT Machining type

UNITS: Retraction
0 = Retraction to <_SPD> + <_SDIS>
1 = No retraction at the end

TENS: Parts gripper
0 = No, do not execute M command
1 = Yes, call from CUST_TECH‐

CYC(101)- open drawer,
CUST_TECHCYC(102)- close
drawer

15 <_DN> INT D number for 2nd edge of tool; if not programmed ⇒ D+1
20 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Programming cycles externally
20.1 Technology cycles

Job Planning
750 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

21 <_AMODE> INT Alternative mode
UNITS: Depth for speed reduction (<_DIAG1>)

0 = Absolute, value of transverse ax‐
is in the diameter

1 = Incremental, value of transverse
axis in the radius

TENS: Final depth (<_DIAG2>)
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
HUNDREDS: Reserved
THOUSANDS: Radius/chamfer (<_RC>)

0 = Radius
1 = Chamfer

TEN THOUSANDS: Spindle speed / cutting rate (<_SV1>)
0 = Constant spindle speed
1 = Constant cutting rate

20.1.28 CYCLE95 - contour cutting

Syntax
CYCLE95(<NPP>, <MID>, <FALZ>, <FALX>, <FAL>, <FF1>, <FF2>, <FF3>,
<_VARI>, <DT>, <DAM>, <_VRT>, <_GMODE>, <_DMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 CON <NPP> STRING
[140]

Contour name

2 D <MID> REAL Maximum depth infeed during roughing, see <_GMODE>
3 UZ <FALZ> REAL Finishing allowance in Z
4 UX <FALX> REAL Finishing allowance in X
5 U <FAL> REAL Finishing allowance parallel to contour (effective in both axes)
6 F <FF1> REAL Feedrate for roughing
7 FY <FF2> REAL Insertion feedrate, relief cuts
8 FS <FF3> REAL Finishing feedrate

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 751

No. Parameter
mask

Parameter
internal

Data type Meaning

9 <_VARI> INT Machining type
UNITS and TENS:

1 = Roughing, longitudinal, external
2 = Roughing, transverse, external
3 = Roughing, longitudinal, internal
4 = Roughing, transverse, internal
5 = Finishing, longitudinal, external
6 = Finishing, transverse, external
7 = Finishing, longitudinal, internal
8 = Finishing, transverse, internal
9 = Complete machining, longitudi‐

nal, external
10 = Complete machining, transverse,

external
11 = Complete machining, longitudi‐

nal, internal
12 = Complete machining, transverse,

internal
HUNDREDS:

0 = With rounding at the contour,
without residual corners

1 = Without rounding at the contour
2 = Rounding only to previous inter‐

section, residual corners can re‐
sult

10 DT <DT> REAL Dwell time at feed interruption
11 DI <DAM> REAL Distance for feed interruptions
12 VRT <_VRT> REAL Lift-off distance from the contour

 0 = A lift-off distance of 1 mm is used
internally regardless of the active
system (inch or metric)

> 0 = Lift-off distance
13 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)

UNITS: Evaluation of the infeed depth
0 = Infeed depth is calculated

corresponding to the G group DI‐
AMON/DIAMOF

1 = Infeed depth acts as radius value
(independent of DIAMON/DIA‐
MOF)

Programming cycles externally
20.1 Technology cycles

Job Planning
752 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

THOUSANDS:
0 = Compatibility mode: Contour

name is in NPP
1 = Contour name is programmed in

CYCLE62 and transferred to
_SC_CONT_NAME

20.1.29 CYCLE98 - thread chain

Syntax
CYCLE98(<_PO1>, <_DM1>, <_PO2>, <_DM2>, <_PO3>, <_DM3>, <_PO4>,
<_DM4>, <APP>, <ROP>, <TDEP>, <FAL>, <_IANG>, <NSP>, <NRC>, <NID>,
<_PP1>, <_PP2>, <_PP3>, <_VARI>, <_NUMTH>, <_VRT>, <_MID>, <_GDEP>,
<_IFLANK>, <_PITA>, <_PITM1>, <_PITM2>, <_PITM3>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 Z0 <_PO1> REAL Reference point in Z (abs)
2 X0 <_DM1> REAL Reference point in X (abs), in diameter
3 Z1 <_PO2> REAL Intermediate point 1 in Z (abs/inc), see <_AMODE> (UNITS)
4 X1 <_DM2> REAL Intermediate point 1 in X (abs/inc), see <_AMODE> (TENS) or

X1α Thread inclination 1 (-90° to 90°)
abs is always diameter, inc is always radius

5 Z2 <_PO3> REAL Intermediate point 2 in Z, (abs/inc), see <_AMODE> (HUNDREDS)
6 X2 <_DM3> REAL Intermediate point 2 in X (abs/inc), see <_AMODE> (THOUSANDS) or

X2α Thread inclination 2 (-90° to 90°)
abs is always diameter, inc is always radius

7 Z3 <_PO4> REAL End point in Z, (abs/inc), see <_AMODE> (TEN THOUSANDS)
8 X3 <_DM4> REAL End point in X, (abs/inc), see <_AMODE> (HUNDRED THOUSANDS) or

X3α Thread inclination 3 (-90° to 90°)
abs is always diameter, inc is always radius

9 LW <APP> REAL Thread run-in (inc, to be entered without sign)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 753

No. Parameter
mask

Parameter
internal

Data type Meaning

10 LR <ROP> REAL Thread run-out (inc, to be entered without sign)
11 H1 <TDEP> REAL Thread depth (inc, to be entered without sign)
12 U <FAL> REAL Finishing allowance in X and Z
13 DP <_IANG> REAL Infeed slope as a distance or an angle, see <_AMODE> (ONE MILLION)

αP The infeed slope is applied according to the setting of parameter
<_VARI> (HUNDREDS).
 Definition for <_VARI_HUNDREDS = 0 -

Compatibility mode:
> 0 = Side infeed on one side
0 = Infeed vertical in the thread
< 0 = Side infeed with alternating sides
Definition for _VARI_HUNDREDS<>0:
> 0 = Infeed on the positive side
0 = Center infeed
< 0 = Infeed on the negative side

14 α0 <NSP> REAL Starting angle offset for the 1st thread
15 <NRC> INT Number of roughing cuts, see <_VARI> (TEN THOUSANDS)
16 NN <NID> INT Number of non-cuts
17 P0 <_PP1> REAL Pitch for 1st section of thread, see <_PITA>
18 P1 <_PP2> REAL Pitch for 2nd section of thread, see <_PITA>
19 P2 <_PP3> REAL Pitch for 3rd section of thread, see <_PITA>

Programming cycles externally
20.1 Technology cycles

Job Planning
754 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

20 <_VARI> INT Machining
UNITS: Technology

1 = External thread with linear infeed
2 = Internal thread with linear infeed
3 = External thread with degressive

infeed, cross-section of cut re‐
mains constant

4 = Internal thread with degressive
infeed, cross-section of cut re‐
mains constant

TENS: Reserved
HUNDREDS: Infeed type

0 = Compatibility mode for <_IANG>
1 = Infeed on one side
2 = Infeed alternate sides

THOUSANDS: Reserved
TEN THOUSANDS: Alternative depth infeed

0 = Compatibility, preset number of
roughing cuts (<_NRC>)

1 = Preset value for 1st infeed
(<_MID>)

HUNDRED THOUSANDS: Machining type
0 = Compatibility (roughing and fin‐

ishing)
1 = Roughing
2 = Finishing
3 = Roughing and finishing

ONE MILLION: Machining sequence for multistart thread
0 = In ascending order of threads
1 = In descending order of threads

21 N <_NUMTH> INT Number of thread turns
22 <_VRT> REAL Return distance (inc)

 0 = A lift-off distance of 1 mm is used
internally regardless of the active
system (inch or metric)

> 0 = Lift-off distance
23 D1 <_MID> REAL First infeed, see <_VARI> (TEN THOUSANDS)
24 DA <_GDEP> REAL Thread changeover depth (only effective with "multiple start")

 0 = Do not observe any thread
changeover depth

> 0 = Observe thread changeover
depth

25 <_IFLANK> REAL Infeed slope as width (for interface only)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 755

No. Parameter
mask

Parameter
internal

Data type Meaning

26 <_PITA> INT Evaluation of thread pitch
 0 = Compatibility mode for pitch,

evaluation <_PP1> to <_PP3> as
previously, according to active
system (metric/inch)

1 = Pitch in mm
2 = Pitch in TPI (threads per inch)
3 = Pitch in inches
4 = MODULUS

27 <_PITM1> STRING[15] String as marker for pitch input (for the interface only)
28 <_PITM2> STRING[15] String as marker for pitch input (for the interface only)
29 <_PITM3> STRING[15] String as marker for pitch input (for the interface only)
30 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
756 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

31 <_AMODE> INT Alternative mode
UNITS: 1st intermediate point in Z (Z1)

0 = Absolute
1 = Incremental

TENS: 1st intermediate point in X (X1)
0 = Absolute
1 = Incremental
2 = α

HUNDREDS: 2nd intermediate point in Z (Z2)
0 = Absolute
1 = Incremental

THOUSANDS: 2nd intermediate point in X (X2)
0 = Absolute
1 = Incremental
2 = α

TEN THOUSANDS: End point in Z (Z3)
0 = Absolute
1 = Incremental

HUNDRED THOUSANDS: End point in X (X3)
0 = Absolute
1 = Incremental
2 = α

ONE MILLION: Select infeed slope as angle or width
0 = Infeed angle <_IANG>
1 = Infeed slope <_IFLANK>

TEN MILLIONS: Single/multiple thread
0 = Compatibility mode (starting an‐

gle <_NSP> is evaluated)
1 = Single thread (with starting angle

offset <_NSP>)
2 = Multiple

20.1.30 CYCLE99 - thread turning

Syntax
CYCLE99(<_SPL>, <_SPD>, <_FPL>, <_FPD>, <_APP>, <_ROP>, <_TDEP>,
<_FAL>, <_IANG>, <_NSP>, <_NRC>, <_NID>, <_PIT>, <_VARI>, <_NUMTH>,
<_SDIS>, <_MID>, <_GDEP>, <_PIT1>, <_FDEP>, <_GST>, <_GUD>,
<_IFLANK>, <_PITA>, <_PITM>, <_PTAB>, <_PTABA>, <_DMODE>, <_AMODE>,
<_S_XRS>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 757

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 Z0 <_SPL> REAL Reference point (abs)
2 X0 <_SPD> REAL Reference point (abs, always diameter)
3 Z1 <_FPL> REAL End point in conjunction with <_AMODE> (UNITS)
4 X1 <_FPD> REAL End point in conjunction with <_AMODE> (TENS)
5 LW/LW2 <_APP> REAL Thread run-in in conjunction with <_AMODE> (HUNDREDS) or

Thread run-in = thread run-out in conjunction with <_AMODE> (HUN‐
DREDS)

6 LR <_ROP> REAL Thread run-out
7 H1 <_TDEP> REAL Thread depth
8 U <_FAL> REAL Finishing allowance in X and Z
9 DP <_IANG> REAL Infeed slope as a distance or an angle, in conjunction with <_AMODE>

(THOUSANDS)
αP > 0 = Infeed on the positive side

< 0 = Infeed on the negative side
0 = Center infeed

10 α0 <_NSP> REAL Starting angle offset (only effective with "single start")
11 ND <_NRC> INT Number of roughing cuts, in combination with <_VARI> (TEN THOU‐

SANDS)
12 NN <_NID> INT Number of non-cuts
13 P <_PIT> REAL Pitch as a value, in conjunction with <_PITA>

Programming cycles externally
20.1 Technology cycles

Job Planning
758 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

14 <_VARI> INT Machining type
UNITS: Technology

1 = External thread with linear infeed
2 = Internal thread with linear infeed
3 = External thread with degressive

infeed, cross-section of cut re‐
mains constant

4 = Internal thread with degressive
infeed, cross-section of cut re‐
mains constant

TENS: Reserved
HUNDREDS: Infeed type

1 = Infeed on one side
2 = Infeed alternate sides

THOUSANDS: Reserved
TEN THOUSANDS: Alternative depth infeed

0 = Preset number of roughing cuts
(<_NRC>)

1 = Preset value for 1st infeed
(<_MID>)

HUNDRED THOUSANDS: Machining type
1 = Roughing
2 = Finishing
3 = Roughing and finishing

ONE MILLION: Machining sequence for multistart thread
0 = In ascending order of threads
1 = In descending order of threads

15 N <_NUMTH> INT Number of thread turns
16 VR <_SDIS> REAL Return distance, inc
17 D1 <_MID> REAL First infeed depth, in conjunction with <_VARI> (TEN THOUSANDS)
18 DA <_GDEP> REAL Thread changeover depth (only effective with "multiple start")

 0 = Do not observe any thread
changeover depth

> 0 = Observe thread changeover
depth

19 G <_PIT1> REAL Change of pitch per revolution
 0 = Pitch is constant (G33)

> 0 = Pitch increases (G34)
< 0 = Pitch decreases (G35)

20 <_FDEP> REAL Insertion depth (enter without sign)
21 N1 <_GST> INT Starting thread N1 = 1...N, in conjunction with <_AMODE> (HUNDRED

THOUSANDS)
22 <_GUD> INT Reserved
23 <_IFLANK> REAL Infeed slope as width (for interface only)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 759

No. Parameter
mask

Parameter
internal

Data type Meaning

24 <_PITA> INT Pitch unit (evaluation of PIT and/or MPIT)
 0 = Pitch in mm - MPIT/PIT evalua‐

tion
1 = Pitch in mm - PIT evaluation
2 = Pitch in TPI - PIT evaluation

(threads per inch)
3 = Pitch in inches - PIT evaluation
4 = MODULE - PIT evaluation

25 <_PITM> STRING[15] String as marker for pitch input (for the interface only)1)

26 <_PTAB> STRING[20] String for thread table (for the interface only)1)

27 <_PTABA> STRING[20] String for selection in the thread table (for the interface only)1)

28 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Type of thread
0 = Longitudinal thread
1 = Face thread
2 = Tapered thread

HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Basic

Programming cycles externally
20.1 Technology cycles

Job Planning
760 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

29 <_AMODE> INT Alternative mode
UNITS: Thread length in Z

0 = Absolute
1 = Incremental

TENS: Thread length in X
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
2 = α

HUNDREDS: Calculation of approach/run-in path
<_APP>
0 = Thread run-in <_APP>
1 = Thread run-in = thread run-out

 <_APP> = -<_ROP>
2 = Specify thread run-in path

 <_APP> = -<_APP>
THOUSANDS: Select infeed slope as angle or width

0 = Infeed angle <_IANG>
1 = Infeed slope <_IFLANK>

TEN THOUSANDS: Single/multiple thread
0 = Single thread (with starting angle

offset <_NSP>)
1 = Multiple

HUNDRED THOUSANDS: Starting thread <_GST>
0 = Full machining
1 = Start machining from this thread
2 = Only machine this thread

ONE MILLION: Sag compensation for longitudinal thread
0 = Segment height, crowned thread

XS
1 = Radius, crowned thread RS

30 XS/RS <_S_XRS> REAL Sag compensation for longitudinal thread in conjunction with
<_AMODE>: ONE MILLION

Note
1) Parameters <_PITM>, <_PTAB> and <_PTABA> are only used for thread selection in the
screen form thread tables.
The thread tables cannot be accessed via cycle definition in the cycle run time.

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 761

20.1.31 CYCLE435 - Set dresser coordinate system

Syntax
CYCLE435(<_T>, <_DD>, <S_TA>, <S_DA>, <S_AD>, <S_AL>, <S_PVD>,
<S_PVL>, <S_PD>, <S_PL>, <_AMODE>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_T> STRING[32] Tool name of the grinding wheel
2 <_DD> INT Cutting edge number of the grinding wheel
3 <S_TA> STRING[32] Dressing tool reference point - dressing tool name
4 <S_DA> INT Cutting edge number of the dressing tool
5 <S_AD> REAL Dressing value, diameter
6 <S_AL> REAL Dressing value, face
7 <S_PVD> REAL Form-truing offset, diameter
8 <S_PVL> REAL Form-truing offset, face
9 <S_PD> REAL Form-truing allowance, diameter
10 <S_PL> REAL Form-truing allowance, face
11 <_AMODE> INT Alternative mode

UNITS: active tool at the end of the cycle
0 = dressing tool active
1 = wheel active

20.1.32 CYCLE495 - form-truing

Syntax
CYCLE495(<_T>, <_DD>, <_SC>, <_F>, <_VARI>, <_D>, <_DX>, <_DZ>,
<S_PA>, <S_N>, <_DMODE>, <_AMODE>, <S_FW>, <S_HW>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_T> STRING[20] Tool name of the grinding wheel
2 <_DD> INT Cutting edge number of the grinding wheel
3 <_SC> REAL Lift-off distance for avoiding obstacles, incremental
4 <_F> REAL Form-truing feedrate

Programming cycles externally
20.1 Technology cycles

Job Planning
762 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

5 <_VARI> INT Machining type
UNITS: Form-truing type

1 = Parallel to the axis
2 = Parallel to the contour

TENS: Machining direction
0 = Pulling

Possible with cutting edge posi‐
tions 1 to 4

1 = Pushing
Possible with cutting edge posi‐
tions 1 to 4

2 = Alternating
Possible with cutting edge posi‐
tions 1 to 8

3 = Start → end
Possible with cutting edge posi‐
tions 1 to 8

4 = End → start
Possible with cutting edge posi‐
tions 1 to 8

HUNDREDS: Infeed direction
1 = Infeed X for G18 or Y- for G19
2 = Infeed X+ for G18 or Y+ for G19
3 = Infeed Z- for G18 and for G19
4 = Infeed Z+ for G18 and for G19

6 <_D> REAL Dressing value for form-truing type parallel to the axis
7 <_DX> REAL Dressing value X for G18 or Y for G19 for form-truing type parallel to

the contour
8 <_DZ> REAL Dressing value Z for G18 and G19 for form-truing type parallel to the

contour
9 <S_PA> REAL Form-truing allowance
10 <S_N> INT Number of strokes in the form-truing program
11 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 763

No. Parameter
mask

Parameter
internal

Data type Meaning

12 <_AMODE> INT Alternative mode
UNITS: Form-truing selection, new/continue

1 = New
2 = Continue

TENS: Select form-truing allowance
0 = From the rough contour to the

lowest point of the contour
1 = From the rough contour to the

highest point of the contour
13 <S_FW> REAL Clear angle of the dressing tool
14 <S_HW> REAL Holder angle of the dressing tool

20.1.33 CYCLE800 - swiveling

Syntax
CYCLE800(<_FR>, <_TC>, <_ST>, <_MODE>, <_X0>, <_Y0>, <_Z0>, <_A>,
<_B>, <_C>, <_X1>, <_Y1>, <_Z1>, <_DIR>, <_FR_I>, <_DMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_FR> INT Retraction mode: 0 = No retraction
1 = Retraction machine axis Z
2 = Retraction machine axis Z and

then XY
3 = Reserved
4 = Maximum retraction in tool direc‐

tion
5 = Incremental retraction in tool di‐

rection
2 <_TC> STRING[32] Name of swivel data block: "" "" (no name) if only one swivel

data block exists
"0" Deselect swivel data block (de‐

lete the swivel frames)

Programming cycles externally
20.1 Technology cycles

Job Planning
764 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

3 <_ST> INT Status transformations
UNITS:

0 = New, swivel level is deleted and
recalculated using the current pa‐
rameters

1 = Additive, swivel level is added to
active swivel level

TENS: Track tool tip yes/no (only active when
the SWIVEL function is created in the
commissionig)
0 = Do not track tool tip
1 = Track tool tip (TRAORI)

HUNDREDS: Approach/align tool (function is shown in
tool swivel screen form)
0 = Do not approach tool
1 = Approach tool (preferably radial

mill)
2 = Align turning tool (when B axis

kinematic is set up for milling in
commissioning swiveling)

3 = Align milling tool (when B axis
kinematic is set up for milling in
commissioning swiveling)

THOUSANDS: Internal "Swiveling in JOG" parameter
TEN THOUSANDS: See direction parameter <_DIR>

0 = Swivel "Yes"
1 = Swivel "No", "Minus" direction3)

2 = Swivel "No", "Plus" direction3)

HUNDRED THOUSANDS: See direction parameter <_DIR>
0 = Compatibility
1 = Direction selection "Minus" opti‐

mized (only for user interface) 4)

2 = Direction selection "Plus" opti‐
mized (only for user interface) 4)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 765

No. Parameter
mask

Parameter
internal

Data type Meaning

4 <_MODE> 5) INT Swivel mode: Evaluation of swivel angle and swivel sequence (bit-co‐
ded)
Bit: 7 6 0 0: Swivel angle axis-by-axis -> see

parameters <_A>, <_B>,
<_C>

0 1: Solid angle -> see parameters
<_A>, <_B> 1)

1 0: Projection angle -> see parame‐
ters <_A>, <_B>,
 <_C> 1)

1 1: Direct rotary axis swivel mode ->
see parameters <_A>, <_B> 1)

Bit: 5 4 3 2 1 0
(these do not apply to solid
angles)

x x x x 0 1 1st rotation _A around X
x x x x 1 0 1st rotation _A around Y
x x x x 1 1 1st rotation _A around Z
x x 0 1 x x 2nd rotation _B around X
x x 1 0 x x 2nd rotation _B around Y
x x 1 1 x x 2nd rotation _B around Z
0 1 x x x x 3rd rotation _C around X
1 0 x x x x 3rd rotation _C around Y
1 1 x x x x 3rd rotation _C around Z

5 X0 <_X0> REAL Reference point X prior to rotation
6 Y0 <_Y0> REAL Reference point Y prior to rotation
7 Z0 <_Z0> REAL Reference point Z prior to rotation
8 X(A) <_A> REAL 1st rotation acc. to setting in parameter <_MODE>
9 Y(B) <_B> REAL 2nd rotation acc. to setting in parameter <_MODE>
10 Z(C) <_C> REAL 3rd rotation acc. to setting in parameter <_MODE>
11 X1 <_X1> REAL Reference point X after rotation
12 Y1 <_Y1> REAL Reference point Y after rotation
13 Z1 <_Z1> REAL Reference point Z after rotation
14 - or + <_DIR> INT Initiate travel of rotary axes (default = -1!)

 -1 = Position at smaller value of rotary
axis 1 or 2 2)

+1 = Position at larger value of rotary
axis 1 or 2 2)

0 = Do not swivel (merely calculate
swivel frame) 1) 3)

15 FR <_FR_I> REAL Value (inc) of retraction in tool direction incremental

Programming cycles externally
20.1 Technology cycles

Job Planning
766 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

16 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Representation of the beta value during
align tool
0 = Value
1 = Arrow

Note

If the following transfer parameters are programmed indirectly (as parameters), the screen
form is not reset: <_FR>, <_ST>, <_TC>, <_MODE>, <_DIR>
1) Can be selected if the SWIVEL function is created in the commissioning
2) Can be selected if direction reference to rotary axis 1 or 2 is set in IBN SWIVEL

If direction reference is "No" there is no selection field
3) Swivel selection "No" can be grayed out SD 55221 Bit 0

Swivel "No", "Minus" direction corresponds to <_DIR> = 0 and _ST TEN THOUSANDS = 1

Swivel "No", "Plus" direction corresponds to <_DIR> = 0 and _ST TEN THOUSANDS = 2
4) The direction selection for rotary axis 1 or 2 also occurs if the rotary axis with the direction
reference is in the pole position (position value equals zero).
5) Coding example: Axis-by-axis rotation, rotary sequence ZYX

Binary: 00011011 Decimal: 27

The axis identifiers XYZ correspond to the geometry axes of the NC channel. Individual
rotations around the XYZ axes are permissible. For example, rotary sequence around ZXZ is
not permitted in one call of CYCLE800

20.1.34 CYCLE801 - grid or frame

Syntax
CYCLE801(<_SPCA>, <_SPCO>, <_STA>, <_DIS1>, <_DIS2>, <_NUM1>,
<_NUM2>, <_VARI>, <_UMODE>, <_ANG1>, <_ANG2>, <_HIDE>, <_NSP>,
<_DMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 767

Parameters

No. Parameter
mask

Parameters
internal

Data type Meaning

1 X0 <_SPCA> REAL Reference point for position pattern (grid/frame) along the 1st axis (abs)
2 Y0 <_SPCO> REAL Reference point for position pattern (grid/frame) along the 2nd axis (abs)
3 α0 <_STA> REAL Basic angle of rotation

(angle to 1st axis)
< 0 = Clockwise rotation
> 0 = Counterclockwise rotation

4 L1 <_DIS1> REAL Distance for columns (distance from the 1st axis, enter without sign)
5 L2 <_DIS2> REAL Distance for rows (distance from the 2nd axis, enter without sign)
6 N1 <_NUM1> INT Number of columns
7 N2 <_NUM2> INT Number of rows
8 <_VARI> INT Machining type

UNITS: Position pattern
0 = Grid
1 = Frame

TENS: Reserved
HUNDREDS: Reserved

9 <_UMODE> INT Reserved
10 αX <_ANG1> REAL Shear angle with 1st axis (lines arranged obliquely to the 1st axis)

 < 0 = Clockwise measurement
(0 to -90 degrees)

> 0 = Counter-clockwise measure‐
ment
(0 to 90 degrees)

11 αY <_ANG2> REAL Shear angle with 2nd axis (lines arranged obliquely to the 2nd axis)
 < 0 = Clockwise measurement

(0 to -90 degrees)
> 0 = Counter-clockwise measure‐

ment
(0 to 90 degrees)

12 <_HIDE> STRING
[200]

Hidden positions
● Max. 198 characters
● Specification of consecutive position numbers, e.g. "1,3" (positions

1 and 3 are not executed)
13 <_NSP> INT Reserved
14 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Programming cycles externally
20.1 Technology cycles

Job Planning
768 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

20.1.35 CYCLE802 - arbitrary positions

Syntax
CYCLE802(<_XA>, <_YA>, <_X0>, <_Y0>, <_X1>, <_Y1>, <_X2>, <_Y2>,
<_X3>, <_Y3>, <_X4>, <_Y4>, <_X5>, <_Y5>, <_X6>, <_Y6>, <_X7>, <_Y7>,
<_X8>, <_Y8>, <_VARI>, <_UMODE>, <_DMODE>, <S_ABA>, <S_AB0>,
<S_AB1>, <S_AB2>, <S_AB3>, <S_AB4>, <S_AB5>, <S_AB6>, <S_AB7>,
<S_AB8>)

Parameters

No. Parameter
mask

Parameters
internal

Data type Meaning

1 <_XA> INT Alternatives for all X positions (9-digit decimal value)
Number of digits: 876543210 (digit position corresponds to drilling po‐
sition Xn)
Position value: 1 = Absolute (1st programmed posi‐

tion is always absolute)
2 = Incremental

2 <_YA> INT Alternatives for all Y positions (9-digit decimal value)
Number of digits: 876543210 (digit position corresponds to drilling po‐
sition Yn)
Position value: 1 = Absolute (1st programmed posi‐

tion is always absolute)
2 = Incremental

3 X0 <_X0> REAL 1. Position X
4 Y0 <_Y0> REAL 1. Position Y
5 X1 <_X1> REAL 2. Position X
6 Y1 <_Y1> REAL 2. Position Y
7 X2 <_X2> REAL 3. Position X
8 Y2 <_Y2> REAL 3. Position Y
9 X3 <_X3> REAL 4. Position X
10 Y3 <_Y3> REAL 4. Position Y
11 X4 <_X4> REAL 5. Position X
12 Y4 <_Y4> REAL 5. Position Y
13 X5 <_X5> REAL 6. Position X
14 Y5 <_Y5> REAL 6. Position Y
15 X6 <_X6> REAL 7. Position X
16 Y6 <_Y6> REAL 7. Position Y
17 X7 <_X7> REAL 8. Position X
18 Y7 <_Y7> REAL 8. Position Y
19 X8 <_X8> REAL 9. Position X
20 Y8 <_Y8> REAL 9. Position Y

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 769

No. Parameter
mask

Parameters
internal

Data type Meaning

21 <_VARI> INT Machining
HUNDREDS: (Only for call from Jobshop) (At present

only 0 and 2 evaluated)
0 = Do not clamp spindle
1 = Only clamp spindle for vertical in‐

sertion with G00 or G01
2 = Clamp spindle during the entire

machining operation
THOUSANDS: Reserved
TEN THOUSANDS: Position pattern with/without rotary axis

– axis combination
(with <_VARI> HUNDRED THOU‐
SANDS)
0 = XY (only XY without rotary axis,

compatibility)
1 = X,Y or Z and rotary axis:

XA, YB, ZC
(1 rotary axis with geometry axis
around which the rotary axis ro‐
tates)

2 = XY and rotary axis:
XYA, XYB, XYC
(1 rotary axis with 1st and 2nd
geometry axis, without TRACYL)

HUNDRED THOUSANDS: Rotary axis
0 = Without rotary axis

(only XY, compatibility)
1 = A axis (rotary axis around X)
2 = B axis (rotary axis around Y)
3 = C axis (rotary axis around Z)

TEN MILLIONS + ONE MIL‐
LION:

Position pattern with rotary axis – offset
(for several rotary axes around the same
axis; if index too large, then 1st axis)
00 = 1st A, B or C axis or for compati‐

bility
01 = 2nd A, B or C axis
...
19 = 20th A, B or C axis

22 <_UMODE> INT Selection of the spindle to be clamped: (Only for call from Jobshop)
(Call of user cycle CUST_TECHCYC)
 3 = Clamp/release main spindle

23 = Clamp/release counterspindle

Programming cycles externally
20.1 Technology cycles

Job Planning
770 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameters
internal

Data type Meaning

23 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

24 <S_ABA> INT Alternatives for all AB positions (9-digit decimal value)
Number of digits: 876543210 (digit position corresponds to position
ABn)
Position value: 1 = Absolute (1st programmed posi‐

tion is always absolute)
2 = Incremental

25 A0 <S_AB0> REAL 1st rotary axis position for position pattern with rotary axis (in conjunc‐
tion with <_VARI>))

26 A1 <S_AB1> REAL 2nd rotary axis position for position pattern with rotary axis
27 A2 <S_AB2> REAL 3rd rotary axis position for position pattern with rotary axis
28 A3 <S_AB3> REAL 4th rotary axis position for position pattern with rotary axis
29 A4 <S_AB4> REAL 5th rotary axis position for position pattern with rotary axis
30 A5 <S_AB5> REAL 6th rotary axis position for position pattern with rotary axis
31 A6 <S_AB6> REAL 7th rotary axis position for position pattern with rotary axis
32 A7 <S_AB7> REAL 8th rotary axis position for position pattern with rotary axis
33 A8 <S_AB8> REAL 9th rotary axis position for position pattern with rotary axis

Note

Positions that are not required for parameters X1/Y1/A1 to X8/Y8/A8 can be ignored. The
alternative values for <_XA>, <_YA> and <S_ABA>, however, must be provided in full for all
9 positions.

For position pattern XA, YB or ZC (a geometry axis and rotary axis), the axis of the machining
plane that is not traversed via the position pattern (Y for G17 and XA) must be positioned
before the cycle call.

20.1.36 CYCLE830 - deep-hole drilling 2

Syntax
CYCLE830(<RTP>, <RFP>, <SDIS>, <_DP>, <FDEP>, <_DAM>, <DTB>, <DTS>,
<FRF>, <VARI>, <_MDEP>, <_VRT>, <_DTD>, <_DIS1>, <S_FP>, <S_SDAC2>,
<S_SV2>, <S_FB>, <_SDAC>, <_SV1>, <S_SPOS>, <S_ZA>, <S_FA>, <S_ZP>,
<S_FS>, <S_ZS1>, <S_ZS2>, <S_N>, <S_ZD>, <S_FD>, <S_FR>, <S_SDAC3>,

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 771

<S_SV3>, <S_CON>, <S_COFF>, <_GMODE>, <_DMODE>, <_AMODE>,
<S_AMODE2>, <S_AMODE3>, <S_ZPV>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, without sign)
4 Z1 <_DP> REAL Final drilling depth abs/inc (see <_AMODE>UNITS)
5 D <FDEP> REAL 1st drilling depth for the absolute or incremental chip breaking/removal

in relation to the reference point with/without predrilling or in relation to
pilot hole depth (see <_AMODE> TEN THOUSANDS)

6 DF <_DAM> REAL Absolute value / percentage for each additional infeed, degression ab‐
solute value / percentage (see <_AMODE> HUNDRED THOUSANDS)

7 DTB <DTB> REAL Dwell time at each drilling depth (see <_AMODE> TENS)
8 DTS <DTS> REAL Dwell time during chip removal at starting point (see <_AMODE> HUN‐

DREDS)
9 FD1 <FRF> REAL Percentage for the feedrate for the first infeed (see <_AMODE> TEN

MILLION)
10 <VARI> INT

Machining
UNITS: Chip breaking / swarf removal

0 = In one cut
1 = Chip breaking
2 = Swarf removal
3 = Chip breaking and swarf removal

TENS: Retraction during swarf removal
0 = To pilot hole depth
1 = To safety clearance

HUNDREDS: Soft first cut
0 = No
1 = Yes

THOUSANDS: Through drilling
0 = No
1 = Yes

TEN THOUSANDS: Predrilling / pilot hole
0 = Without predrilling
1 = With predrilling
2 = With pilot hole

HUNDRED THOUSANDS: Retraction
0 = To pilot hole depth
1 = To retraction plane

11 V1 <_MDEP> REAL Minimum incremental infeed (only for degression percentage)

Programming cycles externally
20.1 Technology cycles

Job Planning
772 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

12 V2 <_VRT> REAL Retraction distance after each incremental machining step (for chip
breaking only)
 0 = Default value 1 mm

> 0 = Variable retraction distance
13 DT <_DTD> REAL Dwell time at final drilling depth (see <_AMODE> THOUSANDS)
14 V3 <_DIS1> REAL Incremental limit distance for chip removal only (see <_AMODE> ONE‐

MILLION)
15 FP <S_FP> REAL Feedrate for travel into the pilot hole as value or in % (in conjunction

with <S_AMODE2> HUNDREDS)
16 <S_SDAC2> INT Direction of spindle rotation during approach

 3 = M3
4 = M4
5 = M5 (default)

17 SP <S_SV2> REAL Approach with constant spindle speed (see
<S_AMODE2> TEN MILLION)

V4 constant cutting rate
 Spindle speed in % of the drilling speed

18 F <S_FB> REAL Drilling feedrate (see <S_AMODE2> UNITS)
19 <_SDAC> REAL Direction of spindle rotation during drilling

 3 = M3
4 = M4

20 S <_SV1> REAL Drilling with constant spindle speed (see
<S_AMODE2> ONE MILLION)

V5 constant cutting rate
21 SPOS <S_SPOS> REAL Spindle position, only if approach with M5
22 ZA <S_ZA> REAL Incremental predrilling depth in relation to reference point or absolute

(see <S_AMODE3> UNITS)
23 FA <S_FA> REAL Predrilling feedrate as value or in % (in conjunction with <S_AMODE2>

TENS)
24 ZP <S_ZP> REAL Incremental pilot hole in relation to reference point or absolute or factor

of the hole diameter (see <S_AMODE3> TENS)
25 FS <S_FS> REAL First cut feedrate as value or in % (in conjunction with <S_AMODE2>

THOUSANDS)
26 ZS1 <S_ZS1> REAL Depth of each first cut with constant feedrate (inc)
27 ZS2 <S_ZS2> REAL Depth of each first cut for feedrate increase (inc)
28 N <S_N> INT Number of chip breaking strokes before each chip removal
29 ZD <S_ZD> REAL Incremental remaining drilling depth in relation to final drilling depth or

absolute (see <S_AMODE3> HUNDREDS)
30 FD <S_FD> REAL Remaining drilling feedrate as value or in % (in conjunction with

<S_AMODE2> TEN THOUSANDS)
31 FR <S_FR> REAL Retraction feedrate (in conjunction with <S_AMODE2> HUNDRED

THOUSANDS)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 773

No. Parameter
mask

Parameter
internal

Data type Meaning

32 <S_SDAC3> INT Direction of spindle rotation during retraction
 3 = M3

4 = M4
5 = M5

33 SR <S_SV3> REAL Retraction with constant spindle speed (see
<S_AMODE2> HUNDRED MILLION)

V6 constant cutting rate
 Spindle speed in % of the drilling speed

34 Coolant on <S_CON> STRING[10] Coolant on, M command or subprogram call
35 Coolant off <S_COFF> STRING[10] Coolant off, M command or subprogram call
36 <_GMODE> INT

Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Drilling depth with respect to tip/shank

0 = Tip
1 = Shank

37 <_DMODE> INT

Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Basic

Programming cycles externally
20.1 Technology cycles

Job Planning
774 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

38 <_AMODE> INT

Alternative mode 1
UNITS: Drilling depth = Final drilling depth Z1

abs/inc
0 = Incremental
1 = Absolute

TENS: Dwell time at each drilling depth DTB in
seconds/revolutions
0 = In seconds
1 = In revolutions

HUNDREDS: Dwell time for chip removal DTS in sec‐
onds/revolutions
0 = In seconds
1 = In revolutions

THOUSANDS: Dwell time at final drilling depth DT in
seconds/revolutions
0 = In seconds
1 = In revolutions

TEN THOUSANDS: 1st drilling depth D abs/inc
0 = Incremental
1 = Absolute

HUNDRED THOUSANDS: Absolute value / percentage DF for each
additional infeed (degression)
0 = Absolute value
1 = Percentage (0.001 to 100%)

ONE MILLION: Limit distance V3 automatic/manual
0 = Automatic (calculated in the cy‐

cle)
1 = Manual (programmed value)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 775

No. Parameter
mask

Parameter
internal

Data type Meaning

39 <S_AMODE2
>

INT Alternative mode 2
UNITS: UNITS: Drilling feedrate F

0 = F/min
1 = F/rev

TENS: Evaluation of predrilling feedrate FA
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

HUNDREDS: Evaluation of feedrate for travel into pilot
hole FP
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

THOUSANDS: Evaluation of first cut feedrate FS
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

TEN THOUSANDS: Evaluation of through-drilling feedrate FD
0 = As % of drilling feedrate
1 = F/min
2 = F/rev

HUNDRED THOUSANDS: Retraction feedrate FR
0 = F/min
1 = Rapid traverse

ONE MILLION: Drilling - spindle speed / cutting rate (S/
V5)
0 = Constant spindle speed
1 = Constant cutting rate

TEN MILLIONS: Approach with spindle speed / cutting
rate (SP/V4)
0 = Constant spindle speed
1 = Constant cutting rate
2 = Spindle speed in % of the drilling

speed
HUNDRED MILLIONS: Retraction - spindle speed / cutting rate

(SR/V6)
0 = Constant spindle speed
1 = Constant cutting rate
2 = Spindle speed in % of the drilling

speed

Programming cycles externally
20.1 Technology cycles

Job Planning
776 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

40 <S_AMODE3
>

INT Alternative mode 3
UNITS: Drilling depth ZA abs/inc

0 = Incremental
1 = Absolute

TENS: Depth of the pilot hole ZP
0 = Incremental
1 = Absolute
2 = Factor of the hole diameter

HUNDREDS: Remaining drilling depth ZD abs/inc
0 = Incremental
1 = Absolute

41 ZPV <S_ZPV> REAL Incremental limit distance from pilot hole depth

20.1.37 CYCLE832 - High-Speed Settings

Syntax
CYCLE832(<S_TOL>, <S_TOLM>, <S_OTOL>)

Note

CYCLE832 does not relieve the machine manufacturer from optimization tasks that are
necessary when commissioning the machine. This involves the optimization of the axes
involved in the machining process and NCU settings (precontrol, jerk limiting, etc.).

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 777

Parameters

No. Parame‐
ter mask

Parameter
internal

Data type Meaning

1 Tolerance <S_TOL> REAL Contour tolerance
The contour tolerance corresponds to the axis tolerance of the geometry axes.

2

 <S_TOLM> INT Machining type (technology)
UNITS:

0 = Deselection
1 = Finishing
2 = Semi-finishing
3 = Roughing

TENS:
0 = Compatibility1) or no orientation tol‐

erance
1 = Orientation tolerance in parameter

<S_OTOL>
HUNDREDS
...
HUNDRED
THOUSANDS

Assigned
for reasons of
compatibility

ONE MILLION:
0 = Compatibility. The best available

mold making function is automati‐
cally used:
● Option Top Surface not active:

 Advanced Surface
● Option Top Surface active:

⇒ Top Surface with smoothing
1 = Top Surface without smoothing
2 = Top Surface with smoothing

3 ORI toler‐
ance

<S_OTOL> REAL Orientation tolerance or version identifier CYCLE832
Tolerance parameter for the orientation of the workpiece.
Is required when executing a high-speed machining program on machines
with dynamic orientation transformation (e.g. 5-axis machining).
Parameter <S_OTOL> must be programmed. This also applies for applications
on 3-axis machines for programs without orientation of the tool (<S_OTOL> =
1).

1) Orientation tolerance derived from the contour tolerance multiplied by the factor from the cycle setting data SD55441 to
SD55443.
References:
Commissioning Manual, Base Software and Operator Software; SINUMERIK Operate (IM9), Section "Configuring the High-
Speed Settings function (CYCLE832)"

Programming cycles externally
20.1 Technology cycles

Job Planning
778 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Plain text entry
To improve the readability of the cycle call, parameter <S_TOLM> (machining type) can also
be entered in the plain text. Plain texts are independent of any language. The following entries
are permitted:

_OFF for 0 Deselection
_FINISH for 1 Finishing
_SEMIFIN for 2 Rough-finishing
_ROUGH for 3 Roughing
_ORI_FINISH for 11 Finishing with input of an orienta‐

tion tolerance
_ORI_SEMIFIN for 12 Finishing with input of an orienta‐

tion tolerance
_ORI_ROUGH for 13 Roughing with input of an orienta‐

tion tolerance
_TOP_SURFACE_SMOOTH_OFF for 1000000 Top Surface without smoothing
_TOP_SURFACE_SMOOTH_ON for 2000000 Top Surface with smoothing

For plain text input for Top Surface, plain texts are combined as shown in the following example:

CYCLE832(0.1, _TOP_SURFACE_SMOOTH_OFF+_ORI_FINISH, 1)

Note

The plain texts are based on the function names of the G group 59 (dynamic mode for path
interpolation). With these plain texts, 3-axis machines and machines with multi-axis orientation
transformation (TRAORI) are clearly separated in the application.

Deselecting CYCLE832
When CYCLE832 is deselected, parameter <S_TOL> must be transferred with zero.

Example: CYCLE832(0,0,1)
The syntax CYCLE832() is also permitted for deselecting CYCLE832.

Examples

Example 1: CYCLE832 on 3-axis machine without orientation transformation
a) Cycle call with plain text input

Program code Comment
G710 ; Dimension system is metric.
CYCLE832(0.004,_FINISH,1) ; CYCLE832 call with:

Contour tolerance = 0.004 mm, machining type:
Finishing

... ; Execution of a high-speed machining program

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 779

b) Cycle call without plain text input

Program code Comment
G710 ; See above
CYCLE832(0.004,1,1) ; See above
... ; See above

Example 2: CYCLE832 on 5-axis machine with orientation transformation
a) Cycle call and deselection with plain text input

Program code Comment
G710 ; Dimension system is metric.
TRAORI ; Activate orientation transformation.
CYCLE832(0.3,_ORI_ROUGH,0.8) ; CYCLE832 call with:

Contour tolerance = 0.3 mm, machining type:
Roughing with input of an orientation toler-
ance; orientation tolerance = 0.8 degrees

... ; Execution of a high-speed machining program
CYCLE832(0,_OFF,1) ; Contour tolerance = 0,

machining type: Deselection of CYCLE832,
orientation tolerance = 0 degrees

b) Cycle call and deselection without plain text input

Program code Comment
G710 ; See above
TRAORI ; See above
CYCLE832(0.3,13,0.8) ; See above
... ; See above
CYCLE832(0,0,1) ; See above

20.1.38 CYCLE840 - tapping with compensating chuck

Syntax
CYCLE840(<RTP>, <RFP>, <SDIS>, <DP>, <DPR>, <DTB>, <SDR>, <SDAC>,
<ENC>, <MPIT>, <PIT>, <_AXN>, <_PITA>, <_TECHNO>, <_PITM>, <_PTAB>,
<_PTABA>, <_GMODE>, <_DMODE>, <_AMODE>)

Programming cycles externally
20.1 Technology cycles

Job Planning
780 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <RTP> REAL Retraction plane (abs)
2 Z0 <RFP> REAL Reference point (abs)
3 SC <SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <DP> REAL Drilling depth (abs), see <_AMODE>
5 Z1 <DPR> REAL Drilling depth (inc), see <_AMODE>
6 DT <DTB> REAL Dwell time in seconds at drilling depth / safety clearance after retraction,

see <ENC>
7 <SDR> INT Direction of rotation for retraction
8 SDE <SDAC> INT Direction of rotation after end of cycle
9 <ENC> INT Tapping with spindle mounted encoder (G33)/tapping without spindle

mounted encoder (G63)
 0 = With spindle moun‐

ted encoder
- Pitch from
<MPIT>/<PIT> -
without DT

20 = With spindle moun‐
ted encoder

- Pitch from
<MPIT>/<PIT> -
with DT after retrac‐
tion to safety clear‐
ance

11 = Without spindle
mounted encoder

- Pitch from
<MPIT>/<PIT> -
with DT at drilling
depth

1 = Without spindle
mounted encoder

- Pitch from pro‐
grammed feedrate
- with DT at drilling
depth (feedrate =
speed · pitch)

10 <MPIT> REAL Thread size for "ISO metric" only (pitch is calculated internally during run
time)
Range of values: 3 to 48 (for M3 to M48), alternative to <PIT>

11 <PIT> REAL Pitch as a value, for unit see <_PITA>
Range of values: > 0, alternative to MPIT

12 <_AXN> INT Drilling axis 0 = 3rd geometry axis
1 = 1st geometry axis
2 = 2nd geometry axis
≥ 3 = 3rd geometry axis

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 781

No. Parameter
mask

Parameter
internal

Data type Meaning

13 <_PITA> INT Pitch unit (evaluation of <PIT> and <MPIT>)
 0 = Pitch in mm - evalua‐

tion<MPIT>/
<PIT>

1 = Pitch in mm - evaluation<PIT>
2 = Pitch in TPI - evaluation of

<PIT>
(threads per inch)

3 = Pitch in inches - evaluation<PIT>
4 = MODULUS - evaluation<PIT>

14 <_TECHNO> INT Technology1)

UNITS: Exact stop response
0 = Exact stop response active as before cy‐

cle call
1 = Exact stop G601
2 = Exact stop G602
3 = Exact stop G603

TENS: Feedforward control
0 = With/without feedforward control active

as before cycle call
1 = With feedforward control FFWON
2 = Without feedforward control FFWOF

15 <_PITM> STRING[15] String as marker for pitch input2)

16 <_PTAB> STRING[5] String for thread table ("", "ISO", "BSW", "BSP", "UNC")2)

17 <_PTABA> STRING[20] String for selection from thread table (e.g. "M 10", "M 12", ...)2)

18 <_GMODE> INT Reserved

Programming cycles externally
20.1 Technology cycles

Job Planning
782 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

19 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective before
the cycle call remains active

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS: Compatibility mode (for recompilation screen

form only), if MD 52216 bit0 = 11)

0 = Technology parameters are displayed
(compatibility): TECHNO parameters ef‐
fective

1 = Technology parameters are not dis‐
played: Technology active "as before cy‐
cle call"

TEN THOUSANDS: Technology scaling in cycle screen forms
(Page 820)
0 = Input: Complete
1 = Input: Simple

20 <_AMODE> INT Alternative mode
UNITS: Drilling depth Z1 (abs/inc)

0 = Compatibility, from programming <DP>/
<DPR>

1 = Incremental
2 = Absolute

1) Technology fields may be hidden, depending on the setting date SD52216 MCS_FUNCTION_MASK_DRILL
2) Parameters 15, 16 and 17 are only used for thread selection in the screen form thread tables. The thread tables cannot
be accessed via cycle definition in cycle run time.

20.1.39 CYCLE899 - Milling open slot

Syntax
CYCLE899(<_RTP>, <_RFP>, <_SDIS>, <_DP>, <_LENG>, <_WID>, <_PA>,
<_PO>, <_STA>, <_MID>, <_MIDA>, <_FAL>, <_FALD>, <_FFP1>, <_CDIR>,
<_VARI>, <_GMODE>, <_DMODE>, <_AMODE>, <_UMODE>, <_FS>, <_ZFS>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 783

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 RP <_RTP> REAL Retraction plane (abs)
2 Z0 <_RFP> REAL Reference point of tool axis (abs)
3 SC <_SDIS> REAL Safety clearance (to be added to reference point, enter without sign)
4 Z1 <_DP> REAL Slot depth (abs/inc), see <_AMODE>
5 L <_LENG> REAL Length of slot (inc)
6 W <_WID> REAL Width of slot (inc)
7 X0 <_PA> REAL Reference/start point 1st axis (abs)
8 Y0 <_PO> REAL Reference/start point 2nd axis (abs)
9 α0 <_STA> REAL Angle of rotation with respect to 1st axis
10 DZ <_MID> REAL Maximum infeed depth (inc), for vortex milling only
11 DXY <_MIDA> REAL Maximum plane infeed, see <_AMODE>
12 UXY <_FAL> REAL Finishing allowance, plane
13 UZ <_FALD> REAL Finishing allowance, depth
14 F <_FFP1> REAL Feedrate
15 <_CDIR> INT Milling direction

UNITS:
0 = Down-cut
1 = Up-cut
4 = Alternating

16 <_VARI> INT Machining
UNITS:

1 = Roughing
2 = Finishing
3 = Base finishing
4 = Edge finishing
5 = Rough-finishing
6 = Chamfering

TENS: Reserved
HUNDREDS: Reserved
THOUSANDS:

1 = Vortex milling
2 = Plunge cutting

Programming cycles externally
20.1 Technology cycles

Job Planning
784 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Reserved
TENS: Reserved
HUNDREDS: Select machining/only calculation of start

point
1 = Normal machining

THOUSANDS: Dimensioning via center/edge
0 = Dimensioning via center
1 = "Left-hand" dimensioning using

edge ("-" direction of 1st axis)
2 = "Right-hand" dimensioning using

edge ("+" direction of 1st axis)
18 <_DMODE> INT Display mode

UNITS: Machining plane G17/G18/G19
0 = Compatibility, the plane effective

before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: --- Reserved
HUNDREDS: --- Reserved
THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

19 <_AMODE> INT Alternative mode
UNITS: Slot depth Z1

0 = Absolute
1 = Incremental

TENS: Unit for plane infeed (<_MIDA>) DXY
0 = mm
1 = % of tool diameter

HUNDREDS: Insertion depth for chamfering ZFS
0 = Absolute
1 = Incremental

20 <_UMODE> INT Reserved
21 FS <_FS> REAL Chamfer width (inc)
22 ZFS <_ZFS> REAL Insertion depth (tool tip) on chamfering (abs/inc), see <_AMODE>

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 785

20.1.40 CYCLE930 - groove

Syntax
CYCLE930(<_SPD>, <_SPL>, <_WIDG>, <_WIDG2>, <_DIAG>, <_DIAG2>,
<_STA>, <_ANG1>, <_ANG2>, <_RCO1>, <_RCI1>, <_RCI2>, <_RCO2>,
<_FAL>, <_IDEP1>, <_SDIS>, <_VARI>, <_DN>, <_NUM>, <_DBH>, <_FF1>,
<_NR>, <_FALX>, <_FALZ>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <_SPD> REAL Reference point in the plane axis (always diameter)
2 Z0 <_SPL> REAL Reference point along the longitudinal axis
3 B1 <_WIDG> REAL Width at bottom of groove
4 B2 <_WIDG2> REAL Width at top of groove (for interface only)
5 T1 <_DIAG> REAL Depth of groove at the reference point

for abs and longitudinal machining = diameter, otherwise inc
6 T2 <_DIAG2> REAL Groove depth opposite the reference point (for interface only),

for abs and longitudinal machining = diameter, otherwise inc
7 α0 <_STA> REAL Angle of inclination (-180 ≤ <_STA> ≤ 180)
8 α1 <_ANG1> REAL Side angle 1 (0 ≤ <_ANG1> < 90) at the side of the groove determined

by the reference point
9 α2 <_ANG2> REAL Side angle 2 (0 ≤ <_ANG2> < 90) opposite the reference point
10 R1/FS1 <_RCO1> REAL Rounding radius or chamfer width 1, external at the reference point
11 R2/FS2 <_RCI1> REAL Rounding radius or chamfer width 2, internal at the reference point
12 R3/FS3 <_RCI2> REAL Rounding radius or chamfer width 3, internal opposite the reference

point
13 R4/FS4 <_RCO2> REAL Rounding radius or chamfer width 4, external opposite the reference

point
14 U <_FAL> REAL Finishing allowance in X and Z, see <_VARI> (TEN THOUSANDS) (to

be entered without sign)
15 D <_IDEP1> REAL Maximum depth infeed on insertion (enter without sign)

 0 = 1. Cut directly to full depth
> 0 = 1. Cut <_IDEP1>, 2nd cut 2 ·

<_IDEP1>, etc.
16 SC <_SDIS> REAL Safety clearance (enter without sign)

Programming cycles externally
20.1 Technology cycles

Job Planning
786 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

17 <_VARI> INT Machining type
UNITS: Reserved
TENS: Machining process

1 = Roughing
2 = Finishing
3 = Roughing and finishing

HUNDREDS: Position longitudinal/transverse external/
internal +Z/+Z and +X/-X
1 = Longitudinal/external +Z
2 = Transverse/internal -X
3 = Longitudinal/internal +Z
4 = Transverse/internal +X
5 = Longitudinal/external -Z
6 = Transverse/external -X
7 = Longitudinal/internal -Z
8 = Transverse/external +X

THOUSANDS: Position of reference point
0 = Upper reference point
1 = Lower reference point

TEN THOUSANDS: Define effect of finishing allowances
0 = Finishing allowance U parallel to

the contour
1 = Separate UX and UZ finishing al‐

lowances
18 <_DN> INT D number for 2nd edge of tool

 > 0 = D number for tool offset of 2nd
edge of grooving tool

0 = No 2nd edge programmed
19 N <_NUM> INT Number of grooves (0 = 1 groove)
20 DP <_DBH> REAL Distance between grooves (only needed when <_NUM> > 1)
21 F <_FF1> REAL Feedrate
22 <_NR> INT Identification for form of groove corresponds to vertical softkey for form

selection
 0 = 90° sides without chamfers/

rounding
1 = Inclined sides with chamfers/

rounding (without α0)
2 = As 1, but on taper (with α0)

23 UX <_FALX> REAL Finishing allowance in X axis, see <_VARI> (TEN THOUSANDS) (to
be entered without sign)

24 UZ <_FALZ> REAL Finishing allowance in Z axis, see <_VARI> (TEN THOUSANDS) (to
be entered without sign)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 787

No. Parameter
mask

Parameter
internal

Data type Meaning

25 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

26 <_AMODE> INT Alternative mode
UNITS: Dimensioning for top of groove (for inter‐

face only)
0 = At the reference point
1 = Opposite the reference point

TENS: Depth
0 = Absolute
1 = Incremental

HUNDREDS: Dimensioning for width (for interface on‐
ly)
0 = At outer diameter (top)
1 = At inner diameter (bottom)

THOUSANDS: Radius/chamfer 1 (<_RCO1>)
0 = Radius
1 = Chamfer

TEN THOUSANDS: Radius/chamfer 2 (<_RCI1>)
0 = Radius
1 = Chamfer

HUNDRED THOUSANDS: Radius/chamfer 3 (<_RCI2>)
0 = Radius
1 = Chamfer

ONE MILLION: Radius/chamfer 4 (<_RCO2>)
0 = Radius
1 = Chamfer

20.1.41 CYCLE940 - undercut forms
Various undercuts can be programmed using the CYCLE940 cycle. In some cases, these differ
significantly regarding the parameterization.

The additional columns in the table indicate which parameters are required for which undercut
type. They correspond to the vertical selection softkeys in the cycle screen form:

● E: Undercut form E

● F: Undercut form F

Programming cycles externally
20.1 Technology cycles

Job Planning
788 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● A-D: DIN thread undercut (forms A-D)

● T: Thread undercut (free definition of form)

Syntax
CYCLE940(<_SPD>, <_SPL>, <_FORM>, <_LAGE>, <_SDIS>, <_FFP>, <_VARI>,
<_EPD>, <_EPL>, <_R1>, <_R2>, <_STA>, <_VRT>, <_MID>, <_FAL>,
<_FALX>, <_FALZ>, <_PITI>, <_PTAB>, <_PTABA>, <_DMODE>, <_AMODE>)

Parameters

No
.

Param‐
eter
mask

Parameter
internal

Data type Prog. for form Meaning

 E F A-D T
1 X0 <_SPD> REAL x x x x Reference point in the plane axis (always diameter)
2 Z0 <_SPL> REAL x x x x Reference point on longitudinal axis (abs)
3 FORM <_FORM> CHAR x x x x Form of undercut (capital letters, e.g. "T")

Selection, table from which the undercut values should be taken
 A = External, reference DIN76,

A = normal
B = External, reference DIN76,

B = short
C = Internal, reference DIN76,

C = normal
D = Internal, reference DIN76,

D = short
E = Reference DIN509
F = Reference DIN509
T= Free-form

4 POSI‐
TION

<_LAGE> INT x x x x Position of under‐
cut (parallel Z)

0 = External +Z: ____|
 1 = External -Z: |____/

2 = Internal +Z: /-----|
3 = Internal -Z: |-----\

5 SC <_SDIS> x x x x Safety clearance (inc)
6 F <_FFP> x x x x Machining feedrate (mm/rev)
7 <_VARI> INT - - x x Machining type

UNITS: Machining
1 = Roughing
2 = Finishing
3 = Roughing + finishing

TENS: Machining strategy
0 = Parallel to the contour
1 = Longitudinal

Undercut forms E and F are always machined in a single pass like finishing.

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 789

No
.

Param‐
eter
mask

Parameter
internal

Data type Prog. for form Meaning

8 X1 <_EPD> x x - - Allowance X (abs/inc), see <_AMODE>
- - - x Undercut depth (abs/inc), see <_AMODE>

9 Z1 <_EPL> - x - - Allowance Z
- - - x Undercut width (abs/inc), see <_AMODE>

10 R1 <_R1> - - - x Rounding radius on slopes
11 R2 <_R2> - - - x Rounding radius in the corner
12 α <_STA> - - x x Insertion angle
13 VX <_VRT> x x - - Cross-feed X (abs/inc), see <_AMODE>

- - x x Cross-feed X when finishing, (abs/inc), see <_AMODE>
14 D <_MID> - - x x Depth infeed
15 U <_FAL> - - x x Finishing allowance parallel to contour, see <_AMODE>
16 UX <_FALX> - - x x Finishing allowance X
17 UZ <_FALZ> - - x x Finishing allowance Z
18 P <_PITI> INT - - x - Select pitch, form A-D, corresponds to M1 ... M68

 0 = 0.20
1 = 0.25
2 = 0.30
3 = 0.35
4 = 0.40
5 = 0.45

6 = 0.50
7 = 0.60
8 = 0.70
9 = 0.75
10 = 0.80
11 = 1.00

12 = 1.25
13 = 1.50
14 = 1.75
15 = 2.00
16 = 2.50
17 = 3.00

18 = 3.50
19 = 4.00
20 = 4.50
21 = 5.00
22 = 5.50
23 = 6.00

x x - - Select radius/depth, form E, F
 0 = 0.6 x 0.3

1 = 1.0 x 0.4
2 = 1.0 x 0.2
3 = 1.6 x 0.3

4 = 2.5 x 0.4
5 = 4.0 x 0.5
6 = 0.4 x 0.2
7 = 0.6 x 0.2

8 = 0.1 x 0.1
9 = 0.2 x 0.1

19 <_PTAB> STRING
[5]

 String for thread table ("", "ISO", "BSW", "BSP", "UNC")
(for the surface only)

20 <_PTABA> STRING
[20]

 String for selection from thread table
(e.g. "M 10", "M 12", ...)
(for the surface only)

21 <_DMODE> INT Display mode
x x x x UNITS: Machining plane G17/G18/G19

 0 = Compatibility, the plane effec‐
tive before the cycle call re‐
mains active

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

Programming cycles externally
20.1 Technology cycles

Job Planning
790 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No
.

Param‐
eter
mask

Parameter
internal

Data type Prog. for form Meaning

22 <_AMODE> INT Alternative mode
x x - x UNITS: Parameter <_EPD> allowance X or under‐

cut depth
 0 = Absolute (always diameter)

1 = Incremental
x x - x TENS: Parameter <_EPL> allowance Z or un‐

dercut width
 0 = Absolute

1 = Incremental
x x x x HUNDREDS: Parameter <_VRT> cross-feed X

 0 = Absolute (always diameter)
1 = Incremental

- - x x THOUSANDS: Finishing allowance
 0 = Finishing allowance parallel to

the contour (<_FAL>)
1 = Separate machining allow‐

ance (<_FALX>/<_FALZ>)

20.1.42 CYCLE951 - stock removal

Syntax
CYCLE951(<_SPD>, <_SPL>, <_EPD>, <_EPL>, <_ZPD>, <_ZPL>, <_LAGE>,
<_MID>, <_FALX>, <_FALZ>, <_VARI>, <_RF1>, <_RF2>, <_RF3>, <_SDIS>,
<_FF1>, <_NR>, <_DMODE>, <_AMODE>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 X0 <_SPD> REAL Reference point (abs, always diameter)
2 Z0 <_SPL> REAL Reference point (abs)
3 X1 <_EPD> REAL End point
4 Z1 <_EPL> REAL End point
5 XM

α1
α2

<_ZPD> REAL Intermediate point, see <_DMODE> (TENS)

6 ZM
α1
α2

<_ZPL> REAL Intermediate point, see <_DMODE> (TENS)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 791

No. Parameter
mask

Parameter
internal

Data type Meaning

7 Position <_LAGE> INT Position of stock removal
corner

0 = External/rear
1 = External/front
2 = Internal/rear
3 = Internal/front

8 D <_MID> REAL Maximum depth infeed on insertion
9 UX <_FALX> REAL Finishing allowance in X
10 UZ <_FALZ> REAL Finishing allowance in Z
11 <_VARI> INT Machining type

UNITS: Stock removal direction (longitudinal or
transverse) in the coordinate system
1 = Longitudinal
2 = Face

TENS:
1 = Roughing to final machining al‐

lowance
2 = Finishing

HUNDREDS: Reserved
THOUSANDS: Reserved
TEN THOUSANDS: Reserved

12 R1/FS1 <_RF1> REAL Rounding radius or chamfer width 1, see <_AMODE> (TEN THOU‐
SANDS)

13 R2/FS2 <_RF2> REAL Rounding radius or chamfer width 2, see <_AMODE> (HUNDRED
THOUSANDS)

14 R3/FS3 <_RF3> REAL Rounding radius or chamfer width 3, see <_AMODE> (ONE MILLION)
15 SC <_SDIS> REAL Safety clearance
16 F <_FF1> REAL Feedrate for roughing/finishing
17 <_NR> INT Identification of stock removal type (corresponds to vertical softkey for

selecting form):
 0 = Stock removal 1, 90 degree cor‐

ner without chamfers/rounding
1 = Stock removal 2, 90 degree cor‐

ner with chamfers/rounding
2 = Stock removal 3, any corner with

chamfers/rounding

Programming cycles externally
20.1 Technology cycles

Job Planning
792 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

18 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Form of input <_ZPD>/<_ZPL>
0 = Xm/Zm
1 = Xm/α1
2 = Xm/α2
3 = α1/Zm
4 = α2/Zm
5 = α1/α2

21 <_AMODE> INT Alternative mode
UNITS: Intermediate point in X

0 = Absolute, value of transverse ax‐
is in the diameter

1 = Incremental, value of transverse
axis in the radius

TENS: Intermediate point in Z
0 = Absolute
1 = Incremental

HUNDREDS: End point in X
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
THOUSANDS: End point in Z.

0 = Absolute
1 = Incremental

TEN THOUSANDS: Radius/chamfer 1
0 = Radius
1 = Chamfer

HUNDRED THOUSANDS: Radius/chamfer 2
0 = Radius
1 = Chamfer

ONE MILLION: Radius/chamfer 3
0 = Radius
1 = Chamfer

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 793

20.1.43 CYCLE952 - contour grooving

Syntax
CYCLE952(<_PRG>, <_CON>, <_CONR>, <_VARI>, <_F>, <_FR>, <_RP>, <_D>,
<_DX>, <_DZ>, <_UX>, <_UZ>, <_U>, <_U1>, <_BL>, <_XD>, <_ZD>, <_XA>,
<_ZA>, <_XB>, <_ZB>, <_XDA>, <_XDB>, <_N>, <_DP>, <_DI>, <_SC>,
<_DN>, <_GMODE>, <_DMODE>, <_AMODE>, <_PK>, <_DCH>, <_FS>)

Parameters

No. Parameter
mask

Parameter
internal

Data type Meaning

1 PRG <_PRG> STRING[100
]

Name of the stock removal program

2 CON <_CON> STRING[100
]

Name of the program from which the updated contour of the blank is
read (for residual machining)

3 CONR <_CONR> STRING[100
]

Name of the program into which the updated contour for the blank (see
<_AMODE> TEN THOUSANDS) will be written

Programming cycles externally
20.1 Technology cycles

Job Planning
794 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

4 <_VARI> INT Machining type
UNITS: Type of stock removal

1 = Longitudinal
2 = Face
3 = Parallel to the contour

TENS: Machining process (see <_GMODE>
HUNDREDS)
1 = Roughing
2 = Finishing
3 = Reserved
4 = Roughing, two-channel
5 = Finishing, two-channel

HUNDREDS: Machining direction
1 = Machining direction X -
2 = Machining direction X +
3 = Machining direction Z -
4 = Machining direction Z +

THOUSANDS: Infeed direction
1 = External X -
2 = Internal X +
3 = Front face Z -
4 = Rear face Z +

TEN THOUSANDS: Define effect of finishing allowances
0 = Separate UX and UZ finishing al‐

lowances
1 = Finishing allowance U parallel to

the contour
HUNDRED THOUSANDS: Rounding

0 = Compatibility, automatic rounding
1 = With rounding at the contour
2 = Without rounding
3 = Automatic rounding

ONE MILLION: Relief cuts
0 = Position is not evaluated during

grooving, - residual and groove
turning, - remainder

1 = Machine relief cuts
2 = No machining of relief cuts

TEN MILLIONS: Behind/in front of turning center
0 = Machining in front of the turning

center
1 = Reserved

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 795

No. Parameter
mask

Parameter
internal

Data type Meaning

5 F <_F> REAL

Feedrate for roughing/finishing
FZ Infeed abscissa groove turning

6 FR <_FR> REAL Feedrate for insertion into relief cuts, roughing
FX Infeed ordinate groove turning

7 RP <_RP> REAL Retraction plane for internal machining (abs., always diameter)
8 D <_D> REAL Roughing infeed (see <_AMODE> UNITS)
9 DX <_DX> REAL X infeed (see <_AMODE> UNITS)
10 DZ <_DZ> REAL Z infeed (see <_AMODE> UNITS)
11 UX <_UX> REAL Finishing allowance X, (see <_VARI> TEN THOUSANDS)
12 UZ <_UZ> REAL Finishing allowance Z, (see <_VARI> TEN THOUSANDS)
13 U <_U> REAL Finishing allowance parallel to contour, (see <_VARI> TEN THOU‐

SANDS)
14 U1 <_U1> REAL Additional finishing allowance while finishing (see <_AMODE> THOU‐

SANDS)
15 BL <_BL> INT Definition of blank 1 = Cylinder with allowance

2 = Allowance at contour of finished
part

3 = Contour of blank is specified
16 XD <_XD> REAL Definition of blank X (see <_AMODE> HUNDRED THOUSANDS)
17 ZD <_ZD> REAL Definition of blank Z (see <_AMODE> ONE MILLION)
18 XA <_XA> REAL Limit 1 X (abs., always diameter)
19 ZA <_ZA> REAL Limit 1 Z (abs.)
20 XB <_XB> REAL Limit 2 X (see <_AMODE> TEN MILLIONS)
21 ZB <_ZB> REAL Limit 2 Z (see <_AMODE> HUNDRED MILLIONS)
22 XDA <_XDA> REAL Grooving limit 1 for the 1st groove position on the front face (abs., al‐

ways diameter)
23 XDB <_XDB> REAL Grooving limit 2 for the 1st groove position on the front face (abs., al‐

ways diameter)
24 N <_N> INT Number of grooves
25 DP <_DP> REAL Distance between grooves

Longitudinal groove: Parallel to Z axis
Transverse groove: Parallel to X axis

26 DI <_DI> REAL Distance for interruption of
infeed

0 = No interruption
> 0 = With interruption

27 SC <_SC> REAL Safety clearance for avoiding obstacles, incremental
28 D2 <_DN> INT D number for 2nd cutting edge if not programmed ⇒ D+1

Programming cycles externally
20.1 Technology cycles

Job Planning
796 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

29 <_GMODE> INT Geometrical mode (evaluation of programmed geometrical data)
UNITS: Re‐

serve
d

TENS: Re‐
serve
d

HUNDREDS: Select machining/only calculation of start
point
0 = Normal machining (no compatibil‐

ity mode needed)
1 = Normal machining
2 = Calculate start point - no machin‐

ing (only for call from ShopMill/
ShopTurn)

THOUSANDS: Limit
0 = No
1 = Yes

TEN THOUSANDS: Enter limit 1 X
0 = No
1 = Yes

HUNDRED THOUSANDS: Enter limit 2 X
0 = No
1 = Yes

ONE MILLION: Enter limit 1 Z
0 = No
1 = Yes

TEN MILLIONS: Enter limit 2 Z
0 = No
1 = Yes

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 797

No. Parameter
mask

Parameter
internal

Data type Meaning

30 <_DMODE> INT Display mode
UNITS: Machining plane G17/G18/G19

0 = Compatibility, the plane effective
before the cycle call remains ac‐
tive

1 = G17 (only active in the cycle)
2 = G18 (only active in the cycle)
3 = G19 (only active in the cycle)

TENS: Technology mode
1 = Stock removal along the contour
2 = Contour grooving
3 = Groove turning

HUNDREDS: Machine residual material
0 = No
1 = Yes

THOUSANDS: --- Reserved
TEN THOUSANDS: Technology scaling in cycle screen

forms (Page 820)
0 = Input: Complete
1 = Input: Simple

Programming cycles externally
20.1 Technology cycles

Job Planning
798 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

No. Parameter
mask

Parameter
internal

Data type Meaning

31 <_AMODE> INT Alternative mode
UNITS: Select infeed

0 = DX and DZ infeed for stock re‐
moval parallel to contour

1 = D infeed
TENS: Infeed strategy

0 = Variable cutting depth (90 ...
100%)

1 = Constant cutting depth
HUNDREDS: Cut segmentation

0 = Uniform
1 = Align to edges

THOUSANDS: Select contour allowance U1, double fin‐
ishing
0 = No
1 = Yes

TEN THOUSANDS: Update selection of blank
0 = No
1 = Yes

HUNDRED THOUSANDS: Select allowance on blank XD
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
ONE MILLION: Select allowance on blank ZD

0 = Absolute
1 = Incremental

TEN MILLIONS: Select limit 2 XB
0 = Absolute, value of transverse ax‐

is in the diameter
1 = Incremental, value of transverse

axis in the radius
HUNDRED MILLION: Select limit 2 ZB

0 = Absolute
1 = Incremental

ONE BILLION:
0 = Leading channel
1 = Following channel

32 <_PK> INT Number of the partner channel if there are more than two channels
available at the machine.

33 DCH <_DCH> REAL Channel offset
34 FS <_FS> REAL Finishing feedrate during complete machining

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 799

20.1.44 CYCLE4071 - longitudinal grinding with infeed at the reversal point

Syntax
CYCLE4071(<S_A>, <S_B>, <S_W>, <S_U>, <S_I>, <S_K>, <S_H>, <S_A1>,
<S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_A> REAL Infeed depth at the start
2 <S_B> REAL Infeed depth at the end
3 <S_W> REAL Grinding width
4 <S_U> REAL Sparking-out time
5 <S_I> REAL Feedrate for infeed
6 <S_K> REAL Feedrate for transverse infeed
7 <S_H> INT Number of repetitions
8 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
9 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of <S_H> infeeds. The infeed depth at the start and at the
end can be different. There is a tangential motion between the infeeds.

Sequence
1. Start of the cycle at the current position of the oscillating axis.

2. Traversing of the infeed axis to the infeed depth at the start P1 <S_A> with the feedrate for
infeed P5 <S_I>.

3. Sparking out with the sparking-out time P4 <S_U>.

4. Traversing of the oscillating axis with the grinding width P3 <S_W> as travel path and the
feedrate for transverse infeed P6 <S_K>.

5. Traversing of the infeed axis to the infeed depth at the end P2 <S_B> with the feedrate for
infeed P5 <S_I>.

6. Sparking out with the sparking-out time P4 <S_U>.

7. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path to the
starting point and the feedrate for transverse infeed P6 <S_K>.

The sequence cannot be interrupted with a single block.

The sequence is repeated according to the number of programmed repetitions P7 (<S_H>).

Programming cycles externally
20.1 Technology cycles

Job Planning
800 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
Executing two oscillating motions with the following cycle parameters:

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Infeed feedrate: 1 mm/min

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4071(0.02,0.01,100,1,1,1000,2)
N30 M30

20.1.45 CYCLE4072 - longitudinal grinding with infeed at the reversal point and cancel
signal

Syntax
CYCLE4072(<S_GAUGE>, <S_A>, <S_B>, <S_W>, <S_U>, <S_I>, <S_K>,
<S_H>, <S_A1>, <S_A2>)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 801

Parameters

No. Parameter Data type Meaning
1 <S_GAUGE> STRING Cancel conditions for infeed:

1. Number of a rapid input
2. Logical expression

2 <S_A> REAL Infeed depth at the start
3 <S_B> REAL Infeed depth at the end
4 <S_W> REAL Grinding width
5 <S_U> REAL Sparking-out time
6 <S_I> REAL Feedrate for infeed
7 <S_K> REAL Feedrate for transverse infeed
8 <S_H> INT Number of repetitions
9 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
10 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of <S_H> infeeds taking into account an external cancel
signal. The infeed depth can be different at the start and at the end. There is a tangential motion
between the infeeds. The depth infeed is cancelled when the cancel condition is satisfied. A
complete stroke is always performed after the cancellation of the depth infeed.

Sequence
1. Start of the cycle at the current position of the oscillating axis.

2. Traversing of the infeed axis to the infeed depth at the start P2 <S_A> with the feedrate for
infeed P6 <S_I>.

3. Sparking out with the sparking-out time P5 <S_U>.

4. Traversing of the oscillating axis with the grinding width P4 <S_W> as travel path and the
feedrate for transverse infeed P7 <S_K>.

5. Traversing of the infeed axis to the infeed depth at the end P3 <S_B> with the feedrate for
infeed P6 <S_I>.

6. Sparking out with the sparking-out time P5 <S_U>.

7. Traversing of the oscillating axis with the grinding width P4 <S_W> as travel path to the
starting point and the feedrate for transverse infeed P7 <S_K>.

8. Without cancellation: The sequence described above is repeated until the number of
programmed repetitions P7 (<S_H>) is reached.
With cancellation: The machining is stopped when the next start point is reached.

The sequence cannot be interrupted by a single block.

Programming cycles externally
20.1 Technology cycles

Job Planning
802 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Figure 20-1 Cancellation of the infeed at the end

Figure 20-2 Cancellation of the infeed at the start

Resources
As resources, the cycle uses a block-wide synchronized action and a synchronized action
variable. The synchronized action is determined dynamically from the free area of the
synchronized action range (CUS.DIR - 1 ..., CMA.DIR - 1000 ..., CST.DIR – 1199 ...).
SYG_IS[1] is used as the synchronized action variable.

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 803

Examples

Example 1: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Infeed feedrate: 1 mm/min

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal Rapid input 1 ($A_IN[1])

Program code
N10 T1 D1
N20 CYCLE4072("1",0.02,0.01,100,1,1,1000,2)
N30 M30

Example 2: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Infeed feedrate: 1 mm/min

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal Variable $A_DBR[20] < 0.01

Program code
N10 T1 D1
N20 CYCLE4072("($A_DBR[20]<0.01)",0.02,0.01,100,1,1,1000,2)
N30 M30

Programming cycles externally
20.1 Technology cycles

Job Planning
804 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

20.1.46 CYCLE4073 - longitudinal grinding with continuous infeed

Syntax
CYCLE4073(<S_A>, <S_B>, <S_W>, <S_U>, <S_K>, <S_H>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_A> REAL Infeed depth at the start
2 <S_B> REAL Infeed depth at the end
3 <S_W> REAL Grinding width
4 <S_U> REAL Sparking-out time
5 <S_K> REAL Feedrate for transverse infeed
6 <S_H> INT Number of repetitions
7 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
8 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of <S_H> infeeds. The infeed from the start to the end and
from the end to the start can be different.

Sequence
1. Start of the cycle at the current position of the oscillating axis with infeed depth 0

2. Traversing of the oscillating axis with the grinding width P3 <S_W> as travel path and
feedrate for transverse infeed P5 <S_K> with continuous increase in the infeed depth up
to the infeed depth at the start P1 <S_A>.

3. Sparking out with the sparking-out time P4 <S_U>.

4. Traversing of the oscillating axis with the grinding width P3 <S_W> as travel path to the
starting point and feedrate for transverse infeed P5 <S_K> with continuous increase in the
infeed depth up to the infeed depth at the end P2 <S_B>.

5. Sparking out with the sparking-out time P4 <S_U>.

The sequence cannot be interrupted by a single block.

The sequence is repeated according to the number of programmed repetitions P7 (<S_H>).

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 805

Example

Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4073(0.02,0.01,100,1,1000,2)
N30 M30

20.1.47 CYCLE4074 - longitudinal grinding with continuous infeed and cancel signal

Syntax
CYCLE4074(<S_GAUGE>, <S_A>, <S_B>, <S_W>, <S_U>, <S_K>, <S_H>,
<S_A1>, <S_A2>)

Programming cycles externally
20.1 Technology cycles

Job Planning
806 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Parameters

No. Parameter Data type Meaning
1 <S_GAUGE> STRING Cancel conditions for infeed:

1. Number of a rapid input
2. Logical expression

2 <S_A> REAL Infeed depth at the start
3 <S_B> REAL Infeed depth at the end
4 <S_W> REAL Grinding width
5 <S_U> REAL Sparking-out time
6 <S_K> REAL Feedrate for transverse infeed
7 <S_H> INT Number of repetitions
8 <S_A1> AXIS Infeed axis (optional) or 1st geometry axis
9 <S_A2> AXIS Oscillating axis (optional) or 2nd geometry axis

Function
The cycle is used for the execution of <S_H> infeeds taking into account an external cancel
signal, for example. The infeed depth can be different at the start and at the end. The depth
infeed is cancelled when the cancel condition is satisfied. A complete stroke is always
performed after the cancellation of the depth infeed.

Sequence
1. Start of the cycle at the current position of the oscillating axis with infeed depth 0

2. Traversing of the oscillating axis with the grinding width P4 <S_W> as travel path and
feedrate for transverse infeed P6 <S_K> with continuous increase in the infeed depth up
to the infeed depth at the start P2 <S_A>.

3. Sparking out with the sparking-out time P5 <S_U>.

4. Traversing of the oscillating axis with the grinding width P4 <S_W> as travel path to the
starting point and feedrate for transverse infeed P6 <S_K> with continuous increase in the
infeed depth up to the infeed depth at the end P3 <S_B>.

5. Sparking out with the sparking-out time P5 <S_U>.

6. Without cancellation: The sequence described above is repeated until the number of
programmed repetitions P7 (<S_H>) is reached.
With cancellation: The depth infeed is cancelled. The machining is stopped when the next
start point is reached.

The sequence cannot be interrupted by a single block.

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 807

Figure 20-3 Cancellation of the infeed from the end to the start

Figure 20-4 Cancellation of the infeed from the start to the end

Resources
As resources, the cycle uses a block-wide synchronized action and a synchronized action
variable. The synchronized action is determined dynamically from the free area of the
synchronized action range (CUS.DIR - 1 ..., CMA.DIR - 1000 ..., CST.DIR – 1199 ...).
SYG_IS[1] is used as the synchronized action variable.

Examples

Example 1: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

Programming cycles externally
20.1 Technology cycles

Job Planning
808 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● Stroke: 100 mm

● Sparking-out time: 1 s

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal Rapid input 1 ($A_IN[1])

Program code
N10 T1 D1
N20 CYCLE4074("1",0.02,0.01,100,1,1000,2)
N30 M30

Example 2: Oscillation with two strokes:
Cycle parameters

● Infeed depth at the start: 0.02 mm

● Infeed depth at the end: 0.01 mm

● Stroke: 100 mm

● Sparking-out time: 1 s

● Transverse feedrate: 1000 mm/min

● Repetitions: 2

● Oscillating and infeed axes: Standard geometry axes

Cancel signal Variable $A_DBR[20] < 0.01

Program code
N10 T1 D1
N20 CYCLE4074("($A_DBR[20]<0.01)",0.02,0.01,100,1,1000,2)
N30 M30

20.1.48 CYCLE4075 - surface grinding with infeed at the reversal point

Syntax
CYCLE4075(<S_I>, <S_J>, <S_K>, <S_A>, <S_R>, <S_F>, <S_P>, <S_A1>,
<S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_I> REAL Infeed depth at the start
2 <S_J> REAL Infeed depth at the end

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 809

No. Parameter Data type Meaning
3 <S_K> REAL Total infeed depth
4 <S_A> REAL Grinding width
5 <S_R> REAL Feedrate for infeed
6 <S_F> REAL Feedrate for transverse infeed
7 <S_P> REAL Sparking-out time
8 <S_A1> AXIS Infeed axis (optional)
9 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth P3 <S_K> in infeed steps. The infeed
depths at the start P1 <S_I> and at the end P2 <S_J> can be different. There is a tangential
motion between the infeeds.

The positional data P1 to P4 can be negative or positive.

The specification of the infeed axis P8 <S_A1> and/or oscillating axis P9 <S_A2> are optional.
If one or both parameters are not specified, the cycle uses the first two geometry axes of the
channel.

If the sum of the infeed depth at the start P1 <S_I> and at the end P2 <S_J> is 0 or the total
infeed depth P3 <S_K> is 0, only a sparking-out stroke is performed.

Sequence
1. Start of the cycle at the current position of the oscillating axis.

2. Traversing of the infeed axis to the infeed depth at the start P1 <S_I> with the feedrate for
infeed P5 <S_R>.

3. Sparking out with the sparking-out time P7 <S_P>.

4. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path and the
feedrate for transverse infeed P6 <S_F>.

5. Traversing of the infeed axis to the infeed depth at the end P2 <S_J> with the feedrate for
infeed P5 <S_R>.

6. Sparking out with the sparking-out time P7 <S_P>.

7. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path to the
starting point and the feedrate for transverse infeed P6 <S_F>.

The sequence cannot be interrupted with a single block.

The sequence is repeated until the total infeed depth P3 <S_K> has been reached. The last
stroke is then distributed unevenly.

Programming cycles externally
20.1 Technology cycles

Job Planning
810 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Figure 20-5 Total infeed depth reached with infeed at the second reversal point

Figure 20-6 Total infeed depth reached with infeed at the first reversal point

Example
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Program code
N10 T1 D1

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 811

Program code
N20 CYCLE4075(0.02,0.01,1,100,1,1000,1)
N30 M30

20.1.49 CYCLE4077 - surface grinding with infeed at the reversal point and cancel signal

Syntax
CYCLE4077(<S_GAUGE>, <S_I>, <S_J>, <S_K>, <S_A>, <S_R>, <S_F>,
<S_P>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_GAUGE> STRING Cancel condition for infeed:

● Number of a rapid input
● Logical expression

2 <S_I> REAL Infeed depth at the start
3 <S_J> REAL Infeed depth at the end
4 <S_K> REAL Total infeed depth
5 <S_A> REAL Grinding width
6 <S_R> REAL Feedrate for infeed
7 <S_F> REAL Feedrate for transverse infeed
8 <S_P> REAL Sparking-out time
9 <S_A1> AXIS Infeed axis (optional)
10 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth P4 <S_K> in infeed steps. The infeed
depths at the start P2 <S_I> and at the end P3 <S_J> can be different. There is a tangential
motion between the infeeds. The depth infeed is cancelled when the cancel signal of the rapid
input is 1 or the cancel condition is satisfied. A complete stroke is performed after the
cancellation.

The positional data P2 to P5 can be negative or positive.

The specification of the infeed axis P9 <S_A1> and/or oscillating axis P10 <S_A2> are optional.
If one or both parameters are not specified, the cycle uses the first two geometry axes of the
channel.

If the sum of the infeed depth at the start P2 <S_I> and at the end P3 <S_J> is 0 or the total
infeed depth P4 <S_K> is 0, only a sparking-out stroke is performed.

Programming cycles externally
20.1 Technology cycles

Job Planning
812 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Sequence
1. Start of the cycle at the current position of the oscillating axis.

2. Traversing of the infeed axis to the infeed depth at the start P2 <S_I> with the feedrate for
infeed P6 <S_R>.

3. Sparking out with the sparking-out time P8 <S_P>.

4. Traversing of the oscillating axis with the grinding width P5 <S_A> as travel path and the
feedrate for transverse infeed P7 <S_F>.

5. Traversing of the infeed axis to the infeed depth at the end P3 <S_J> with the feedrate for
infeed P6 <S_R>.

6. Sparking out with the sparking-out time P8 <S_P>.

7. Traversing of the oscillating axis with the grinding width P5 <S_A> as travel path to the
starting point and the feedrate for transverse infeed P7 <S_F>.

8. Without cancellation: The sequence described above is repeated until the total infeed depth
P4 <S_K> has been reached. The last stroke is then distributed unevenly.
With cancellation: The machining is stopped at the start point.

The sequence cannot be interrupted with a single block.

Figure 20-7 Cancellation of the infeed at the end

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 813

Figure 20-8 Cancellation of the infeed at the start

Resources
As resources, the cycle uses a block-wide synchronized action and a synchronized action
variable. The synchronized action is determined dynamically from the free area of the
synchronized action range (CUS.DIR - 1 ..., CMA.DIR - 1000 ..., CST.DIR – 1199 ...).
SYG_IS[1] is used as the synchronized action variable.

Examples

Example 1
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Cancel signal Rapid input 1 ($A_IN[1])

Program code
N10 T1 D1
N20 CYCLE4077("1",0.02,0.01,1,100,1,1000,1)
N30 M30

Programming cycles externally
20.1 Technology cycles

Job Planning
814 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example 2
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Cancel signal Dual-port RAM variable 20 less than 0.01 ($A_DBR[20] < 0.01)

Program code
N10 T1 D1
N20 CYCLE4077("($A_DBR[20]<0.01)",0.02,0.01,1,100,1,1000,1)
N30 M30

20.1.50 CYCLE4078 - surface grinding with continuous infeed

Syntax
CYCLE4078(<S_I>, <S_J>, <S_K>, <S_A>, <S_F>, <S_P>, <S_A1>, <S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_I> REAL Infeed depth from the start to the end
2 <S_J> REAL Infeed depth from the end to the start
3 <S_K> REAL Total infeed depth
4 <S_A> REAL Grinding width
5 <S_F> REAL Feedrate
6 <S_P> REAL Sparking-out time
7 <S_A1> AXIS Infeed axis (optional)
8 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth P3 <S_K> by means of continuous
infeed. The infeed depths from the start to the end P1 <S_I> and from the end to the start P2
<S_J> can be different.

The positional data P1 to P4 can be negative or positive.

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 815

The specification of the infeed axis P8 <S_A1> and/or oscillating axis P9 <S_A2> are optional.
If one or both parameters are not specified, the cycle uses the first two geometry axes of the
channel.

If the sum of the infeed depths P1 <S_I> and P2 <S_J> is 0 or the total infeed depth P3
<S_K> is 0, only a sparking-out stroke is performed.

Sequence
1. Start of the cycle at the current position of the oscillating axis with infeed depth 0

2. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path and
feedrate P5 <S_F> with continuous increase in the infeed depth up to the infeed depth at
the start P1 <S_I>.

3. Sparking out with the sparking-out time P7 <S_P>.

4. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path to the
starting point and feedrate P5 <S_F> with continuous increase in the infeed depth up to
the infeed depth at the end P2 <S_J>.

5. Sparking out with the sparking-out time P7 <S_P>.

6. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path to the
starting point and feedrate P5 <S_F>.

The sequence cannot be interrupted with a single block.

The sequence is repeated until the total infeed depth P3 <S_K> has been reached. The last
stroke is then distributed unevenly.

Example
Oscillation with:

● 20 mm infeed depth at the start

● 10 mm infeed depth at the end

● Total infeed depth 100 mm

● 100 mm stroke

Programming cycles externally
20.1 Technology cycles

Job Planning
816 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

● Feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4078(20,10,100,100,1000,1)
N30 M30

20.1.51 CYCLE4079 - surface grinding with intermittent infeed

Syntax
CYCLE4079(<S_I>, <S_J>, <S_K>, <S_A>, <S_R>, <S_F>, <S_P>, <S_A1>,
<S_A2>)

Parameters

No. Parameter Data type Meaning
1 <S_I> REAL Infeed depth at the start
2 <S_J> REAL Infeed depth at the end
3 <S_K> REAL Total infeed depth
4 <S_A> REAL Grinding width
5 <S_R> REAL Feedrate for infeed
6 <S_F> REAL Feedrate for transverse infeed
7 <S_P> REAL Sparking-out time
8 <S_A1> AXIS Infeed axis (optional)
9 <S_A2> AXIS Oscillating axis (optional)

Function
The cycle is used for machining with a total infeed depth P3 <S_K> in infeed steps. The infeed
depths at the start P1 <S_I> and at the end P2 <S_J> can be different. There is a tangential
motion between the infeeds.

The positional data P1 to P4 can be negative or positive.

The specification of the infeed axis P8 <S_A1> and/or oscillating axis P9 <S_A2> are optional.
If one or both parameters are not specified, the cycle uses the first two geometry axes of the
channel.

If the sum of the infeed depth at the start P1 <S_I> and at the end P2 <S_J> is 0 or the total
infeed depth P3 <S_K> is 0, only a sparking-out stroke is performed.

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 817

Sequence
1. Start of the cycle at the current position of the oscillating axis.

2. Traversing of the infeed axis to the infeed depth at the start P1 <S_I> with the feedrate for
infeed P5 <S_R>.

3. Sparking out with the sparking-out time P7 <S_P>.

4. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path and the
feedrate for transverse infeed P6 <S_F>.

5. Traversing of the infeed axis to the infeed depth at the end P2 <S_J> with the feedrate for
infeed P5 <S_R>.

6. Sparking out with the sparking-out time P7 <S_P>.

7. Traversing of the oscillating axis with the grinding width P4 <S_A> as travel path to the
starting point and the feedrate for transverse infeed P6 <S_F>.

The sequence cannot be interrupted with a single block.

The sequence is repeated until the total infeed depth P3 <S_K> has been reached. The last
stroke is then distributed unevenly.

Figure 20-9 Total infeed depth reached with infeed at the second reversal point

Figure 20-10 Total infeed depth reached with infeed at the first reversal point

Programming cycles externally
20.1 Technology cycles

Job Planning
818 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Example
Oscillation with:

● 0.02 mm infeed depth at the start

● 0.01mm infeed depth at the end

● Total infeed depth 1 mm

● 100 mm stroke

● Infeed feedrate 1 mm/min

● Transverse feedrate 1000 mm/min

● 1 second sparking-out time

● Standard geometry axes

Program code
N10 T1 D1
N20 CYCLE4079(0.02,0.01,1,100,1,1000,1)
N30 M30

20.1.52 GROUP_BEGIN - beginning of program block

Syntax
GROUP_BEGIN(<_LEVEL>, <_NAME>, <_SP>, <_MODE>, <S_ICON>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_LEVEL> INT Level
0 = Main level
1 = 1st sublevel

2 <_NAME> STRING[128] Block name
3 <_SP> INT Spindle

0 = No spindle
1 = Main spindle
2 = Counterspindle

4 <_MODE> INT Mode
Bit 0 = 1 GROUP_ADDEND exists
Bit 1 = 1 ShopTurn: Automatic retraction (traverse to tool

change point)
Bit 12 Reserved
Bit 13 Reserved

5 <S_ICON> STRING[32] Name of the icon (only for operator interface)

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 819

20.1.53 GROUP_END - end of program block

Syntax
GROUP_END(<_LEVEL>, <_SP>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_LEVEL> INT Level
0 = Main level
1 = 1st sublevel

2 <_SP> INT Spindle
0 = No spindle
1 = Main spindle
2 = Counterspindle

20.1.54 GROUP_ADDEND - End of trial cut addition

Syntax
GROUP_ADDEND(<_LEVEL>, <_SP>)

Parameter

No. Parameter
mask

Parameter
internal

Data type Meaning

1 <_LEVEL> INT Level
0 = Main level
1 = 1st sublevel

2 <_SP> INT Spindle
0 = No spindle
1 = Main spindle
2 = Counterspindle

20.1.55 Supplementary conditions

20.1.55.1 Technology scaling in cycle screen forms
When the technology scaling is active, the simplified input can be selected for various cycle
screen forms, in which only the most important cycle parameters are displayed

Programming cycles externally
20.1 Technology cycles

Job Planning
820 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

For example, the simplified input can be selected for the following cycle screen forms:

Technology Cycle screen form
Drilling Deep-hole drilling

Tapping
Milling Rectangular pocket

Contour milling: Pocket
Turning Thread turning: Longitudinal

Contour turning: Stock removal
Contour turning: Grooving
Contour turning: Groove turning

In the user interface of the relevant cycle screen forms, the options "Input: Simple" and "Input:
Complete" are available.

Cycle parameters that are not displayed
The cycle parameters that are not displayed in the simplified input are pre-assigned fixed,
technologically useful, but not variable values. Or the cycle parameters are assigned
parameterizable values via the channel-specific cycle setting data. See the paragraph below
"Commissioning" > "Channel-specific cycle setting data"

Switchover from "Input: Complete" > "Input: Simple"
If a cycle screen form is filled in with the setting "Input complete" and then switched to "Input
simple", the default or setting data values are used for the parameters no longer displayed
when generating the cycle call.

Commissioning

Channel-specific configuration machine data
The technology scaling in cycle screen forms can be activated with the machine data:

MD52210 $MCS_FUNCTION_MASK_DISP, bit 9 = 1 (select display "Input simple")

Channel-specific cycle setting data
If the simplified input in cycle screen forms is active, the values for certain cycle parameters
can be specified via the following setting data:

Number Identifier Meaning
SD55300 $SCS_EASY_SAFETY_CLEARANCE Safety clearance
SD55301 $SCS_EASY_DWELL_TIME Dwell time
SD55305 $SCS_EASY_DRILL_DEEP_FD1 Deep-hole drilling: Percentage: 1st feedrate
SD55306 $SCS_EASY_DRILL_DEEP_DF Deep-hole drilling: Percentage: Infeed
SD55307 $SCS_EASY_DRILL_DEEP_V1 Deep-hole drilling: Minimum depth infeed
SD55308 $SCS_EASY_DRILL_DEEP_V2 Deep-hole drilling: Retraction distance
SD55309 $SCS_EASY_THREAD_RETURN_DIST Thread turning: Return distance

Programming cycles externally
20.1 Technology cycles

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 821

20.2 Measuring cycles
Measuring cycles are special subprograms provided by Siemens to solve certain measuring
tasks. As with cycles in general, measuring cycles can also be adapted to specific problems
via parameter settings.

Measuring cycles are available in the following areas and technologies:

● Tool measurements, turning/milling

● Workpiece measurements, turning/milling

References
For a detailed description of the measuring cycles, refer to:

Measuring Cycles Programming Manual

Programming cycles externally
20.2 Measuring cycles

Job Planning
822 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Tables 21
21.1 Operations

Note
Cycles

The list of operations contains all cycles, which occur in the NC program (G code), i.e. can be
programmed in the program editor using masks - or must be programmed for loops without
programming support. Cycles, which for reasons of compatibility, are still available in the
control, however can no longer be edited using the SINUMERIK Operate program editor
("compatibility cycles") are not taken into account.

Operations A ... C

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
: O NC main block number, jump label termina‐

tion, concatenation operator
 + PGAsl

* O Operator for multiplication + PGAsl
+ O Operator for addition + PGAsl
- O Operator for subtraction + PGAsl
< O Comparison operator, less than + PGAsl
<< O Concatenation operator for strings + PGAsl
<= O Comparison operator, less than or equal to + PGAsl
= O Assignment operator + PGAsl
>= O Comparison operator, greater than or equal to + PGAsl
/ O Operator for division + PGAsl
/0
…
…
/7

 block is skipped (1st skip level)
...
...
block is skipped (8th skip level)

 + PGsl

A A Axis name m/s + PGAsl
A2 A Tool orientation: RPY or Euler angle s + PGAsl
A3 A Tool orientation: 1st component of the direc‐

tion vector
s + PGAsl

A4 A Tool orientation: 1st component of the surface
normal vector at start of block

s + PGAsl

A5 A Tool orientation: 1st component of the surface
normal vector at end of block

s + PGAsl

A6 A Tool orientation: 1st component of the direc‐
tion vector for taper's axis of rotation

s + PGAsl

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 823

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
A7 A Tool orientation: 1st Vector component for in‐

termediate orientation on peripheral surface
of taper

s + PGAsl

ABS F Absolute value (amount) + + PGAsl
AC K Absolute dimensions of coordinates/positions s + PGsl
ACC K Effect of current axial acceleration m + + PGsl
ACCLIMA K Effect of current maximum axial acceleration m + + PGAsl
ACN K Absolute dimensions for rotary axes, ap‐

proach position in negative direction
s + PGsl

ACOS F Arc cosine
(trigon. function)

 + + PGAsl

ACP K Absolute dimensions for rotary axes, ap‐
proach position in positive direction

s + PGsl

ACTBLOCNO P Output of current block number of an alarm
block, even if "current block display sup‐
pressed" (DISPLOF) is active!

 + PGAsl

ADDFRAME F Inclusion and possible activation of a meas‐
ured frame

 + - PGAsl, FB1sl (K2)

ADIS A Rounding clearance for path functions G1,
G2, G3, ...

m + PGsl

ADISPOS A Rounding clearance for rapid traverse G0 m + PGsl
ADISPOSA P Size of the tolerance window for IPOBRKA m + + PGAsl
ALF A LIFTFAST angle m + PGAsl
AMIRROR G Programmable mirroring s + PGsl
AND K Logical AND + PGAsl
ANG A Contour angle s + PGsl
AP A Polar angle m/s + PGsl
APR K Read/show access protection + PGAsl
APRB K Read access right, OPI + PGAsl
APRP K Read access right, part program + PGAsl
APW K Write access protection + PGAsl
APWB K Write access right, OPI + PGAsl
APWP K Write access right, part program + PGAsl
APX K Definition of the access right for executing the

specified language element
 + PGAsl

AR A Opening angle m/s + PGsl
AROT G Programmable rotation s + PGsl
AROTS G Programmable frame rotations with solid an‐

gles
s + PGsl

AS K Macro definition + PGAsl
ASCALE G Programmable scaling s + PGsl
ASIN F Arithmetic function, arc sine + + PGAsl
ASPLINE G Akima spline m + PGAsl

Tables
21.1 Operations

Job Planning
824 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
ATAN2 F Arc tangent 2 + + PGAsl
ATOL A Axis-specific tolerance for compressor func‐

tions, orientation smoothing and smoothing
types

m + PGAsl

ATRANS G Additive programmable work offset s + PGsl
AUXFUDEL P Delete auxiliary function channel-specifically

from the global list
 + - FB1sl (H2)

AUXFUDELG P Delete all auxiliary functions of an auxiliary
function group channel-specifically from the
global list

 + - FB1sl (H2)

AUXFUMSEQ P Determine output sequence of M auxiliary
functions

 + - FB1sl (H2)

AUXFUSYNC P Generate a complete part program block for
the channel-specific SERUPRO end ASUB as
string from the global list of auxiliary functions

 + - FB1sl (H2)

AX K Variable axis identifier m/s + PGAsl
AXCTSWE P Rotate axis container + - PGAsl
AXCTSWEC P Canceling enable for axis container rotation + + PGAsl
AXCTSWED P Rotating axis container (command variant for

commissioning!)
 + - PGAsl

AXIS K Axis identifier, axis address + PGAsl
AXNAME F Converts input string into axis identifier + - PGAsl
AXSTRING F Converts string spindle number + - PGAsl
AXTOCHAN P Request axis for a specific channel. Possible

from NC program and synchronized action.
 + + PGAsl

AXTOSPI F Converts axis identifier into a spindle index + - PGAsl
B A Axis name m/s + PGAsl
B2 A Tool orientation: RPY or Euler angle s + PGAsl
B3 A Tool orientation: 2nd component of the direc‐

tion vector
s + PGAsl

B4 A Tool orientation: 2nd component of the sur‐
face normal vector at start of block

s + PGAsl

B5 A Tool orientation: 2nd component of the sur‐
face normal vector at end of block

s + PGAsl

B6 A Tool orientation: 2nd component of the direc‐
tion vector for taper's axis of rotation

s + PGAsl

B7 A Tool orientation: 2nd Vector component for in‐
termediate orientation on peripheral surface
of taper

s + PGAsl

B_AND O Bit-by-bit AND + PGAsl
B_OR O Bit-by-bit OR + PGAsl
B_NOT O Bit-by-bit negation + PGAsl
B_XOR O Bit-by-bit exclusive OR + PGAsl
BAUTO G Definition of the first spline section by means

of the next 3 points
m + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 825

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
BLOCK K Together with the keyword TO defines the pro‐

gram part to be processed in an indirect sub‐
program call

 + PGAsl

BLSYNC K Processing of interrupt routine is only to start
with the next block change

 + PGAsl

BNAT 6) G Natural transition to first spline block m + PGAsl
BOOL K Data type: Boolean value TRUE/FALSE or 1/0 + PGAsl
BOUND F Tests whether the value falls within the de‐

fined value range. If the values are equal, the
test value is returned.

 + + PGAsl

BRISK 6) G Fast non-smoothed path acceleration m + PGAsl
BRISKA P Switch on brisk path acceleration for the pro‐

grammed axes
 + - PGAsl

BSPLINE G B spline m + PGAsl
BTAN G Tangential transition to first spline block m + PGAsl
C A Axis name m/s + PGAsl
C2 A Tool orientation: RPY or Euler angle s + PGAsl
C3 A Tool orientation: 3rd component of the direc‐

tion vector
s + PGAsl

C4 A Tool orientation: 3rd component of the surface
normal vector at start of block

s + PGAsl

C5 A Tool orientation: 3rd component of the surface
normal vector at end of block

s + PGAsl

C6 A Tool orientation: 3rd component of the direc‐
tion vector for taper's axis of rotation

s + PGAsl

C7 A Tool orientation: 3rd Vector component for in‐
termediate orientation on peripheral surface
of taper

s + PGAsl

CAC K Absolute position approach + PGAsl
CACN K Absolute approach of the value listed in the

table in negative direction
 + PGAsl

CACP K Absolute approach of the value listed in the
table in positive direction

 + PGAsl

CALCDAT F Calculates radius and center point of circle
from 3 or 4 points

 + - PGAsl

CALCPOSI F Checking for protection area violation, work‐
ing area limitation and software limits

 + - PGAsl

CALL K Indirect subprogram call + PGAsl
CALLPATH P Programmable search path for subprogram

calls
 + - PGAsl

CANCEL P Cancel modal synchronized action + - FBSYsl
CASE K Conditional program branch + PGAsl
CDC K Direct approach of a position + PGAsl
CDOF 6) G Switch off collision monitoring m + PGsl

Tables
21.1 Operations

Job Planning
826 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CDOF2 G Switch off collision monitoring during 3D cir‐

cumferential milling
m + PGsl

CDON G Activate collision monitoring m + PGsl
CFC 6) G Constant feedrate on contour m + PGsl
CFIN G Constant feedrate for internal radius only, not

for external radius
m + PGsl

CFINE F Assignment of fine offset to a FRAME variable + - PGAsl
CFTCP G Constant feedrate in tool center point (center

point path)
m + PGsl

CHAN K Specify validity range for data + PGAsl
CHANDATA P Set channel number for channel data access + - PGAsl
CHAR K Data type: ASCII character + PGAsl
CHF A Chamfer;

value = length of chamfer
s + PGsl

CHKDM F Uniqueness check within a magazine + - FBWsl
CHKDNO F Check for unique D numbers + - PGAsl
CHR A Chamfer;

value = length of chamfer in direction of move‐
ment

 + PGsl

CIC K Approach position by increments + PGAsl
CIP G Circular interpolation through intermediate

point
m + PGsl

CLEARM P Reset one/several markers for channel coor‐
dination

 + + PGAsl

CLRINT P Deselect interrupt + - PGAsl
CMIRROR F Mirror on a coordinate axis + - PGAsl
COARSEA K Motion end when "Exact stop coarse" reached m + PGAsl
COLLPAIR F Check whether part of a collision pair + PGAsl
COMPCAD G Activate the compressor function COMPCAD m + PGAsl
COMPCURV G Activate the compressor function COMP‐

CURV
m + PGAsl

COMPLETE Control instruction for reading and writing data + PGAsl
COMPOF 6) G Deactivate NC block compression m + PGAsl
COMPON G Activate the compressor function COMPON m + PGAsl
COMPSURF G Activate the compressor function COMPSURF m + PGAsl
CONTDCON P Activate tabular contour decoding + - PGAsl
CONTPRON P Activate reference preprocessing + - PGAsl
CORROF P All active overlaid movements are deselected. + - PGsl
CORRTRAFO F Modifying offset vectors or direction vectors

for the orientation axes in the kinematic model
of the machine

 + - PGAsl

COS F Cosine
(trigon. function)

 + + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 827

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
COUPDEF P Definition ELG group/synchronous spindle

group
 + - PGAsl

COUPDEL P Delete ELG group + - PGAsl
COUPOF P Deactivate ELG group / synchronous spindle

pair
 + - PGAsl

COUPOFS P Deactivate ELG group/synchronous spindle
pair with stop of following spindle

 + - PGAsl

COUPON P Activate ELG group / synchronous spindle pair + - PGAsl
COUPONC P Transfer activation of ELG group/synchro‐

nous spindle pair with previous programming
 + - PGAsl

COUPRES P Reset ELG group + - PGAsl
CP 6) G Path motion m + PGAsl
CPBC K Generic coupling: Block change criterion + + FB3sl (M3)
CPDEF K Generic coupling: Creating a coupling module + + FB3sl (M3)
CPDEL K Generic coupling: Deletion of a coupling mod‐

ule
 + + FB3sl (M3)

CPFMOF K Generic coupling: Behavior of the following
axis at complete switch-off

 + + FB3sl (M3)

CPFMON K Generic coupling: Behavior of the following
axis when switching on

 + + FB3sl (M3)

CPFMSON K Generic coupling: Synchronization mode + + FB3sl (M3)
CPFPOS K Generic coupling: Synchronized position of

the following axis
 + + FB3sl (M3)

CPFRS K Generic coupling: Coordinate reference sys‐
tem

 + + FB3sl (M3)

CPLA K Generic coupling: Definition of a leading axis + - FB3sl (M3)
CPLCTID K Generic coupling: Number of the curve table + + FB3sl (M3)
CPLDEF K Generic coupling: Definition of a leading axis

and creation of a coupling module
 + + FB3sl (M3)

CPLDEL K Generic coupling: Deleting a leading axis of a
coupling module

 + + FB3sl (M3)

CPLDEN K Generic coupling: Denominator of the cou‐
pling factor

 + + FB3sl (M3)

CPLINSC K Generic coupling: Scaling factor of the input
value of a leading axis

 + + FB3sl (M3)

CPLINTR K Generic coupling: Offset value of the input val‐
ue of a leading axis

 + + FB3sl (M3)

CPLNUM K Generic coupling: Numerator of the coupling
factor

 + + FB3sl (M3)

CPLOF K Generic coupling: Switching off a leading axis
of a coupling module

 + + FB3sl (M3)

CPLON K Generic coupling: Switching on a leading axis
of a coupling module

 + + FB3sl (M3)

CPLOUTSC K Generic coupling: Scaling factor for the output
value of a coupling

 + + FB3sl (M3)

Tables
21.1 Operations

Job Planning
828 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CPLOUTTR K Generic coupling: Offset value for the output

value of a coupling
 + + FB3sl (M3)

CPLPOS K Generic coupling: Synchronized position of
the leading axis

 + + FB3sl (M3)

CPLSETVAL K Generic coupling: Coupling reference + + FB3sl (M3)
CPMALARM K Generic coupling: Suppression of special cou‐

pling-related alarm outputs
 + + FB3sl (M3)

CPMBRAKE K Generic coupling: Response of the following
axis to certain stop signals and stop com‐
mands

 + - FB3sl (M3)

CPMPRT K Generic coupling: Coupling response at part
program start under block search run via pro‐
gram test

 + + FB3sl (M3)

CPMRESET K Generic coupling: Coupling behavior for RE‐
SET

 + + FB3sl (M3)

CPMSTART K Generic coupling: Coupling behavior at part
program start

 + + FB3sl (M3)

CPMVDI K Generic coupling: Response of the following
axis to certain NC/PLC interface signals

 + + FB3sl (M3)

CPOF K Generic coupling: Switching off a coupling
module

 + + FB3sl (M3)

CPON K Generic coupling: Switching on a coupling
module

 + + FB3sl (M3)

CPRECOF 6) G Deactivate programmable contour accuracy m + PGAsl
CPRECON G Activate programmable contour accuracy m + PGAsl
CPRES K Generic coupling: Activates the configured da‐

ta of the synchronous spindle coupling
 + - FB3sl (M3)

CPROT P Activate / deactivate channel-specific protec‐
tion zone

 + - PGAsl

CPROTDEF P Definition of a channel-specific protection area + - PGAsl
CPSETTYPE K Generic coupling: Coupling type + + FB3sl (M3)
CPSYNCOP K Generic coupling: Threshold value of position

synchronism "Coarse"
 + + FB3sl (M3)

CPSYNCOP2 K Generic coupling: Threshold value of position
synchronism "Coarse" 2

 + + FB3sl (M3)

CPSYNCOV K Generic coupling: Threshold value of velocity
synchronism "Coarse"

 + + FB3sl (M3)

CPSYNFIP K Generic coupling: Threshold value of position
synchronism "Fine"

 + + FB3sl (M3)

CPSYNFIP2 K Generic coupling: Threshold value of position
synchronism "Fine" 2

 + + FB3sl (M3)

CPSYNFIV K Generic coupling: Threshold value of velocity
synchronism "Fine"

 + + FB3sl (M3)

CR A Circle radius s + PGsl
CROT F Rotation of the current coordinate system + - PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 829

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CROTS F Programmable frame rotations with solid an‐

gles (rotation in the specified axes)
s + - PGsl

CRPL F Frame rotation in any plane + - FB1sl (K2)
CSCALE F Scale factor for multiple axes + - PGAsl
CSPLINE F Cubic spline m + PGAsl
CT G Circle with tangential transition m + PGsl
CTAB F Define following axis position according to

leading axis position from curve table
 + + PGAsl

CTABDEF P Activate table definition + - PGAsl
CTABDEL P Clear curve table + - PGAsl
CTABEND P Deactivate table definition + - PGAsl
CTABEXISTS F Checks the curve table with number n + + PGAsl
CTABFNO F Number of curve tables still possible in the

memory
 + + PGAsl

CTABFPOL F Number of polynomials still possible in the
memory

 + + PGAsl

CTABFSEG F Number of curve segments still possible in the
memory

 + + PGAsl

CTABID F Returns table number of the nth curve table + + PGAsl
CTABINV F Define leading axis position according to fol‐

lowing axis position from curve table
 + + PGAsl

CTABISLOCK F Returns the lock state of the curve table with
number n

 + + PGAsl

CTABLOCK P Delete and overwrite, lock + + PGAsl
CTABMEMTYP F Returns the memory in which curve table num‐

ber n is created.
 + + PGAsl

CTABMPOL F Max. number of polynomials still possible in
the memory

 + + PGAsl

CTABMSEG F Max. number of curve segments still possible
in the memory

 + + PGAsl

CTABNO F Number of defined curve tables in SRAM or
DRAM

 + + FB3sl (M3)

CTABNOMEM F Number of defined curve tables in SRAM or
DRAM

 + + PGAsl

CTABPERIOD F Returns the table periodicity of curve table
number n

 + + PGAsl

CTABPOL F Number of polynomials already used in the
memory

 + + PGAsl

CTABPOLID F Number of the curve polynomials used by the
curve table with number n

 + + PGAsl

CTABSEG F Number of curve segments already used in
the memory

 + + PGAsl

CTABSEGID F Number of the curve segments used by the
curve table with number n

 + + PGAsl

Tables
21.1 Operations

Job Planning
830 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CTABSEV F Returns the final value of the following axis of

a segment of the curve table
 + + PGAsl

CTABSSV F Returns the initial value of the following axis
of a segment of the curve table

 + + PGAsl

CTABTEP F Returns the value of the leading axis at curve
table end

 + + PGAsl

CTABTEV F Returns the value of the the following axis at
curve table end

 + + PGAsl

CTABTMAX F Returns the maximum value of the following
axis of the curve table

 + + PGAsl

CTABTMIN F Returns the minimum value of the following
axis of the curve table

 + + PGAsl

CTABTSP F Returns the value of the leading axis at curve
table start

 + + PGAsl

CTABTSV F Returns the value of the following axis at curve
table start

 + + PGAsl

CTABUNLOCK P Revoke delete and overwrite lock + + PGAsl
CTOL A Contour tolerance for compressor functions,

orientation smoothing and smoothing types
m + PGAsl

CTRANS F Zero offset for multiple axes + - PGAsl
CUT2D 6) G 2D TRC m + PGsl
CUT2DD G 2½ D TRC in relation to the differential tool m + PGsl
CUT2DF G 2 D TRC relative to the current frame (inclined

plane)
m + PGsl

CUT2DFD G 2½ D TRC in relation to the differential tool
relative to the current frame (inclined plane)

m + PGsl

CUT3DC G 3D TRC for circumferential milling m + PGAsl
CUT3DCC G 3D TRC for circumferential milling taking into

account a limitation surface with 3D radius
compensation Contour on the machining sur‐
face

m + PGAsl

CUT3DCCD G 3D TRC for circumferential milling taking into
account a limitation surface with differential
tool on the tool center point path Infeed to the
limitation surface.

m + PGAsl

CUT3DCD G 3D TRC in relation to a differential tool for cir‐
cumferential milling

m + PGAsl

CUT3DF G 3D TRC for face milling with change in orien‐
tation

m + PGAsl

CUT3DFD G 3D TRC in relation to a differential tool for face
milling with change in orientation

m + PGAsl

CUT3DFF G 3D TRC for face milling with constant orienta‐
tion. The tool orientation is the direction de‐
fined by G17 - G19 and, in some cases, rota‐
ted by a frame.

m + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 831

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CUT3DFS G 3D TRC for face milling with constant orienta‐

tion. The tool orientation is defined by
G17 - G19 and is not influenced by frames.

m + PGAsl

CUTCONOF 6) G Deactivate tool radius compensation m + PGsl
CUTCONON G Activate tool radius compensation m + PGsl
CUTMOD A Activate Modification of the offset data for ro‐

tatable tools (in connection with orientable tool
carriers)

m + PGAsl

CUTMODK A Activate Modification of the offset data for ro‐
tatable tools (in connection with orientation
transformations defined by kinematic chains)

m + PGAsl

CYCLE60 C (T) Engraving cycle + PGAsl
CYCLE61 C (T) Face milling + PGAsl
CYCLE62 C (T) Contour call + PGAsl
CYCLE63 C (T) Contour pocket milling + PGAsl
CYCLE64 C (T) Contour pocket predrilling + PGAsl
CYCLE70 C (T) Thread milling + PGAsl
CYCLE72 C (T) Path milling + PGAsl
CYCLE76 C (T) Milling the rectangular spigot + PGAsl
CYCLE77 C (T) Circular spigot milling + PGAsl
CYCLE78 C (T) Mill cutting thread + PGAsl
CYCLE79 C (T) Multiple edge + PGAsl
CYCLE81 C (T) Drilling, centering + PGAsl
CYCLE82 C (T) Drilling, counterboring + PGAsl
CYCLE83 C (T) Deep-hole drilling + PGAsl
CYCLE84 C (T) Tapping without compensating chuck + PGAsl
CYCLE85 C (T) Reaming + PGAsl
CYCLE86 C (T) Boring + PGAsl
CYCLE92 C (T) Parting + PGAsl
CYCLE95 C (T) Stock removal along the contour + PGAsl
CYCLE98 C (T) Thread chain + PGAsl
CYCLE99 C (T) Thread cutting + PGAsl
CYCLE150 C (M) Displaying/logging measurement results + BNMsl
CYCLE435 C (T) Calculate dressing tool position + PGAsl
CYCLE495 C (T) Form-truing + PGAsl
CYCLE750 C (A) Internal operating cycle for CYCLE751... CY‐

CLE759 (contains the MMC command for the
actual function call)

 - FB3sl (T4)

CYCLE751 C (A) Open / perform / close an optimization session M FB3sl (T4)
CYCLE752 C (A) Add axis to an optimization session M FB3sl(T4)
CYCLE753 C (A) Select optimization mode M FB3sl (T4)
CYCLE754 C (A) Add / remove language block M FB3sl (T4)
CYCLE755 C (A) Backing up/restoring data block M FB3sl (T4)

Tables
21.1 Operations

Job Planning
832 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CYCLE756 C (A) Activate optimization results M FB3sl (T4)
CYCLE757 C (A) Store optimization data M FB3sl (T4)
CYCLE758 C (A) Changing the parameter value M FB3sl (T4)
CYCLE759 C (A) Read parameter value M FB3sl (T4)
CYCLE800 C (T) Swiveling + PGAsl
CYCLE801 C (T) Grid or frame + PGAsl
CYCLE802 C (T) Arbitrary positions + PGAsl
CYCLE830 C (T) Deep-hole drilling 2 + PGAsl
CYCLE832 C (T) High-Speed Settings + PGAsl
CYCLE840 C (T) Tapping with compensating chuck + PGAsl
CYCLE899 C (T) Open slot milling + PGAsl
CYCLE930 C (T) Groove + PGAsl
CYCLE940 C (T) Undercut forms + PGAsl
CYCLE951 C (T) Stock removal + PGAsl
CYCLE952 C (T) Contour grooving + PGAsl
CYCLE961 C (M) Determine the position of a workpiece corner

(inner or outer) and insert as work offset.
 + BNMsl

CYCLE971 C (M) Calibrate tool probe, measure tool length and/
or tool radius (only for milling)

 + BNMsl

CYCLE973 C (M)

Calibrate a workpiece probe on a surface on
the workpiece or in a groove (only for turning)

 + BNMsl

CYCLE974 C (M) Determine the workpiece zero in the selected
measuring axis, determine tool offset with 1-
point measurement (only for turning).

 + BNMsl

CYCLE976 C (M) Calibrate a workpiece probe in a calibration
ring or on a calibration ball completely in the
working plane or at an edge for a particular
axis and direction

 + BNMsl

CYCLE977 C (M) Determine the center in the plane as well as
the width or the diameter

 + BNMsl

CYCLE978 C (M) Measure the position of an edge in the work‐
piece coordinate system

 + BNMsl

CYCLE979 C (M) Determine center in the plane, measure radi‐
us of circle segment.

 + BNMsl

CYCLE982 C (M) Calibrate tool probe, measure turning drilling
and milling tools (only for turning)

 + BNMsl

CYCLE994 C (M) Determine the workpiece zero in the selected
measuring axis with 2-point measurement (on‐
ly for turning).

 + BNMsl

CYCLE995 C (M) Measure the angularity of the spindle on a ma‐
chine tool

 + BNMsl

CYCLE996 C (M) Determine transformation-relevant data for
kinematic transformations with rotary axes

 + BNMsl

CYCLE997 C (M) Determine center and diameter of a ball,
measure center of three distributed balls

 + BNMsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 833

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
CYCLE998 C (M) Determine the angular position of a surface

(plane) referred to the working plane, deter‐
mine angle of edges in the workpiece coordi‐
nate system.

 + BNMsl

CYCLE4071 C (T) Longitudinal grinding with infeed at the rever‐
sal point

 + PGAsl

CYCLE4072 C (T) Longitudinal grinding with infeed at the rever‐
sal point and cancel signal

 + PGAsl

CYCLE4073 C (T) Longitudinal grinding with continuous infeed + PGAsl
CYCLE4074 C (T) Longitudinal grinding with continuous infeed

and cancel signal
 + PGAsl

CYCLE4075 C (T) Surface grinding with infeed at the reversal
point

 + PGAsl

CYCLE4077 C (T) Surface grinding with infeed at the reversal
point and cancel signal

 + PGAsl

CYCLE4078 C (T) Surface grinding with continuous infeed + PGAsl
CYCLE4079 C (T) Surface grinding with intermittent infeed + PGAsl

Operations D ... F

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 858).
D O Tool offset number + PGsl
D0 O With D0, offsets for the tool are ineffective + PGsl
DAC K Absolute non-modal axis-specific diameter

programming
s + PGsl

DC K Absolute dimensions for rotary axes, ap‐
proach position directly

s + PGsl

DCI K Assign data class I (= Individual) (only SINU‐
MERIK 828D)

 + PGAsl

DCM K Assign data class M (= Manufacturer) (only
SINUMERIK 828D)

 + PGAsl

DCU K Assign data class U (= User) (only SINUMER‐
IK 828D)

 + PGAsl

DEF K Variable definition + PGAsl
DEFAULT K Branch in CASE branch + PGAsl
DEFINE K Keyword for macro definitions + PGAsl
DELAYFSTOF P Define the end of a stop delay section m + - PGAsl
DELAYFSTON P Define the start of a stop delay section m + - PGAsl
DELDL F Delete additive offsets + - PGAsl
DELDTG P Delete distance-to-go - + FBSYsl
DELETE P Delete the specified file. The file name can be

specified with path and file identifier.
 + - PGAsl

Tables
21.1 Operations

Job Planning
834 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 858).
DELMLOWNER F Delete owner magazine location of the tool + - FBWsl
DELMLRES F Delete magazine location reservation + - FBWsl
DELMT P Delete multitool + - FBWsl
DELOBJ F Deletion of elements from kinematic chains,

protection areas, protection area elements,
collision pairs and transformation data

 + PGAsl

DELT P Delete Tool + - FBWsl
DELTC P Delete toolholder data record + - FBWsl
DELTOOLENV F Delete data records describing tool environ‐

ments
 + - PGAsl

DIACYCOFA K Axis-specific modal diameter programming:
OFF in cycles

m + FB1sl (P1)

DIAM90 G Diameter programming for G90, radius pro‐
gramming for G91

m + PGAsl

DIAM90A K Axis-specific modal diameter programming for
G90 and AC, radius programming for G91 and
IC

m + PGsl

DIAMCHAN K Transfer of all axes from MD axis functions to
diameter programming channel status

 + PGsl

DIAMCHANA K Transfer of the diameter programming chan‐
nel status

 + PGsl

DIAMCYCOF G Channel-specific diameter programming:
OFF in cycles

m + FB1sl (P1)

DIAMOF 6) G Diameter programming: OFF
Normal position, see machine manufacturer

m + PGsl

DIAMOFA K Axis-specific modal diameter programming:
OFF
Normal position, see machine manufacturer

m + PGsl

DIAMON G Diameter programming: ON m + PGsl
DIAMONA K Axis-specific modal diameter programming:

ON
Activation, see machine manufacturer

m + PGsl

DIC K Relative non-modal axis-specific diameter
programming

s + PGsl

DILF O Retraction path (length) m + PGsl
DISABLE P Interrupt OFF + - PGAsl
DISC O Transition circle overshoot tool radius com‐

pensation
m + PGsl

DISCL O Clearance between the end point of the fast
infeed motion and the machining plane

 + PGsl

DISPLOF PA Suppress current block display + PGAsl
DISPLON PA Revoke suppression of the current block dis‐

play
 + PGAsl

DISPR O Path differential for repositioning s + PGAsl
DISR O Distance for repositioning s + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 835

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 858).
DISRP O Distance between the retraction plane and the

machining plane during smooth approach and
retraction

 + PGsl

DITE O Thread run-out path m + PGsl
DITS O Thread run-in path m + PGsl
DIV K Integer division + PGAsl
DL O Select location-dependent additive tool offset

(DL, total set-up offset)
m + PGAsl

DO O Keyword for synchronized action, triggers ac‐
tion when condition is fulfilled

 - + FBSYsl

DRFOF P Deactivation of handwheel offsets (DRF) m + - PGsl
DRIVE G Velocity-dependent path acceleration m + PGAsl
DRIVEA P Activate knee-shaped acceleration character‐

istic for the programmed axes
 + - PGAsl

DYNFINISH G Dynamic response for smooth finishing m + PGAsl
DYNNORM 6) G Standard dynamic response m + PGAsl
DYNPOS G Dynamic response for positioning mode, tap‐

ping
m + PGAsl

DYNROUGH G Dynamic response for roughing m + PGAsl
DYNSEMIFIN G Dynamic response for finishing m + PGAsl
DZERO P Marks all D numbers of the TO unit as invalid + - PGAsl
EAUTO G Definition of the last spline section by means

of the last 3 points
m + PGAsl

EGDEF P Definition of an electronic gear + - PGAsl
EGDEL P Delete coupling definition for the following axis + - PGAsl
EGOFC P Turn off electronic gear continuously + - PGAsl
EGOFS P Turn off electronic gear selectively + - PGAsl
EGON P Turn on electronic gear + - PGAsl
EGONSYN P Turn on electronic gear + - PGAsl
EGONSYNE P Turn on electronic gear, with specification of

approach mode
 + - PGAsl

ELSE K Program branch, if IF condition not fulfilled + PGAsl
ENABLE P Interrupt ON + - PGAsl
ENAT 6) G Natural transition to next traversing block m + PGAsl
ENDFOR K End line of FOR counter loop + PGAsl
ENDIF K End line of IF branch + PGAsl
ENDLABEL K End label for part program repetitions with RE‐

PEAT
 + PGAsl, FB1sl (K1)

ENDLOOP K End line of endless program loop LOOP + PGAsl
ENDPROC K End line of program with start line PROC +
ENDWHILE K End line of WHILE loop + PGAsl
ESRR P Parameterizing drive-autonomous ESR re‐

traction in the drive
 + PGAsl

Tables
21.1 Operations

Job Planning
836 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 858).
ESRS P Parameterizing drive-autonomous ESR shut‐

down in the drive
 + PGAsl

ETAN G Tangential transition to next traversing block
at spline begin

m + PGAsl

EVERY K Execute synchronized action on transition of
condition from FALSE to TRUE

 - + FBSYsl

EX K Keyword for value assignment in exponential
notation

 + PGAsl

EXECSTRING P Transfer of a string variable with the executing
part program line

 + - PGAsl

EXECTAB P Execute an element from a motion table + - PGAsl
EXECUTE P Program execution ON + - PGAsl
EXP F Exponential function ex + + PGAsl
EXTCALL O Execute external subprogram + + PGAsl
EXTCLOSE P Closing external device / file that was opened

for writing
 + - PGAsl

EXTERN K Declaration of a subprogram with parameter
transfer

 + PGAsl

EXTOPEN P Opening external device / file for the channel
for writing

 + - PGAsl

F O Feedrate value
(in conjunction with G4 the dwell time is also
programmed with F)

 + + PGsl

FA K Axial feedrate m + + PGsl
FAD O Infeed rate for soft approach and retraction + PGsl
FALSE K Logical constant: Incorrect + + PGAsl
FB O Non-modal feedrate + PGsl
FCTDEF P Define polynomial function + - PGAsl
FCUB G Feedrate variable according to cubic spline m + PGAsl
FD O Path feedrate for handwheel override s + PGsl
FDA K Axis feedrate for handwheel override s + PGsl
FENDNORM 6) G Corner deceleration OFF m + PGAsl
FFWOF 6) G Feedforward control OFF m + PGAsl
FFWON G Feedforward control ON m + PGAsl
FGREF K Reference radius for rotary axes or path refer‐

ence factors for orientation axes (vector inter‐
polation)

m + PGsl

FGROUP P Definition of axis/axes with path feedrate + - PGsl
FI K Parameter for access to frame data: Fine off‐

set
 + PGAsl

FIFOCTRL G Control of preprocessing buffer m + PGAsl
FILEDATE P Returns date of most recent write access to

file
 + - PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 837

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1)2)3)4)5) for explanations, see legend (Page 858).
FILEINFO P Returns summary information listing FILE‐

DATE, FILESIZE, FILESTAT, and FILETIME
 + - PGAsl

FILESIZE P Returns current file size + - PGAsl
FILESTAT P Returns file status of rights for read, write, ex‐

ecute, display, delete (rwxsd)
 + - PGAsl

FILETIME P Returns time of most recent write access to file + - PGAsl
FINEA K End of motion when "Exact stop fine" reached m + PGAsl
FL K Limit velocity for synchronized axis m + PGsl
FLIN G Feed linear variable m + PGAsl
FMA K Multiple feedrates axial m + PGsl
FNORM 6) G Feedrate normal to DIN 66025 m + PGAsl
FOC K Non-modal torque/force limitation s - + FBSYsl
FOCOF K Switch off modal torque/force limitation m - + FBSYsl
FOCON K Switch on modal torque/force limitation m - + FBSYsl
FOR K Counter loop with fixed number of passes + PGAsl
FP O Fixed point: Number of fixed point to be ap‐

proached
s + PGsl

FPO K Feedrate characteristic programmed via a pol‐
ynomial

 + PGAsl

FPR P Rotary axis identifier + - PGsl
FPRAOF P Deactivate revolutional feedrate + - PGsl
FPRAON P Activate revolutional feedrate + - PGsl
FRAME K Data type for the definition of coordinate sys‐

tems
 + PGAsl

FRC O Feedrate for radius and chamfer s + PGsl
FRCM O Feedrate for radius and chamfer, modal m + PGsl
FROM K The action is executed if the condition is fulfil‐

led once and as long as the synchronized ac‐
tion is active

 - + FBSYsl

FTOC P Change fine tool offset - + FBSYsl
FTOCOF 6) G Online fine tool offset OFF m + PGAsl
FTOCON G Online fine tool offset ON m + PGAsl
FXS K Travel to fixed stop ON m + + PGsl
FXST K Torque limit for travel to fixed stop m + + PGsl
FXSW K Monitoring window for travel to fixed stop + + PGsl
FZ K Tooth feedrate m + PGsl

Tables
21.1 Operations

Job Planning
838 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operations G ... L

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
G0 G Linear interpolation with rapid traverse (rapid

traverse motion)
m + PGsl

G1 6) G Linear interpolation with feedrate (linear inter‐
polation)

m + PGsl

G2 G Circular interpolation clockwise m + PGsl
G3 G Circular interpolation counter-clockwise m + PGsl
G4 G Dwell time, preset s + PGsl
G5 G Oblique plunge-cut grinding s + PGAsl
G7 G Compensatory motion during oblique plunge-

cut grinding
s + PGAsl

G9 G Exact stop - deceleration s + PGsl
G17 6) G Selection of working plane X/Y m + PGsl
G18 G Selection of working plane Z/X m + PGsl
G19 G Selection of working plane Y/Z m + PGsl
G25 G Lower working area limitation s + PGsl
G26 G Upper working area limitation s + PGsl
G33 G Thread cutting with constant lead m + PGsl
G34 G Thread cutting with linear increasing lead m + PGsl
G35 G Thread cutting with linear decreasing lead m + PGsl
G40 6) G Tool radius compensation OFF m + PGsl
G41 G Tool radius compensation left of contour m + PGsl
G42 G Tool radius compensation right of contour m + PGsl
G53 G Suppression of current zero offset (non-mo‐

dal)
s + PGsl

G54 G 1st settable zero offset m + PGsl
G55 G 2nd settable zero offset m + PGsl
G56 G 3rd settable zero offset m + PGsl
G57 G 4th settable zero offset m + PGsl
G58 (840D sl) G Absolute programmable work offset (coarse

offset)
s + PGsl

G58 (828D) G 5th settable zero offset m + PGsl
G59 (840D sl) G Additive programmable work offset (fine off‐

set)
s + PGsl

G59 (828D) G 6th settable zero offset m + PGsl
G60 6) G Exact stop - deceleration m + PGsl
G62 G Corner deceleration at inside corners when

tool radius offset is active (G41, G42)
m + PGAsl

G63 G Tapping with compensating chuck s + PGsl
G64 G Continuous-path mode m + PGsl
G70 G Inch dimensions for geometric specifications

(lengths)
m + + PGsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 839

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
G71 6) G Metric dimensions for geometric specifica‐

tions (lengths)
m + + PGsl

G74 G Search for reference s + PGsl
G75 G Fixed point approach s + PGsl
G90 6) G Absolute dimensions m/s + PGsl
G91 G Incremental dimensions m/s + PGsl
G93 G Inverse-time feedrate rpm m + PGsl
G94 6) G Linear feedrate F in mm/min or inch/min and

degree/min
m + PGsl

G95 G Revolutional feedrate F in mm/rev or inch/rev m + PGsl
G96 G Revolutional feedrate (as for G95) and con‐

stant cutting rate
m + PGsl

G97 G Revolutional feedrate and constant spindle
speed (constant cutting rate OFF)

m + PGsl

G110 G Pole programming relative to the last program‐
med setpoint position

s + PGsl

G111 G Pole programming relative to zero of current
workpiece coordinate system

s + PGsl

G112 G Pole programming relative to the last valid pole s + PGsl
G140 6) G SAR approach direction defined by G41/G42 m + PGsl
G141 G SAR approach direction to left of contour m + PGsl
G142 G SAR approach direction to right of contour m + PGsl
G143 G SAR approach direction tangent-dependent m + PGsl
G147 G Soft approach with straight line s + PGsl
G148 G Soft retraction with straight line s + PGsl
G153 G Suppression of current frames including basic

frame
s + PGsl

G247 G Soft approach with quadrant s + PGsl
G248 G Soft retraction with quadrant s + PGsl
G290 6) G Switch over to SINUMERIK mode ON m + FBWsl
G291 G Switch over to ISO2/3 mode ON m + FBWsl
G331 G Rigid tapping, positive lead, clockwise m + PGsl
G332 G Rigid tapping, negative lead, counter-clock‐

wise
m + PGsl

G335 G Turning a convex thread in clockwise direction m + PGsl
G336 G Turning a convex thread in counter-clockwise

direction
m + PGsl

G340 6) G Spatial approach block (depth and in plane at
the same time (helix))

m + PGsl

G341 G Initial infeed on perpendicular axis (z), then
approach in plane

m + PGsl

G347 G Soft approach with semicircle s + PGsl
G348 G Soft retraction with semicircle s + PGsl

Tables
21.1 Operations

Job Planning
840 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
G450 6) G Transition circle m + PGsl
G451 G Intersection of equidistances m + PGsl
G460 6) G Activation of collision detection for the ap‐

proach and retraction block
m + PGsl

G461 G Insertion of a circle into the TRC block m + PGsl
G462 G Insertion of a straight line into the TRC block m + PGsl
G500 6) G Deactivation of all adjustable frames, basic

frames are active
m + PGsl

G505 ... G599 G 5 ... 99 Settable work offset m + PGsl
G601 6) G Block change at exact stop fine m + PGsl
G602 G Block change at exact stop coarse m + PGsl
G603 G Block change at IPO block end m + PGsl
G621 G Corner deceleration at all corners m + PGAsl
G641 G Continuous-path mode with smoothing as per

distance criterion (= programmable rounding
clearance)

m + PGsl

G642 G Continuous-path mode with smoothing within
the defined tolerances

m + PGsl

G643 G Continuous-path mode with smoothing within
the defined tolerances (block-internal)

m + PGsl

G644 G Continuous-path mode with smoothing with
maximum possible dynamic response

m + PGsl

G645 G Continuous-path mode with smoothing and
tangential block transitions within the defined
tolerances

m + PGsl

G700 G Inch dimensions for geometric and technolog‐
ical specifications (lengths, feedrate)

m + + PGsl

G710 6) G Metric dimensions for geometric and techno‐
logical specifications (lengths, feedrate)

m + + PGsl

G810 6), ..., G819 G G group reserved for the OEM user + PGAsl
G820 6), ..., G829 G G group reserved for the OEM user + PGAsl
G931 G Feedrate specified by means of traversing

time, deactivate constant path velocity
m +

G942 G Freeze linear feedrate and constant cutting
rate or spindle speed

m +

G952 G Freeze revolutional feedrate and constant cut‐
ting rate or spindle speed

m +

G961 G Linear feedrate (as for G94) and constant cut‐
ting rate

m + PGsl

G962 G Linear feedrate or revolutional feedrate and
constant cutting rate

m + PGsl

G971 G Linear feedrate and constant spindle speed
(constant cutting rate OFF)

m + PGsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 841

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
G972 G Linear feedrate or revolutional feedrate and

constant spindle speed (constant cutting rate
OFF)

m + PGsl

G973 G Revolutional feedrate without spindle speed
limitation and constant spindle speed (G97
without LIMS for ISO mode)

m + PGsl

GEOAX P Assign new channel axes to geometry axes
1 - 3

 + - PGAsl

GET P Replace enabled axis between channels + + PGAsl
GETACTT F Gets active tool from a group of tools with the

same name
 + - FBWsl

GETACTTD F Gets the T number associated with an abso‐
lute D number

 + - PGAsl

GETD P Replace axis directly between channels + - PGAsl
GETDNO F Returns the D number of a cutting edge (CE)

of a tool (T)
 + - PGAsl

GETEXET P Reading of the loaded T number + - FBWsl
GETFREELOC P Find a free space in the magazine for a given

tool
 + - FBWsl

GETSELT P Return selected T number + - FBWsl
GETT F Get T number for tool name + - FBWsl
GETTCOR F Read out tool lengths and/or tool length com‐

ponents
 + - PGAsl

GETTENV F Read T, D and DL numbers + - PGAsl
GETVARAP F Read access rights to a system/user variable + - PGAsl
GETVARDFT F Read default value of a system/user variable + - PGAsl
GETVARLIM F Read limit values of a system/user variable + - PGAsl
GETVARPHU F Read physical unit of a system/user variable + - PGAsl
GETVARTYP F Read data type of a system/user variable + - PGAsl
GFRAME0 ...
GFRAME100

G Activation of the grinding frame <n> of the da‐
ta management in channel

m + PGsl

GOTO K Jump operation first forward then backward
(direction initially to end of program and then
to beginning of program)

 + PGAsl

GOTOB K Jump backward (toward the beginning of the
program)

 + PGAsl

GOTOC K As GOTO, but suppress alarm 14080 "Jump
destination not found"

 + PGAsl

GOTOF K Jump forward (toward the end of the program) + PGAsl
GOTOS K Jump back to beginning of program + PGAsl
GP K Keyword for the indirect programming of posi‐

tion attributes
 + PGAsl

GROUP_
ADDEND

C (T) End of trial cut addition + PGAsl

GROUP_BEGIN C (T) Beginning of program group + PGAsl

Tables
21.1 Operations

Job Planning
842 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
GROUP_END C (T) End of program group + PGAsl
GWPSOF P Deselect constant grinding wheel peripheral

speed (GWPS)
s + - PGsl

GWPSON P Select constant grinding wheel peripheral
speed (GWPS)

s + - PGsl

H... O Auxiliary function output to the PLC + + PGsl/FB1sl (H2)
HOLES1 C (T) Row of holes + PGAsl
HOLES2 C (T) Circle of holes + PGAsl
I O Interpolation parameters s + PGsl
I1 O Intermediate point coordinate s + PGsl
IC K Incremental dimensions s + PGsl
ICYCOF P All blocks of a technology cycle are processed

in one interpolation cycle following ICYCOF
 + + FBSYsl

ICYCON P Each block of a technology cycle is processed
in a separate interpolation cycle following ICY‐
CON

 + + FBSYsl

ID K Identifier for modal synchronized actions m - + FBSYsl
IDS K Identifier for modal static synchronized actions - + FBSYsl
IF K Introduction of a conditional jump in the part

program/technology cycle
 + + PGAsl

INDEX F Define index of character in input string + - PGAsl
INICF K Initialization of variables for NEWCONF + PGAsl
INIPO K Initialization of variables at POWER ON + PGAsl
INIRE K Initialization of variables at reset + PGAsl
INIT P Selection of a particular NC program for exe‐

cution in a particular channel
 + - PGAsl

INITIAL Generation of an INI file across all areas + PGAsl
INT K Data type: Integer with sign + PGAsl
INTERSEC F Calculate intersection between two contour

elements
 + - PGAsl

INVCCW G Trace involute, counter-clockwise m + PGsl
INVCW G Trace involute, clockwise m + PGsl
INVFRAME F Calculate the inverse frame from a frame + - FB1sl (K2)
IP K Variable interpolation parameter + PGAsl
IPOBRKA P Motion criterion from braking ramp activation m + +
IPOENDA K End of motion when “IPO stop” reached m + PGAsl
IPTRLOCK P Freeze start of the untraceable program sec‐

tion at next machine function block.
m + - PGAsl

IPTRUNLOCK P Set end of untraceable program section at cur‐
rent block at time of interruption.

m + - PGAsl

IR O Center of circle coordinate (X axis) when turn‐
ing a convex thread

 + PGsl

ISAXIS F Check if geometry axis 1 specified as param‐
eter

 + - PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 843

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
ISD O Insertion depth m + PGAsl
ISFILE F Check whether the file exists in the NC appli‐

cation memory
 + - PGAsl

ISNUMBER F Check whether the input string can be conver‐
ted to a number

 + - PGAsl

ISOCALL K Indirect call of a program programmed in an
ISO language

 + PGAsl

ISVAR F Check whether the transfer parameter con‐
tains a variable declared in the NC

 + - PGAsl

J O Interpolation parameters s + PGsl
J1 O Intermediate point coordinate s + PGsl
JERKA P Activate acceleration response set via MD for

programmed axes
 + -

JERKLIM K Reduction or overshoot of maximum axial jerk m + PGAsl
JERKLIMA K Reduction or overshoot of maximum axial jerk m + + PGAsl
JR O Center of circle coordinate (Y axis) when turn‐

ing a convex thread
 + PGsl

K O Interpolation parameters s + PGsl
K1 O Intermediate point coordinate s + PGsl
KONT G Travel around contour on tool offset m + PGsl
KONTC G Approach/retract with continuous-curvature

polynomial
m + PGsl

KONTT G Approach/retract with continuous-tangent pol‐
ynomial

m + PGsl

KR O Center of circle coordinate (Z axis) when turn‐
ing a convex thread

 + PGsl

L O Subprogram number s + + PGAsl
LEAD O Lead angle

1st basic tool orientation
2nd orientation polynomials

m + PGAsl

LEADOF P Axial master value coupling OFF + + PGAsl
LEADON P Axial master value coupling on + + PGAsl
LENTOAX F Provides information about the assignment of

tool lengths L1, L2, and L3 of the active tool
to the abscissa, ordinate and applicate

 + - PGAsl

LFOF 6) G Fast retraction for thread cutting OFF m + PGsl
LFON G Fast retraction for thread cutting ON m + PGsl
LFPOS G Retraction of the axis declared with POLF‐

MASK or POLFMLIN to the absolute axis po‐
sition programmed with POLF

m + PGsl

LFTXT 6) G The plane of the retraction movement for fast
retraction is determined from the path tangent
and the current tool direction

m + PGsl

Tables
21.1 Operations

Job Planning
844 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
LFWP G The plane of the retraction movement for fast

retraction is determined by the current work‐
ing plane (G17/G18/G19)

m + PGsl

LIFTFAST K Fast retraction + PGsl
LIMS K Speed limitation

for G96/G961 and G97
m + PGsl

LLI K Lower limit value of variables + PGAsl
LN F Natural logarithm + + PGAsl
LOCK P Disable synchronized action with ID

(stop technology cycle)
 - + FBSYsl

LONGHOLE C (T) Elongated hole + PGAsl
LOOP K Introduction of an endless loop + PGAsl

Operations M ... R

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
M0 Programmed stop + + PGsl
M1 Optional stop + + PGsl
M2 End of program, main program (as M30) + + PGsl
M3 CW spindle rotation + + PGsl
M4 CCW spindle rotation + + PGsl
M5 Spindle stop + + PGsl
M6 Tool change + + PGsl
M17 End of subprogram + + PGsl
M19 Spindle positioning to the position entered in

SD43240
 + + PGsl

M30 End of program, main program (as M2) + + PGsl
M40 Automatic gear change + + PGsl
M41 ... M45 Gear stage 1 ... 5 + + PGsl
M70 Transition to axis mode + + PGsl
MASLDEF P Define master/slave axis grouping + + PGAsl
MASLDEL P Uncouple master/slave axis grouping and

clear grouping definition
 + + PGAsl

MASLOF P Deactivation of a temporary coupling + + PGAsl
MASLOFS P Deactivation of a temporary coupling with au‐

tomatic slave axis stop
 + + PGAsl

MASLON P Activation of a temporary coupling + + PGAsl
MATCH F Search for string in string + - PGAsl
MAXVAL F Larger value of two variables (arithm. function) + + PGAsl
MCALL K Modal subprogram call + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 845

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
MEAC K Continuous axial measurement without delete

distance-to-go
s + + PGAsl

MEAFRAME F Frame calculation from measuring points + - PGAsl
MEAS O Measurement with deletion of distance-to-go s + PGAsl
MEASA K Axial measurement with delete distance-to-go s + + PGAsl
MEASURE F Calculation method for workpiece and tool

measurement
 + - FB1sl (M5)

MEAW O Measurement without delete distance-to-go s + PGAsl
MEAWA K Axial measurement without delete distance-to-

go
s + + PGAsl

MI K Access to frame data: Mirroring + PGAsl
MINDEX F Define index of character in input string + - PGAsl
MINVAL F Smaller value of two variables (arithm. func‐

tion)
 + + PGAsl

MIRROR G Programmable mirroring s + PGAsl
MMC P Call the dialog window interactively from the

part program on the HMI
 + - PGAsl

MOD K Modulo division + PGAsl
MODAXVAL F Determine modulo position of a modulo rotary

axis
 + - PGAsl

MOV K Start positioning axis - + FBSYsl
MOVT O Specify end point of a traversing motion in the

tool direction
 FB1(K2)

MSG P Programmable messages m + - PGsl
MVTOOL P Language command to move tool + - FBWsl
N O NC auxiliary block number + PGsl
NAMETOINT F Determining the system variable index + PGAsl
NC K Specify validity range for data + PGAsl
NEWCONF P Apply modified machine data (corresponds to

"Activate machine data")
 + - PGAsl

NEWMT F Create new multitool + - FBWsl
NEWT F Create new tool + - FBWsl
NORM 6) G Standard setting in starting point and end

point with tool offset
m + PGsl

NOT K Logic NOT (negation) + PGAsl
NPROT P Machine-specific protection area ON/OFF + - PGAsl
NPROTDEF P Definition of a machine-specific protection

area
 + - PGAsl

NUMBER F Convert input string to number + - PGAsl
OEMIPO1 G OEM interpolation 1 m + PGAsl
OEMIPO2 G OEM interpolation 2 m + PGAsl
OF K Keyword in CASE branch + PGAsl
OFFN O Allowance on the programmed contour m + PGsl

Tables
21.1 Operations

Job Planning
846 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
OMA1 O OEM address 1 m + PGAsl
OMA2 O OEM address 2 m + PGAsl
OMA3 O OEM address 3 m + PGAsl
OMA4 O OEM address 4 m + PGAsl
OMA5 O OEM address 5 m + PGAsl
OR K Logic operator, OR operation + PGAsl
ORIAXES G Linear interpolation of machine axes or orien‐

tation axes
m + PGAsl

ORIAXPOS G Orientation angle via virtual orientation axes
with rotary axis positions

m + PGAsl

ORIC 6) G Orientation changes at outside corners are
superimposed on the circle block to be inser‐
ted

m + PGAsl

ORICONCCW G Interpolation on a circular peripheral surface
in CCW direction

m + PGAsl/FB3sl (F3)

ORICONCW G Interpolation on a circular peripheral surface
in CW direction

m + PGAsl/FB3sl (F4)

ORICONIO G Interpolation on a circular peripheral surface
with intermediate orientation setting

m + PGAsl/FB3sl (F4)

ORICONTO G Interpolation on circular peripheral surface in
tangential transition
(final orientation)

m + PGAsl/FB3sl (F5)

ORICURVE G Interpolation of orientation with specification
of motion of two contact points of tool

m + PGAsl/FB3sl (F6)

ORID G Orientation changes are performed before the
circle block

m + PGAsl

ORIEULER 6) G Orientation angle via Euler angle m + PGAsl
ORIMKS G Tool orientation in the machine coordinate

system
m + PGAsl

ORIPATH G Tool orientation in relation to path m + PGAsl
ORIPATHS G Tool orientation in relation to path, blips in the

orientation characteristic are smoothed
m + PGAsl

ORIPLANE G Interpolation in a plane
(corresponds to ORIVECT),
large-radius circular interpolation

m + PGAsl

ORIRESET P Initial tool orientation with up to 3 orientation
axes

 + - PGAsl

ORIROTA 6) G Angle of rotation to an absolute direction of
rotation

m + PGAsl

ORIROTC G Tangential rotational vector in relation to path
tangent

m + PGAsl

ORIROTR G Angle of rotation relative to the plane between
the start and end orientation

m + PGAsl

ORIROTT G Angle of rotation relative to the change in the
orientation vector

m + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 847

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
ORIRPY G Orientation angle via RPY angle (XYZ) m + PGAsl
ORIRPY2 G Orientation angle via RPY angle (ZYX) m + PGAsl
ORIS O Change in orientation m + PGAsl
ORISOF 6) G Smoothing of the orientation characteristic

OFF
m + PGAsl

ORISOLH F Calculate orientations + PGAsl
ORISON G Smoothing of the orientation characteristic ON m + PGAsl
ORIVECT 6) G Large-circle interpolation (identical to ORI‐

PLANE)
m + PGAsl

ORIVIRT1 G Orientation angle via virtual orientation axes
(definition 1)

m + PGAsl

ORIVIRT2 G Orientation angle via virtual orientation axes
(definition 1)

m + PGAsl

ORIWKS 6) G Tool orientation in the workpiece coordinate
system

m + PGAsl

OS K Oscillation on/off + PGAsl
OSB K Oscillating: Starting point m + FB1sl (P5)
OSC G Continuous tool orientation smoothing m + PGAsl
OSCILL K Axis: 1 - 3 infeed axes m + PGAsl
OSCTRL K Oscillation options m + PGAsl
OSD G Smoothing of tool orientation by specifying

smoothing distance with SD
m + PGAsl

OSE K Oscillation end position m + PGAsl
OSNSC K Oscillating: Number of spark-out cycles m + PGAsl
OSOF 6) G Tool orientation smoothing OFF m + PGAsl
OSP1 K Oscillating: Left reversal point m + PGAsl
OSP2 K Oscillation right reversal point m + PGAsl
OSS G Tool orientation smoothing at end of block m + PGAsl
OSSE G Tool orientation smoothing at start and end of

block
m + PGAsl

OST G Smoothing of tool orientation by specifying an‐
gular tolerance in degrees with SD (maximum
deviation from programmed orientation char‐
acteristic)

m + PGAsl

OST1 K Oscillating: Stopping point in left reversal point m + PGAsl
OST2 K Oscillating: Stopping point in right reversal

point
m + PGAsl

OTOL A Orientation tolerance for compressor func‐
tions, orientation smoothing and smoothing
types

m + PGAsl

OVR K Speed offset m + PGAsl
OVRA K Axial speed offset m + + PGAsl
OVRRAP K Rapid traverse override m + PGAsl
P O Number of subprogram repetitions + PGAsl

Tables
21.1 Operations

Job Planning
848 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
PAROT G Align workpiece coordinate system on work‐

piece
m + PGsl

PAROTOF 6) G Deactivate frame rotation in relation to work‐
piece

m + PGsl

PCALL K Call subprograms with absolute path and pa‐
rameter transfer

 + PGAsl

PDELAYOF G Punching with delay OFF m + PGAsl
PDELAYON 6) G Punching with delay ON m + PGAsl
PHI K Angle of rotation of the orientation around the

direction axis of the taper
 + PGAsl

PHU K Physical unit of a variable + PGAsl
PL O 1. B spline: Node clearance

2. Polynomial interpolation Length of the pa‐
rameter interval for polynomial interpolation

s + PGAsl

PM K Per minute + PGsl
PO K Polynomial coefficient for polynomial interpo‐

lation
s + PGAsl

POCKET3 C (T) Milling the rectangular pocket + PGAsl
POCKET4 C (T) Milling the circular pocket + PGAsl
POLF K LIFTFAST retraction position m + PGsl/PGAsl
POLFA P Start retraction position of single axes with

$AA_ESR_TRIGGER
m + + PGsl

POLFMASK P Enable axes for retraction without a connec‐
tion between the axes

m + - PGsl

POLFMLIN P Enable axes for retraction with a linear con‐
nection between the axes

m + - PGsl

POLY G Polynomial interpolation m + PGAsl
POLYPATH P Polynomial interpolation can be selected for

the AXIS or VECT axis groups
m + - PGAsl

PON G Punching ON m + PGAsl
PONS G Punching ON in interpolation cycle m + PGAsl
POS K Axis positioning + + PGsl
POSA K Position axis across block boundary + + PGsl
POSM P Position magazine + - FBWsl
POSMT P Position multitool on toolholder at location

number
 + - FBWsl

POSP K Positioning axis in parts (oscillation) + PGsl
POSRANGE F Determine whether the currently interpolated

position setpoint of an axis is located in a win‐
dow at a predefined reference position

 + + FBSYsl

POT F Square
(arithmetic function)

 + + PGAsl

PR K Per revolution + PGsl
PREPRO PA Identify subprograms with preparation + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 849

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
PRESETON P Actual value setting with loss of the referenc‐

ing status
 + + PGAsl

PRESETONS P Actual value setting with loss of the referenc‐
ing status

 + + PGAsl

PRIO K Keyword for setting the priority for interrupt
processing

 + PGAsl

PRLOC K Initialization of variables at reset only after lo‐
cal change

 + PGAsl

PROC K First operation in a program + PGAsl
PROTA P Request for a recalculation of the collision

model
 + PGAsl

PROTD F Calculating the distance between two protec‐
tion areas

 + PGAsl

PROTS P Setting the protection area status + PGAsl
PSI K Opening angle of the taper + PGAsl
PTP G Point-to-point motion (PTP travel) m + PGAsl
PTPG0 G Point-to-point motion only with G0, otherwise

path motion CP
m + PGAsl

PTPWOC G Point-to-point motion without compensation
movements caused by changes in orientation

m + PGAsl

PUNCHACC P Travel-dependent acceleration for nibbling + - PGAsl
PUTFTOC P Tool fine offset for parallel dressing + - PGAsl
PUTFTOCF P Tool fine offset dependent on a function for

parallel dressing defined with FCTDEF
 + - PGAsl

PW O B spline, point weight s + PGAsl
QU K Fast additional

(auxiliary) function output
 + PGsl

R... O Arithmetic parameter also as settable address
identifier and with numerical extension

 + PGAsl

RAC K Absolute non-modal axis-specific radius pro‐
gramming

s + PGsl

RDISABLE P Read-in disable - + FBSYsl
READ P Reads one or more lines in the specified file

and stores the information read in the array
 + - PGAsl

REAL K Data type: Floating-point variable with sign
(real numbers)

 + PGAsl

REDEF K Redefinition of system variables, user varia‐
bles, and NC language commands

 + PGAsl

RELEASE P Release machine axes for axis exchange + + PGAsl
REP K Keyword for initialization of all elements of an

array with the same value
 + PGAsl

REPEAT K Repetition of a program loop + PGAsl
REPEATB K Repetition of a program line + PGAsl
REPOSA G Linear repositioning with all axes s + PGAsl
REPOSH G Repositioning with semicircle s + PGAsl

Tables
21.1 Operations

Job Planning
850 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
REPOSHA G Repositioning with all axes; geometry axes in

semicircle
s + PGAsl

REPOSL G Linear repositioning s + PGAsl
REPOSQ G Repositioning in a quadrant s + PGAsl
REPOSQA G Linear repositioning with all axes, geometry

axes in quadrant
s + PGAsl

RESETMON P Language command for setpoint activation + - FBWsl
RET P End of subprogram + + PGAsl
RETB P End of subprogram + + PGAsl
RIC K Relative non-modal axis-specific radius pro‐

gramming
s + PGsl

RINDEX F Define index of character in input string + - PGAsl
RMB G Repositioning to start of block m + PGAsl
RMBBL G Repositioning to start of block s + PGAsl
RME G Repositioning to end of block m + PGAsl
RMEBL G Repositioning to end of block s + PGAsl
RMI 6) G Repositioning to interrupt point m + PGAsl
RMIBL 6) G Repositioning to interrupt point s + PGAsl
RMN G Repositioning to the nearest path point m + PGAsl
RMNBL G Repositioning to the nearest path point s + PGAsl
RND O Round the contour corner s + PGsl
RNDM O Modal rounding m + PGsl
ROT G Programmable rotation s + PGsl
ROTS G Programmable frame rotations with solid an‐

gles
s + PGsl

ROUND F Rounding of decimal places + + PGAsl
ROUNDUP F Rounding up of an input value + + PGAsl
RP O Polar radius m/s + PGsl
RPL O Rotation in the plane s + PGsl
RT K Parameter for access to frame data: Rotation + PGAsl
RTLIOF G G0 without linear interpolation (single-axis in‐

terpolation)
m + PGsl

RTLION 6) G G0 with linear interpolation m + PGsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 851

Operations S ... Z

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
S A Spindle speed

(with G4, G96/G961 different meaning)
m/s + + PGsl

SAVE PA Attribute for saving information when subpro‐
grams are called

 + PGAsl

SBLOF P Suppress single block + - PGAsl
SBLON P Revoke suppression of single block + - PGAsl
SC K Parameter for access to frame data: Scaling + PGAsl
SCALE G Programmable scaling s + PGsl
SCC K Selective assignment of transverse axis to

G96/G961/G962. Axis identifiers may take the
form of geometry, channel or machine axes.

 + PGsl

SCPARA K Program servo parameter set + + PGAsl
SD A Spline degree s + PGAsl
SET K Keyword for initialization of all elements of an

array with listed values
 + PGAsl

SETAL P Set alarm + + PGAsl
SETDNO F Assign the D number of a cutting edge (CE)

of a tool (T)
 + - PGAsl

SETINT K Define which interrupt routine is to be activa‐
ted when an NC input is present

 + PGAsl

SETM P Setting of markers in dedicated channel + + PGAsl
SETMS P Reset to the master spindle defined in ma‐

chine data
 + - PGsl

SETMS(n) P Set spindle n as master spindle + PGsl
SETMTH P Set master toolholder number + - FBWsl
SETPIECE P Set piece number for all tools assigned to the

spindle
 + - FBWsl

SETTA P Activate tool from wear group + - FBWsl
SETTCOR F Modification of tool components taking all sup‐

plementary conditions into account
 + - PGAsl

SETTIA P Deactivate tool from wear group + - FBWsl
SF A Starting point offset for thread cutting m + PGsl
SIN F Sine (trigon. function) + + PGAsl
SIRELAY F Activate the safety functions parameterized

with SIRELIN, SIRELOUT, and SIRELTIME
 - + FBSIsl

SIRELIN P Initialize input variables of function block + - FBSIsl
SIRELOUT P Initialize output variables of function block + - FBSIsl
SIRELTIME P Initialize timers of function block + - FBSIsl
SLOT1 C (T) Longitudinal groove + PGAsl
SLOT2 C (T) Circumferential groove + PGAsl
SOFT G Soft path acceleration m + PGAsl

Tables
21.1 Operations

Job Planning
852 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
SOFTA P Activate jerk-limited axis acceleration for the

programmed axes
 + - PGAsl

SON G Nibbling ON m + PGAsl
SONS G Nibbling ON in interpolation cycle m + PGAsl
SPATH 6) G Path reference for FGROUP axes is arc length m + PGAsl
SPCOF P Switch master spindle or spindle(s) from posi‐

tion control to speed control
m + - PGsl

SPCON P Switch master spindle or spindle(s) from
speed control to position control

m + - PGAsl

SPI F Converts spindle number into axis identifier + - PGAsl
SPIF1 6) G Fast

NC inputs/outputs for punching/nibbling byte 1
m + FB2sl (N4)

SPIF2 G Fast
NC inputs/outputs for punching/nibbling byte 2

m + FB2sl (N4)

SPLINEPATH P Define spline grouping + - PGAsl
SPN A Number of path sections per block s + PGAsl
SPOF 6) G Stroke OFF,

nibbling, punching OFF
m + PGAsl

SPOS K Spindle position m + + PGsl
SPOSA K Spindle position across block boundaries m + PGsl
SPP A Length of a path section m + PGAsl
SPRINT F Returns an input string formatted + PGAsl
SQRT F Square root

(arithmetic function)
 + + PGAsl

SR A Oscillation retraction path for synchronized
action

s + PGsl

SRA K Oscillation retraction path with external input
axial for synchronized action

m + PGsl

ST A Oscillation sparking-out time for synchronized
action

s + PGsl

STA K Oscillation sparking-out time axial for
synchronized action

m + PGsl

START P Start selected programs simultaneously in
several channels from current program

 + - PGAsl

STARTFIFO 6) G Execute; fill preprocessing memory simulta‐
neously

m + PGAsl

STAT Position of joints s + PGAsl
STOLF K G0 tolerance factor m + PGAsl
STOPFIFO G Stop machining; fill preprocessing memory

until STARTFIFO is detected, preprocessing
memory is full or end of program

m + PGAsl

STOPRE P Preprocessing stop until all prepared blocks
in the main run are executed

 + - PGAsl

STOPREOF P Revoke preprocessing stop - + FBSYsl
STRING K Data type: Character string + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 853

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
STRINGIS F Checks the present scope of NC language

and the NC cycle names, user variables, mac‐
ros, and label names belonging specifically to
this command to establish whether these ex‐
ist, are valid, defined or active.

 + - PGAsl

STRLEN F Define string length + - PGAsl
SUBSTR F Define index of character in input string + - PGAsl
SUPA G Suppression of current zero offset, including

programmed offsets, system frames, hand‐
wheel offsets (DRF), external zero offset, and
overlaid movement

s + PGsl

SVC K Tool cutting rate m + PGsl
SYNFCT P Evaluation of a polynomial as a function of a

condition in the motion-synchronous action
 - + FBSYsl

SYNR K The variable is read synchronously, i.e. at the
time of execution

 + PGAsl

SYNRW K The variable is read and written synchronous‐
ly, i.e. at the time of execution

 + PGAsl

SYNW K The variable is written synchronously, i.e. at
the time of execution

 + PGAsl

T A Call tool
(only change if specified in machine data; oth‐
erwise M6 command necessary)

 + PGsl

TAN F Tangent (trigon. function) + + PGAsl
TANG P Tangential control: Define coupling + - PGAsl
TANGDEL P Tangential control: Delete coupling + - PGAsl
TANGOF P Tangential control: Deactivate coupling + - PGAsl
TANGON P Tangential control: Activate coupling + - PGAsl
TCA
(828D: _TCA)

P Tool selection/tool change irrespective of tool
status

 + - FBWsl

TCARR A Request toolholder (number "m") + PGAsl
TCI P Load tool from buffer into magazine + - FBWsl
TCOABS 6) G Determine tool length components from the

current tool orientation
m + PGAsl

TCOFR G Determine tool length components from the
orientation of the active frame

m + PGAsl

TCOFRX G Determine tool orientation of an active frame
on selection of tool, tool points in X direction

m + PGAsl

TCOFRY G Determine tool orientation of an active frame
on selection of tool, tool points in Y direction

m + PGAsl

TCOFRZ G Determine tool orientation of an active frame
on selection of tool, tool points in Z direction

m + PGAsl

THETA A Angle of rotation s + PGAsl
TILT A Tilt angle m + PGAsl

Tables
21.1 Operations

Job Planning
854 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
TLIFT P Tangential control: Activate intermediate

block generation
 + - PGAsl

TML P Tool selection with magazine location number + - FBWsl
TMOF P Deselect tool monitoring + - PGAsl
TMON P Activate tool monitoring + - PGAsl
TO K Designates the end value in a FOR counter

loop
 + PGAsl

TOFF K Tool length offset in the direction of the tool
length component that is effective parallel to
the geometry axis specified in the index.

m + PGsl

TOFFL K Tool length offset in the direction of the tool
length component L1, L2 or L3

m + PGsl

TOFFOF P Deactivate online tool offset + - PGAsl
TOFFON P Activate online tool length offset + - PGAsl
TOFFR A Tool radius offset m + PGsl
TOFRAME G Align Z axis of the WCS by rotating the frame

parallel to the tool orientation
m + PGsl

TOFRAMEX G Align X axis of the WCS by rotating the frame
parallel to the tool orientation

m + PGsl

TOFRAMEY G Align Y axis of the WCS by rotating the frame
parallel to the tool orientation

m + PGsl

TOFRAMEZ G As TOFRAME m + PGsl
TOLOWER F Convert the letters of a string into lowercase + - PGAsl
TOOLENV F Save current states which are of significance

to the evaluation of the tool data stored in the
memory

 + - PGAsl

TOOLGNT F Determine number of tools of a tool group + - FBWsl
TOOLGT F Determine T number of a tool from a tool group + - FBWsl
TOROT G Align Z axis of the WCS by rotating the frame

parallel to the tool orientation
m + PGsl

TOROTOF 6) G Frame rotations in tool direction OFF m + PGsl
TOROTX G Align X axis of the WCS by rotating the frame

parallel to the tool orientation
m + PGsl

TOROTY G Align Y axis of the WCS by rotating the frame
parallel to the tool orientation

m + PGsl

TOROTZ G As TOROT m + PGsl
TOUPPER F Convert the letters of a string into uppercase + - PGAsl
TOWBCS G Wear values in the basic coordinate system

(BCS)
m + PGAsl

TOWKCS G Wear values in the coordinate system of the
tool head for kinetic transformation (differs
from machine coordinate system through tool
rotation)

m + PGAsl

TOWMCS G Wear values in machine coordinate system m + PGAsl
TOWSTD 6) G Initial setting value for offsets in tool length m + PGAsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 855

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
TOWTCS G Wear values in the tool coordinate system

(toolholder ref. point T at the tool holder)
m + PGAsl

TOWWCS G Wear values in workpiece coordinate system m + PGAsl
TR K Offset component of a frame variable + PGAsl
TRAANG P Transformation inclined axis + - PGAsl
TRACON P Cascaded transformation + - PGAsl
TRACYL P Cylinder: Peripheral surface transformation + - PGAsl
TRAFOOF P Deactivate active transformations in the chan‐

nel
 + - PGAsl

TRAFOON P Activate transformation defined with kinematic
chains

 + - PGAsl

TRAILOF P Asynchronous coupled motion OFF + + PGAsl
TRAILON P Asynchronous coupled motion ON + + PGAsl
TRANS G Absolute programmable work offset s + PGsl
TRANSMIT P Pole transformation (face machining) + - PGAsl
TRAORI P 4-axis, 5-axis transformation, generic transfor‐

mation
 + - PGAsl

TRUE K Logical constant: True + PGAsl
TRUNC F Truncation of decimal places + + PGAsl
TU Axis angle s + PGAsl
TURN A Number of turns for helix s + PGsl
ULI K Upper limit value of variables + PGAsl
UNLOCK P Enable synchronized action with ID (continue

technology cycle)
 - + FBSYsl

UNTIL K Condition for end of REPEAT loop + PGAsl
UPATH G Path reference for FGROUP axes is curve pa‐

rameter
m + PGAsl

VAR K Keyword: Type of parameter transfer + PGAsl
VELOLIM K Reduction of the maximum axial velocity m + PGAsl
VELOLIMA K Reduction or increase of the maximum axial

velocity of the following axis
m + + PGAsl

WAITC P Wait for the coupling block change criterion to
be fulfilled for the axes/spindles

 + - PGAsl

WAITE P Wait for end of program in another channel. + - PGAsl
WAITENC P Wait for synchronized or restored axis posi‐

tions
 + - PGAsl

WAITM P Wait for marker in specified channel; termi‐
nate previous block with exact stop.

 + - PGAsl

WAITMC P Wait for marker in specified channel; exact
stop only if the other channels have not yet
reached the marker.

 + - PGAsl

WAITP P Wait for end of travel of the positioning axis + - PGsl
WAITS P Wait for spindle position to be reached + - PGsl

Tables
21.1 Operations

Job Planning
856 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation Type

1)
Meaning W 2) TP 3) SA 4) Description see 5)

1) 2) 3) 4) 5) for explanations, see legend (Page 858).
WALCS0 6) G Workpiece coordinate system working area

limitation deselected
m + - PGsl

WALCS1 G WCS working area limitation group 1 active m + - PGsl
WALCS2 G WCS working area limitation group 2 active m + - PGsl
WALCS3 G WCS working area limitation group 3 active m + - PGsl
WALCS4 G WCS working area limitation group 4 active m + - PGsl
WALCS5 G WCS working area limitation group 5 active m + - PGsl
WALCS6 G WCS working area limitation group 6 active m + - PGsl
WALCS7 G WCS working area limitation group 7 active m + - PGsl
WALCS8 G WCS working area limitation group 8 active m + - PGsl
WALCS9 G WCS working area limitation group 9 active m + - PGsl
WALCS10 G WCS working area limitation group 10 active m + - PGsl
WALIMOF G BCS working area limitation OFF m + - PGsl
WALIMON 6) G BCS working area limitation ON m + - PGsl
WHEN K The action is executed once whenever the

condition is fulfilled.
 - + FBSYsl

WHENEVER K The action is executed cyclically in each inter‐
polator cycle when the condition is fulfilled.

 - + FBSYsl

WHILE K Start of WHILE program loop + PGAsl
WRITE P Write text to file system.

Appends a block to the end of the specified
file.

 + - PGAsl

WRTPR P Write string in OPI variable + - PGsl
X A Axis name m/s + + PGsl
XOR O Logic exclusive OR + PGAsl
Y A Axis name m/s + + PGsl
Z A Axis name m/s + + PGsl

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 857

1) Type of operation:
 A Address

Identifier to which a value is assigned (e.g. OVR=10). There are also some addresses that
switch on or off a function without value assignment (e.g. CPLON and CPLOF).

 C (A) AST cycle
Predefined NC program for automatic post optimization (tuning) with AST (= Automatic
Servo Tuning). Parameters are used to adapt to the specific optimization situation; these
parameters are transferred at the call.

 C (M) Measuring cycle
Predefined NC program in which a specific, generally valid, measuring operation, such as
determining the inner diameter of a cylindrical workpiece, is programmed. Parameters are
used to adapt to the specific measurement situation; these parameters are transferred at
the call.

 C (T) Technological cycle
Predefined NC program in which a specific, generally valid, machining operation, such as
tapping of a thread or milling a pocket, is programmed. The adaptation to a specific machine
situation is realized via parameters that are transferred to the cycle during the call.

 F Predefined function (supplies a return value)
The call of the predefined function can be an operand in an expression.

 G G command
The G commands are divided into G groups. Only one G command of a group can be
programmed in a block. A G command can be either modal (until it is canceled by another
command of the same group) or only effective for the block in which it is programmed (non-
modal).

 K Keyword
Identifier that defines the syntax of a block. No value is assigned to a keyword, and no NC
function can be switched on/off with a keyword.
Examples: Control structures (IF, ELSE, ENDIF, WHEN, ...), program execution (GOTOB,
GOTO, RET ...)

 O Operator
Operator for a mathematical, comparison or logical operation

 P Predefined procedure (does not supply a return value)
 PA Program attribute

Program attributes are at the end of the definition line of a subprogram:
PROC <program name>(...) <program attribute>
They determine the behavior during execution of the subprogram.

2) Effectiveness of the operation:
m Modal
s Non-modal

3) Programmability in part program:
+ Programmable
- Not programmable
M Programmable only by the machine manufacturer

Tables
21.1 Operations

Job Planning
858 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

4) Programmability in synchronized actions:
+ Programmable
- Not programmable
T Programmable only in technology cycles

5) Reference to the document containing the detailed description of the operation:
PGsl Programming Manual, Fundamentals
PGAsl Programming Manual, Job Planning
BNMsl Programming Manual Measuring Cycles
BHDsl Operating Manual, Turning
BHFsl Operating Manual, Milling
FB1sl () Function Manual, Basic Functions (with the alphanumeric abbreviation of the cor‐

responding function description in brackets)
FB2sl () Function Manual, Extended Functions (with the alphanumeric abbreviation of the

corresponding function description in brackets)
FB3sl () Function Manual, Special Functions (with the alphanumeric abbreviation of the cor‐

responding function description in brackets)
FBSIsl Function Manual, Safety Integrated
FBSYsl Function Manual, Synchronized Actions
FBWsl Function Manual, Tool Management

6) Default setting at beginning of program (factory settings of the control, if nothing else programmed).
Figure 21-1 Meaning of footnotes in the tables of operations

Tables
21.1 Operations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 859

21.2 Operations: Availability for SINUMERIK 828D

Note
Cycles

Cycles are marked as "optional" if they depend on the following options that require a license:
● Extended technology functions (article number: 6FC5800-0AP58-0YB0)
● Measuring cycles (article number: 6FC5800-0AP28-0YB0)
● Measuring kinematics (article number: 6FC5800-0AP18-0YB0)
● SINUMERIK Grinding Advanced (article number: 6FC5800-0AS35-0YB0)

Not marked, if cycles only contain partial functionalities as a result of option "Extended
technology functions".

21.2.1 Control version milling / turning

Operations A ... C

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

: ● ● ● ● ● ● ● ●
* ● ● ● ● ● ● ● ●
+ ● ● ● ● ● ● ● ●
- ● ● ● ● ● ● ● ●
< ● ● ● ● ● ● ● ●
<< ● ● ● ● ● ● ● ●
<= ● ● ● ● ● ● ● ●
= ● ● ● ● ● ● ● ●
>= ● ● ● ● ● ● ● ●
/ ● ● ● ● ● ● ● ●
/0 … /7 ● ● ● ● ● ● ● ●
A ● ● ● ● ● ● ● ●
A2 - - - - - - - -
A3 - - - - - - - -
A4 - - - - - - - -
A5 - - - - - - - -
A6 - - - - - - - -
A7 - - - - - - - -
ABS ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
860 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

AC ● ● ● ● ● ● ● ●
ACC ● ● ● ● ● ● ● ●
ACCLIMA ● ● ● ● ● ● ● ●
ACN ● ● ● ● ● ● ● ●
ACOS ● ● ● ● ● ● ● ●
ACP ● ● ● ● ● ● ● ●
ACTBLOCNO ● ● ● ● ● ● ● ●
ADDFRAME ● ● ● ● ● ● ● ●
ADIS ● ● ● ● ● ● ● ●
ADISPOS ● ● ● ● ● ● ● ●
ADISPOSA ● ● ● ● ● ● ● ●
ALF ● ● ● ● ● ● ● ●
AMIRROR ● ● ● ● ● ● ● ●
AND ● ● ● ● ● ● ● ●
ANG ● ● ● ● ● ● ● ●
AP ● ● ● ● ● ● ● ●
APR ● ● ● ● ● ● ● ●
APRB ● ● ● ● ● ● ● ●
APRP ● ● ● ● ● ● ● ●
APW ● ● ● ● ● ● ● ●
APWB ● ● ● ● ● ● ● ●
APWP ● ● ● ● ● ● ● ●
APX ● ● ● ● ● ● ● ●
AR ● ● ● ● ● ● ● ●
AROT ● ● ● ● ● ● ● ●
AROTS ● ● ● ● ● ● ● ●
AS ● ● ● ● ● ● ● ●
ASCALE ● ● ● ● ● ● ● ●
ASIN ● ● ● ● ● ● ● ●
ASPLINE ○ ○ ○ ○ ○ ○ ○ ○
ATAN2 ● ● ● ● ● ● ● ●
ATOL ● ● ● ● ● ● ● ●
ATRANS ● ● ● ● ● ● ● ●
AUXFUDEL ● ● ● ● ● ● ● ●
AUXFUDELG ● ● ● ● ● ● ● ●
AUXFUMSEQ ● ● ● ● ● ● ● ●
AUXFUSYNC ● ● ● ● ● ● ● ●
AX ● ● ● ● ● ● ● ●
AXCTSWE - - - - - - - -

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 861

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

AXCTSWEC - - - - - - - -
AXCTSWED - - - - - - - -
AXIS ● ● ● ● ● ● ● ●
AXNAME ● ● ● ● ● ● ● ●
AXSTRING ● ● ● ● ● ● ● ●
AXTOCHAN ● ● ● ● ● ● ● ●
AXTOSPI ● ● ● ● ● ● ● ●
B ● ● ● ● ● ● ● ●
B2 - - - - - - - -
B3 - - - - - - - -
B4 - - - - - - - -
B5 - - - - - - - -
B6 - - - - - - - -
B7 - - - - - - - -
B_AND ● ● ● ● ● ● ● ●
B_OR ● ● ● ● ● ● ● ●
B_NOT ● ● ● ● ● ● ● ●
B_XOR ● ● ● ● ● ● ● ●
BAUTO ○ ○ ○ ○ ○ ○ ○ ○
BLOCK ● ● ● ● ● ● ● ●
BLSYNC ● ● ● ● ● ● ● ●
BNAT ○ ○ ○ ○ ○ ○ ○ ○
BOOL ● ● ● ● ● ● ● ●
BOUND ● ● ● ● ● ● ● ●
BRISK ● ● ● ● ● ● ● ●
BRISKA ● ● ● ● ● ● ● ●
BSPLINE ○ ○ ○ ○ ○ ○ ○ ○
BTAN ○ ○ ○ ○ ○ ○ ○ ○
C ● ● ● ● ● ● ● ●
C2 - - - - - - Channel

axis name
Channel ax‐

is name
C3 - - - - - - - -
C4 - - - - - - - -
C5 - - - - - - - -
C6 - - - - - - - -
C7 - - - - - - - -
CAC ● ● ● ● ● ● ● ●
CACN ● ● ● ● ● ● ● ●
CACP ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
862 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

CALCDAT ● ● ● ● ● ● ● ●
CALCPOSI ● ● ● ● ● ● ● ●
CALL ● ● ● ● ● ● ● ●
CALLPATH ● ● ● ● ● ● ● ●
CANCEL ● ● ● ● ● ● ● ●
CASE ● ● ● ● ● ● ● ●
CDC ● ● ● ● ● ● ● ●
CDOF - - - - - - - -
CDOF2 - - - - - - - -
CDON - - - - - - - -
CFC ● ● ● ● ● ● ● ●
CFIN ● ● ● ● ● ● ● ●
CFINE ● ● ● ● ● ● ● ●
CFTCP ● ● ● ● ● ● ● ●
CHAN ● ● ● ● ● ● ● ●
CHANDATA ● ● ● ● ● ● ● ●
CHAR ● ● ● ● ● ● ● ●
CHF ● ● ● ● ● ● ● ●
CHKDM ● ● ● ● ● ● ● ●
CHKDNO ● ● ● ● ● ● ● ●
CHR ● ● ● ● ● ● ● ●
CIC ● ● ● ● ● ● ● ●
CIP ● ● ● ● ● ● ● ●
CLEARM - - - - - ○ - ●
CLRINT ● ● ● ● ● ● ● ●
CMIRROR ● ● ● ● ● ● ● ●
COARSEA ● ● ● ● ● ● ● ●
COLLPAIR - - - - - - - -
COMPCAD ● - ● - ● ● - -
COMPCURV ● - ● - ● ● - -
COMPLETE ● ● ● ● ● ● ● ●
COMPOF ● - ● - ● ● - -
COMPON ● - ● - ● ● - -
COMPSURF - - ○ - ○ ○ - -
CONTDCON ● ● ● ● ● ● ● ●
CONTPRON ● ● ● ● ● ● ● ●
CORROF ● ● ● ● ● ● ● ●
CORRTRAFO - - - - - - - -
COS ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 863

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

COUPDEF - ○ - ○ - - ○ ○
COUPDEL - ○ - ○ - - ○ ○
COUPOF - ○ - ○ - - ○ ○
COUPOFS - ○ - ○ - - ○ ○
COUPON - ○ - ○ - - ○ ○
COUPONC - ○ - ○ - - ○ ○
COUPRES - ○ - ○ - - ○ ○
CP ● ● ● ● ● ● ● ●
CPBC ○ ○ ○ ○ ○ ○ ○ ○
CPDEF ○ ○ ○ ○ ○ ○ ○ ○
CPDEL ○ ○ ○ ○ ○ ○ ○ ○
CPFMOF ○ ○ ○ ○ ○ ○ ○ ○
CPFMON ○ ○ ○ ○ ○ ○ ○ ○
CPFMSON ○ ○ ○ ○ ○ ○ ○ ○
CPFPOS ○ ○ ○ ○ ○ ○ ○ ○
CPFRS ○ ○ ○ ○ ○ ○ ○ ○
CPLA ○ ○ ○ ○ ○ ○ ○ ○
CPLCTID ○ ○ ○ ○ ○ ○ ○ ○
CPLDEF ○ ○ ○ ○ ○ ○ ○ ○
CPLDEL ○ ○ ○ ○ ○ ○ ○ ○
CPLDEN ○ ○ ○ ○ ○ ○ ○ ○
CPLINSC ○ ○ ○ ○ ○ ○ ○ ○
CPLINTR ○ ○ ○ ○ ○ ○ ○ ○
CPLNUM ○ ○ ○ ○ ○ ○ ○ ○
CPLOF ○ ○ ○ ○ ○ ○ ○ ○
CPLON ○ ○ ○ ○ ○ ○ ○ ○
CPLOUTSC ○ ○ ○ ○ ○ ○ ○ ○
CPLOUTTR ○ ○ ○ ○ ○ ○ ○ ○
CPLPOS ○ ○ ○ ○ ○ ○ ○ ○
CPLSETVAL ○ ○ ○ ○ ○ ○ ○ ○
CPMALARM ○ ○ ○ ○ ○ ○ ○ ○
CPMBRAKE ○ ○ ○ ○ ○ ○ ○ ○
CPMPRT ○ ○ ○ ○ ○ ○ ○ ○
CPMRESET ○ ○ ○ ○ ○ ○ ○ ○
CPMSTART ○ ○ ○ ○ ○ ○ ○ ○
CPMVDI ○ ○ ○ ○ ○ ○ ○ ○
CPOF ○ ○ ○ ○ ○ ○ ○ ○
CPON ○ ○ ○ ○ ○ ○ ○ ○
CPRECOF ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
864 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

CPRECON ● ● ● ● ● ● ● ●
CPRES ○ ○ ○ ○ ○ ○ ○ ○
CPROT ● ● ● ● ● ● ● ●
CPROTDEF ● ● ● ● ● ● ● ●
CPSETTYPE ○ ○ ○ ○ ○ ○ ○ ○
CPSYNCOP ○ ○ ○ ○ ○ ○ ○ ○
CPSYNCOP2 ○ ○ ○ ○ ○ ○ ○ ○
CPSYNCOV ○ ○ ○ ○ ○ ○ ○ ○
CPSYNFIP ○ ○ ○ ○ ○ ○ ○ ○
CPSYNFIP2 ○ ○ ○ ○ ○ ○ ○ ○
CPSYNFIV ○ ○ ○ ○ ○ ○ ○ ○
CR ● ● ● ● ● ● ● ●
CROT ● ● ● ● ● ● ● ●
CROTS ● ● ● ● ● ● ● ●
CRPL ● ● ● ● ● ● ● ●
CSCALE ● ● ● ● ● ● ● ●
CSPLINE ○ ○ ○ ○ ○ ○ ○ ○
CT ● ● ● ● ● ● ● ●
CTAB - - - - - - - -
CTABDEF - - - - - - - -
CTABDEL - - - - - - - -
CTABEND - - - - - - - -
CTABEXISTS - - - - - - - -
CTABFNO - - - - - - - -
CTABFPOL - - - - - - - -
CTABFSEG - - - - - - - -
CTABID - - - - - - - -
CTABINV - - - - - - - -
CTABISLOCK - - - - - - - -
CTABLOCK - - - - - - - -
CTABMEMTYP - - - - - - - -
CTABMPOL - - - - - - - -
CTABMSEG - - - - - - - -
CTABNO - - - - - - - -
CTABNOMEM - - - - - - - -
CTABPERIOD - - - - - - - -
CTABPOL - - - - - - - -
CTABPOLID - - - - - - - -
CTABSEG - - - - - - - -

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 865

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

CTABSEGID - - - - - - - -
CTABSEV - - - - - - - -
CTABSSV - - - - - - - -
CTABTEP - - - - - - - -
CTABTEV - - - - - - - -
CTABTMAX - - - - - - - -
CTABTMIN - - - - - - - -
CTABTSP - - - - - - - -
CTABTSV - - - - - - - -
CTABUNLOCK - - - - - - - -
CTOL ● ● ● ● ● ● ● ●
CTRANS ● ● ● ● ● ● ● ●
CUT2D ● ● ● ● ● ● ● ●
CUT2DD ● ● ● ● ● ● ● ●
CUT2DF ● ● ● ● ● ● ● ●
CUT2DFD ● ● ● ● ● ● ● ●
CUT3DC - - - - - - - -
CUT3DCC - - - - - - - -
CUT3DCCD - - - - - - - -
CUT3DCD - - - - - - - -
CUT3DF - - - - - - - -
CUT3DFD - - - - - - - -
CUT3DFF - - - - - - - -
CUT3DFS - - - - - - - -
CUTCONOF ● ● ● ● ● ● ● ●
CUTCONON ● ● ● ● ● ● ● ●
CUTMOD ● ● ● ● ● ● ● ●
CUTMODK - - - - - - - -
CYCLE60 ○ ○ ● ● ● ● ● ●
CYCLE61 ● ● ● ● ● ● ● ●
CYCLE62 ● ● ● ● ● ● ● ●
CYCLE63 ○ ○ ● ● ● ● ● ●
CYCLE64 ○ ○ ● ● ● ● ● ●
CYCLE70 ○ ○ ● ● ● ● ● ●
CYCLE72 ● ● ● ● ● ● ● ●
CYCLE76 ● ● ● ● ● ● ● ●
CYCLE77 ● ● ● ● ● ● ● ●
CYCLE78 ○ ○ ● ● ● ● ● ●
CYCLE79 ○ ○ ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
866 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

CYCLE81 ● ● ● ● ● ● ● ●
CYCLE82 ● ● ● ● ● ● ● ●
CYCLE83 ● ● ● ● ● ● ● ●
CYCLE84 ● ● ● ● ● ● ● ●
CYCLE85 ● ● ● ● ● ● ● ●
CYCLE86 ● ● ● ● ● ● ● ●
CYCLE92 ● ● ● ● ● ● ● ●
CYCLE95 ● ● ● ● ● ● ● ●
CYCLE98 ● ● ● ● ● ● ● ●
CYCLE99 ● ● ● ● ● ● ● ●
CYCLE150 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE435 - - - - - - - -
CYCLE495 - - - - - - - -
CYCLE750 ● ● ● ● ● ● ● ●
CYCLE751 ● ● ● ● ● ● ● ●
CYCLE752 ● ● ● ● ● ● ● ●
CYCLE753 ● ● ● ● ● ● ● ●
CYCLE754 ● ● ● ● ● ● ● ●
CYCLE755 ● ● ● ● ● ● ● ●
CYCLE756 ● ● ● ● ● ● ● ●
CYCLE757 ● ● ● ● ● ● ● ●
CYCLE758 ● ● ● ● ● ● ● ●
CYCLE759 ● ● ● ● ● ● ● ●
CYCLE800 - - ● ● ● ● ● ●
CYCLE801 ● ● ● ● ● ● ● ●
CYCLE802 ● ● ● ● ● ● ● ●
CYCLE830 ○ ○ ● ● ● ● ● ●
CYCLE832 ● ● ● ● ● ● ● ●
CYCLE840 ● ● ● ● ● ● ● ●
CYCLE899 ○ ○ ● ● ● ● ● ●
CYCLE930 ● ● ● ● ● ● ● ●
CYCLE940 ● ● ● ● ● ● ● ●
CYCLE951 ● ● ● ● ● ● ● ●
CYCLE952 ○ ○ ● ● ● ● ● ●
CYCLE961 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE971 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE973 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE974 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE976 ○ ○ ○ ○ ○ ○ ○ ○

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 867

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

CYCLE977 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE978 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE979 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE982 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE994 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE995 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE996 ○ - ○ - ○ ○ - -
CYCLE997 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE998 ○ ○ ○ ○ ○ ○ ○ ○
CYCLE4071 - - - - - - - -
CYCLE4072 - - - - - - - -
CYCLE4073 - - - - - - - -
CYCLE4074 - - - - - - - -
CYCLE4075 - - - - - - - -
CYCLE4077 - - - - - - - -
CYCLE4078 - - - - - - - -
CYCLE4079 - - - - - - - -

Operations D ... F

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

D ● ● ● ● ● ● ● ●
D0 ● ● ● ● ● ● ● ●
DAC ● ● ● ● ● ● ● ●
DC ● ● ● ● ● ● ● ●
DCI ● ● ● ● ● ● ● ●
DCM ● ● ● ● ● ● ● ●
DCU ● ● ● ● ● ● ● ●
DEF ● ● ● ● ● ● ● ●
DEFINE ● ● ● ● ● ● ● ●
DEFAULT ● ● ● ● ● ● ● ●
DELAYFSTON ● ● ● ● ● ● ● ●
DELAYFSTOF ● ● ● ● ● ● ● ●
DELDL ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
868 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

DELDTG ● ● ● ● ● ● ● ●
DELETE ● ● ● ● ● ● ● ●
DELMLOWNER ● ● ● ● ● ● ● ●
DELMLRES ● ● ● ● ● ● ● ●
DELMT ● ● ● ● ● ● ● ●
DELOBJ - - - - - - - -
DELT ● ● ● ● ● ● ● ●
DELTC ● ● ● ● ● ● ● ●
DELTOOLENV ● ● ● ● ● ● ● ●
DIACYCOFA ● ● ● ● ● ● ● ●
DIAM90 ● ● ● ● ● ● ● ●
DIAM90A ● ● ● ● ● ● ● ●
DIAMCHAN ● ● ● ● ● ● ● ●
DIAMCHANA ● ● ● ● ● ● ● ●
DIAMCYCOF ● ● ● ● ● ● ● ●
DIAMOF ● ● ● ● ● ● ● ●
DIAMOFA ● ● ● ● ● ● ● ●
DIAMON ● ● ● ● ● ● ● ●
DIAMONA ● ● ● ● ● ● ● ●
DIC ● ● ● ● ● ● ● ●
DILF ● ● ● ● ● ● ● ●
DISABLE ● ● ● ● ● ● ● ●
DISC ● ● ● ● ● ● ● ●
DISCL ● ● ● ● ● ● ● ●
DISPLOF ● ● ● ● ● ● ● ●
DISPLON ● ● ● ● ● ● ● ●
DISPR ● ● ● ● ● ● ● ●
DISR ● ● ● ● ● ● ● ●
DISRP ● ● ● ● ● ● ● ●
DITE ● ● ● ● ● ● ● ●
DITS ● ● ● ● ● ● ● ●
DIV ● ● ● ● ● ● ● ●
DL - - - - - - - -
DO ● ● ● ● ● ● ● ●
DRFOF ● ● ● ● ● ● ● ●
DRIVE ● ● ● ● ● ● ● ●
DRIVEA ● ● ● ● ● ● ● ●
DYNFINISH ● ● ● ● ● ● ● ●
DYNNORM ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 869

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

DYNPOS ● ● ● ● ● ● ● ●
DYNROUGH ● ● ● ● ● ● ● ●
DYNSEMIFIN ● ● ● ● ● ● ● ●
DZERO ● ● ● ● ● ● ● ●
EAUTO ○ ○ ○ ○ ○ ○ ○ ○
EGDEF - ○ - ○ - - ○ ○
EGDEL - ○ - ○ - - ○ ○
EGOFC - ○ - ○ - - ○ ○
EGOFS - ○ - ○ - - ○ ○
EGON - ○ - ○ - - ○ ○
EGONSYN - ○ - ○ - - ○ ○
EGONSYNE - ○ - ○ - - ○ ○
ELSE ● ● ● ● ● ● ● ●
ENABLE ● ● ● ● ● ● ● ●
ENAT ○ ○ ○ ○ ○ ○ ○ ○
ENDFOR ● ● ● ● ● ● ● ●
ENDIF ● ● ● ● ● ● ● ●
ENDLABEL ● ● ● ● ● ● ● ●
ENDLOOP ● ● ● ● ● ● ● ●
ENDPROC ● ● ● ● ● ● ● ●
ENDWHILE ● ● ● ● ● ● ● ●
ESRR ○ ○ ○ ○ ○ ○ ○ ○
ESRS ○ ○ ○ ○ ○ ○ ○ ○
ETAN ○ ○ ○ ○ ○ ○ ○ ○
EVERY ● ● ● ● ● ● ● ●
EX ● ● ● ● ● ● ● ●
EXECSTRING ● ● ● ● ● ● ● ●
EXECTAB ● ● ● ● ● ● ● ●
EXECUTE ● ● ● ● ● ● ● ●
EXP ● ● ● ● ● ● ● ●
EXTCALL ● ● ● ● ● ● ● ●
EXTCLOSE ● ● ● ● ● ● ● ●
EXTERN ● ● ● ● ● ● ● ●
EXTOPEN ● ● ● ● ● ● ● ●
F ● ● ● ● ● ● ● ●
FA ● ● ● ● ● ● ● ●
FAD ● ● ● ● ● ● ● ●
FALSE ● ● ● ● ● ● ● ●
FB ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
870 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

FCTDEF ● ● ● ● ● ● ● ●
FCUB ● ● ● ● ● ● ● ●
FD ● ● ● ● ● ● ● ●
FDA ● ● ● ● ● ● ● ●
FENDNORM ● ● ● ● ● ● ● ●
FFWOF ● ● ● ● ● ● ● ●
FFWON ● ● ● ● ● ● ● ●
FGREF ● ● ● ● ● ● ● ●
FGROUP ● ● ● ● ● ● ● ●
FI ● ● ● ● ● ● ● ●
FIFOCTRL ● ● ● ● ● ● ● ●
FILEDATE ● ● ● ● ● ● ● ●
FILEINFO ● ● ● ● ● ● ● ●
FILESIZE ● ● ● ● ● ● ● ●
FILESTAT ● ● ● ● ● ● ● ●
FILETIME ● ● ● ● ● ● ● ●
FINEA ● ● ● ● ● ● ● ●
FL ● ● ● ● ● ● ● ●
FLIN ● ● ● ● ● ● ● ●
FMA ● ● ● ● ● ● ● ●
FNORM ● ● ● ● ● ● ● ●
FOCOF ○ ○ ○ ○ ○ ○ ○ ○
FOCON ○ ○ ○ ○ ○ ○ ○ ○
FOR ● ● ● ● ● ● ● ●
FP ● ● ● ● ● ● ● ●
FPO - - - - - - - -
FPR ● ● ● ● ● ● ● ●
FPRAOF ● ● ● ● ● ● ● ●
FPRAON ● ● ● ● ● ● ● ●
FRAME ● ● ● ● ● ● ● ●
FRC ● ● ● ● ● ● ● ●
FRCM ● ● ● ● ● ● ● ●
FROM ● ● ● ● ● ● ● ●
FTOC ● ● ● ● ● ● ● ●
FTOCOF ● ● ● ● ● ● ● ●
FTOCON ● ● ● ● ● ● ● ●
FXS ● ● ● ● ● ● ● ●
FXST ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 871

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

FXSW ● ● ● ● ● ● ● ●
FZ ● ● ● ● ● ● ● ●

Operations G ... L

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

G0 ● ● ● ● ● ● ● ●
G1 ● ● ● ● ● ● ● ●
G2 ● ● ● ● ● ● ● ●
G3 ● ● ● ● ● ● ● ●
G4 ● ● ● ● ● ● ● ●
G5 ● ● ● ● ● ● ● ●
G7 ● ● ● ● ● ● ● ●
G9 ● ● ● ● ● ● ● ●
G17 ● ● ● ● ● ● ● ●
G18 ● ● ● ● ● ● ● ●
G19 ● ● ● ● ● ● ● ●
G25 ● ● ● ● ● ● ● ●
G26 ● ● ● ● ● ● ● ●
G33 ● ● ● ● ● ● ● ●
G34 ● ● ● ● ● ● ● ●
G35 ● ● ● ● ● ● ● ●
G40 ● ● ● ● ● ● ● ●
G41 ● ● ● ● ● ● ● ●
G42 ● ● ● ● ● ● ● ●
G53 ● ● ● ● ● ● ● ●
G54 ● ● ● ● ● ● ● ●
G55 ● ● ● ● ● ● ● ●
G56 ● ● ● ● ● ● ● ●
G57 ● ● ● ● ● ● ● ●
G58 → G505
G59 → G506
G60 ● ● ● ● ● ● ● ●
G62 ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
872 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

G63 ● ● ● ● ● ● ● ●
G64 ● ● ● ● ● ● ● ●
G70 ● ● ● ● ● ● ● ●
G71 ● ● ● ● ● ● ● ●
G74 ● ● ● ● ● ● ● ●
G75 ● ● ● ● ● ● ● ●
G90 ● ● ● ● ● ● ● ●
G91 ● ● ● ● ● ● ● ●
G93 ● ● ● ● ● ● ● ●
G94 ● ● ● ● ● ● ● ●
G95 ● ● ● ● ● ● ● ●
G96 ● ● ● ● ● ● ● ●
G97 ● ● ● ● ● ● ● ●
G110 ● ● ● ● ● ● ● ●
G111 ● ● ● ● ● ● ● ●
G112 ● ● ● ● ● ● ● ●
G140 ● ● ● ● ● ● ● ●
G141 ● ● ● ● ● ● ● ●
G142 ● ● ● ● ● ● ● ●
G143 ● ● ● ● ● ● ● ●
G147 ● ● ● ● ● ● ● ●
G148 ● ● ● ● ● ● ● ●
G153 ● ● ● ● ● ● ● ●
G247 ● ● ● ● ● ● ● ●
G248 ● ● ● ● ● ● ● ●
G290 ● ● ● ● ● ● ● ●
G291 ● ● ● ● ● ● ● ●
G331 ● ● ● ● ● ● ● ●
G332 ● ● ● ● ● ● ● ●
G335 ● ● ● ● ● ● ● ●
G336 ● ● ● ● ● ● ● ●
G340 ● ● ● ● ● ● ● ●
G341 ● ● ● ● ● ● ● ●
G347 ● ● ● ● ● ● ● ●
G348 ● ● ● ● ● ● ● ●
G450 ● ● ● ● ● ● ● ●
G451 ● ● ● ● ● ● ● ●
G460 ● ● ● ● ● ● ● ●
G461 ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 873

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

G462 ● ● ● ● ● ● ● ●
G500 ● ● ● ● ● ● ● ●
G505 ... G599 ● ● ● ● ● ● ● ●
G601 ● ● ● ● ● ● ● ●
G602 ● ● ● ● ● ● ● ●
G603 ● ● ● ● ● ● ● ●
G621 ● ● ● ● ● ● ● ●
G641 ● ● ● ● ● ● ● ●
G642 ● ● ● ● ● ● ● ●
G643 ● ● ● ● ● ● ● ●
G644 ● ● ● ● ● ● ● ●
G645 ● ● ● ● ● ● ● ●
G700 ● ● ● ● ● ● ● ●
G710 ● ● ● ● ● ● ● ●
G810 ... G819 - - - - - - - -
G820 ... G829 - - - - - - - -
G931 ● ● ● ● ● ● ● ●
G942 ● ● ● ● ● ● ● ●
G952 ● ● ● ● ● ● ● ●
G961 ● ● ● ● ● ● ● ●
G962 ● ● ● ● ● ● ● ●
G971 ● ● ● ● ● ● ● ●
G972 ● ● ● ● ● ● ● ●
G973 ● ● ● ● ● ● ● ●
GEOAX ● ● ● ● ● ● ● ●
GET ● ● ● ● ● ● ● ●
GETACTT ● ● ● ● ● ● ● ●
GETACTTD ● ● ● ● ● ● ● ●
GETD - - - - - ○ - ●
GETDNO ● ● ● ● ● ● ● ●
GETEXET ● ● ● ● ● ● ● ●
GETFREELOC ● ● ● ● ● ● ● ●
GETSELT ● ● ● ● ● ● ● ●
GETT ● ● ● ● ● ● ● ●
GETTCOR ● ● ● ● ● ● ● ●
GETTENV ● ● ● ● ● ● ● ●
GETVARAP ● ● ● ● ● ● ● ●
GETVARDFT ● ● ● ● ● ● ● ●
GETVARLIM ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
874 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

GETVARPHU ● ● ● ● ● ● ● ●
GETVARTYP ● ● ● ● ● ● ● ●
GFRAME0 ...
GFRAME100

- - - - - - - -

GOTO ● ● ● ● ● ● ● ●
GOTOB ● ● ● ● ● ● ● ●
GOTOC ● ● ● ● ● ● ● ●
GOTOF ● ● ● ● ● ● ● ●
GOTOS ● ● ● ● ● ● ● ●
GP ● ● ● ● ● ● ● ●
GWPSOF ● ● ● ● ● ● ● ●
GROUP_
ADDEND

● ● ● ● ● ● ● ●

GROUP_BEGIN ● ● ● ● ● ● ● ●
GROUP_END ● ● ● ● ● ● ● ●
GWPSON ● ● ● ● ● ● ● ●
H... ● ● ● ● ● ● ● ●
HOLES1 ● ● ● ● ● ● ● ●
HOLES2 ● ● ● ● ● ● ● ●
I ● ● ● ● ● ● ● ●
I1 ● ● ● ● ● ● ● ●
IC ● ● ● ● ● ● ● ●
ICYCOF ● ● ● ● ● ● ● ●
ICYCON ● ● ● ● ● ● ● ●
ID ● ● ● ● ● ● ● ●
IDS ● ● ● ● ● ● ● ●
IF ● ● ● ● ● ● ● ●
INDEX ● ● ● ● ● ● ● ●
INIPO ● ● ● ● ● ● ● ●
INIRE ● ● ● ● ● ● ● ●
INICF ● ● ● ● ● ● ● ●
INIT - - - - - ○ - ●
INITIAL
INT ● ● ● ● ● ● ● ●
INTERSEC ● ● ● ● ● ● ● ●
INVCCW - - - - - - - -
INVCW - - - - - - - -
INVFRAME ● ● ● ● ● ● ● ●
IP ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 875

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

IPOBRKA ● ● ● ● ● ● ● ●
IPOENDA ● ● ● ● ● ● ● ●
IPTRLOCK ● ● ● ● ● ● ● ●
IPTRUNLOCK ● ● ● ● ● ● ● ●
IR ● ● ● ● ● ● ● ●
ISAXIS ● ● ● ● ● ● ● ●
ISD - - - - - - - -
ISFILE ● ● ● ● ● ● ● ●
ISNUMBER ● ● ● ● ● ● ● ●
ISOCALL ● ● ● ● ● ● ● ●
ISVAR ● ● ● ● ● ● ● ●
J ● ● ● ● ● ● ● ●
J1 ● ● ● ● ● ● ● ●
JERKA ● ● ● ● ● ● ● ●
JERKLIM ● ● ● ● ● ● ● ●
JERKLIMA ● ● ● ● ● ● ● ●
JR ● ● ● ● ● ● ● ●
K ● ● ● ● ● ● ● ●
K1 ● ● ● ● ● ● ● ●
KONT ● ● ● ● ● ● ● ●
KONTC ● ● ● ● ● ● ● ●
KONTT ● ● ● ● ● ● ● ●
KR ● ● ● ● ● ● ● ●
L ● ● ● ● ● ● ● ●
LEAD
Tool orientation
Orientation polyn.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

LEADOF - - - ● - - ● ●
LEADON - - - ● - - ● ●
LENTOAX ● ● ● ● ● ● ● ●
LFOF ● ● ● ● ● ● ● ●
LFON ● ● ● ● ● ● ● ●
LFPOS ● ● ● ● ● ● ● ●
LFTXT ● ● ● ● ● ● ● ●
LFWP ● ● ● ● ● ● ● ●
LIFTFAST ● ● ● ● ● ● ● ●
LIMS ● ● ● ● ● ● ● ●
LLI ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
876 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

LN ● ● ● ● ● ● ● ●
LOCK ● ● ● ● ● ● ● ●
LONGHOLE ● ● ● ● ● ● ● ●
LOOP ● ● ● ● ● ● ● ●

Operations M ... R

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

M0 ● ● ● ● ● ● ● ●
M1 ● ● ● ● ● ● ● ●
M2 ● ● ● ● ● ● ● ●
M3 ● ● ● ● ● ● ● ●
M4 ● ● ● ● ● ● ● ●
M5 ● ● ● ● ● ● ● ●
M6 ● ● ● ● ● ● ● ●
M17 ● ● ● ● ● ● ● ●
M19 ● ● ● ● ● ● ● ●
M30 ● ● ● ● ● ● ● ●
M40 ● ● ● ● ● ● ● ●
M41 ... M45 ● ● ● ● ● ● ● ●
M70 ● ● ● ● ● ● ● ●
MASLDEF - - - - - - - -
MASLDEL - - - - - - - -
MASLOF - - - - - - - -
MASLOFS - - - - - - - -
MASLON - - - - - - - -
MATCH ● ● ● ● ● ● ● ●
MAXVAL ● ● ● ● ● ● ● ●
MCALL ● ● ● ● ● ● ● ●
MEAC - - - - - - - -
MEAFRAME ● ● ● ● ● ● ● ●
MEAS ● ● ● ● ● ● ● ●
MEASA - - - - - - - -
MEASURE ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 877

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

MEAW ● ● ● ● ● ● ● ●
MEAWA - - - - - - - -
MI ● ● ● ● ● ● ● ●
MINDEX ● ● ● ● ● ● ● ●
MINVAL ● ● ● ● ● ● ● ●
MIRROR ● ● ● ● ● ● ● ●
MMC ● ● ● ● ● ● ● ●
MOD ● ● ● ● ● ● ● ●
MODAXVAL ● ● ● ● ● ● ● ●
MOV ● ● ● ● ● ● ● ●
MOVT ● ● ● ● ● ● ● ●
MSG ● ● ● ● ● ● ● ●
MVTOOL ● ● ● ● ● ● ● ●
N ● ● ● ● ● ● ● ●
NAMETOINT ● ● ● ● ● ● ● ●
NC ● ● ● ● ● ● ● ●
NEWCONF ● ● ● ● ● ● ● ●
NEWMT ● ● ● ● ● ● ● ●
NEWT ● ● ● ● ● ● ● ●
NORM ● ● ● ● ● ● ● ●
NOT ● ● ● ● ● ● ● ●
NPROT ● ● ● ● ● ● ● ●
NPROTDEF ● ● ● ● ● ● ● ●
NUMBER ● ● ● ● ● ● ● ●
OEMIPO1 - - - - - - - -
OEMIPO2 - - - - - - - -
OF ● ● ● ● ● ● ● ●
OFFN ● ● ● ● ● ● ● ●
OMA1 - - - - - - - -
OMA2 - - - - - - - -
OMA3 - - - - - - - -
OMA4 - - - - - - - -
OMA5 - - - - - - - -
OR ● ● ● ● ● ● ● ●
ORIAXES - - - - - - - -
ORIAXPOS - - - - - - - -
ORIC - - - - - - - -
ORICONCCW - - - - - - - -
ORICONCW - - - - - - - -

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
878 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

ORICONIO - - - - - - - -
ORICONTO - - - - - - - -
ORICURVE - - - - - - - -
ORID - - - - - - - -
ORIEULER - - - - - - - -
ORIMKS - - - - - - - -
ORIPATH - - - - - - - -
ORIPATHS - - - - - - - -
ORIPLANE - - - - - - - -
ORIRESET - - - - - - - -
ORIROTA - - - - - - - -
ORIROTC - - - - - - - -
ORIROTR - - - - - - - -
ORIROTT - - - - - - - -
ORIRPY - - - - - - - -
ORIRPY2 - - - - - - - -
ORIS - - - - - - - -
ORISOF - - - - - - - -
ORISOLH - - - - - - - -
ORISON - - - - - - - -
ORIVECT - - - - - - - -
ORIVIRT1 - - - - - - - -
ORIVIRT2 - - - - - - - -
ORIWKS - - - - - - - -
OS - - - - - - - -
OSB - - - - - - - -
OSC - - - - - - - -
OSCILL - - - - - - - -
OSCTRL - - - - - - - -
OSD - - - - - - - -
OSE - - - - - - - -
OSNSC ● ● ● ● ● ● ● ●
OSOF - - - - - - - -
OSP1 ● ● ● ● ● ● ● ●
OSP2 ● ● ● ● ● ● ● ●
OSS - - - - - - - -
OSSE - - - - - - - -
OST - - - - - - - -
OST1 ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 879

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

OST2 ● ● ● ● ● ● ● ●
OTOL ● ● ● ● ● ● ● ●
OVR ● ● ● ● ● ● ● ●
OVRA ● ● ● ● ● ● ● ●
OVRRAP ● ● ● ● ● ● ● ●
P ● ● ● ● ● ● ● ●
PAROT ● ● ● ● ● ● ● ●
PAROTOF ● ● ● ● ● ● ● ●
PCALL ● ● ● ● ● ● ● ●
PDELAYOF - - - - - - - -
PDELAYON - - - - - - - -
PHI - - - - - - - -
PHU ● ● ● ● ● ● ● ●
PL - - - - - - - -
PM ● ● ● ● ● ● ● ●
PO - - - - - - - -
POCKET3 ● ● ● ● ● ● ● ●
POCKET4 ● ● ● ● ● ● ● ●
POLF ● ● ● ● ● ● ● ●
POLFA ● ● ● ● ● ● ● ●
POLFMASK ● ● ● ● ● ● ● ●
POLFMLIN ● ● ● ● ● ● ● ●
POLY - - - - - - - -
POLYPATH - - - - - - - -
PON - - - - - - - -
PONS - - - - - - - -
POS ● ● ● ● ● ● ● ●
POSA ● ● ● ● ● ● ● ●
POSM ● ● ● ● ● ● ● ●
POSMT ● ● ● ● ● ● ● ●
POSP ● ● ● ● ● ● ● ●
POSRANGE ● ● ● ● ● ● ● ●
POT ● ● ● ● ● ● ● ●
PR ● ● ● ● ● ● ● ●
PREPRO ● ● ● ● ● ● ● ●
PRESETON ● ● ● ● ● ● ● ●
PRESETONS ● ● ● ● ● ● ● ●
PRIO ● ● ● ● ● ● ● ●
PRLOC ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
880 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

PROC ● ● ● ● ● ● ● ●
PROTA ● ● ● ● ● ● ● ●
PROTD ● ● ● ● ● ● ● ●
PROTS ● ● ● ● ● ● ● ●
PSI - - - - - - - -
PTP ● ● ● ● ● ● ● ●
PTPG0 ● ● ● ● ● ● ● ●
PTPWOC ● ● ● ● ● ● ● ●
PUNCHACC - - - - - - - -
PUTFTOC ● ● ● ● ● ● ● ●
PUTFTOCF ● ● ● ● ● ● ● ●
PW ○ ○ ○ ○ ○ ○ ○ ○
QU ● ● ● ● ● ● ● ●
R... ● ● ● ● ● ● ● ●
RAC ● ● ● ● ● ● ● ●
RDISABLE ● ● ● ● ● ● ● ●
READ ● ● ● ● ● ● ● ●
REAL ● ● ● ● ● ● ● ●
RELEASE ● ● ● ● ● ● ● ●
REP ● ● ● ● ● ● ● ●
REPEAT ● ● ● ● ● ● ● ●
REPEATB ● ● ● ● ● ● ● ●
REPOSA ● ● ● ● ● ● ● ●
REPOSH ● ● ● ● ● ● ● ●
REPOSHA ● ● ● ● ● ● ● ●
REPOSL ● ● ● ● ● ● ● ●
REPOSQ ● ● ● ● ● ● ● ●
REPOSQA ● ● ● ● ● ● ● ●
RESETMON ● ● ● ● ● ● ● ●
RET ● ● ● ● ● ● ● ●
RETB ● ● ● ● ● ● ● ●
RIC ● ● ● ● ● ● ● ●
RINDEX ● ● ● ● ● ● ● ●
RMB ● ● ● ● ● ● ● ●
RME ● ● ● ● ● ● ● ●
RMI ● ● ● ● ● ● ● ●
RMN ● ● ● ● ● ● ● ●
RND ● ● ● ● ● ● ● ●
RNDM ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 881

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

ROT ● ● ● ● ● ● ● ●
ROTS ● ● ● ● ● ● ● ●
ROUND ● ● ● ● ● ● ● ●
ROUNDUP ● ● ● ● ● ● ● ●
RP ● ● ● ● ● ● ● ●
RPL ● ● ● ● ● ● ● ●
RT ● ● ● ● ● ● ● ●
RTLIOF ● ● ● ● ● ● ● ●
RTLION ● ● ● ● ● ● ● ●

Operations S ... Z

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

S ● ● ● ● ● ● ● ●
SAVE ● ● ● ● ● ● ● ●
SBLOF ● ● ● ● ● ● ● ●
SBLON ● ● ● ● ● ● ● ●
SC ● ● ● ● ● ● ● ●
SCALE ● ● ● ● ● ● ● ●
SCC ● ● ● ● ● ● ● ●
SCPARA ● ● ● ● ● ● ● ●
SD ○ ○ ○ ○ ○ ○ ○ ○
SET ● ● ● ● ● ● ● ●
SETAL ● ● ● ● ● ● ● ●
SETDNO ● ● ● ● ● ● ● ●
SETINT ● ● ● ● ● ● ● ●
SETM - - - - - ○ - ●
SETMS ● ● ● ● ● ● ● ●
SETMS(n) ● ● ● ● ● ● ● ●
SETMTH ● ● ● ● ● ● ● ●
SETPIECE ● ● ● ● ● ● ● ●
SETTA ● ● ● ● ● ● ● ●
SETTCOR ● ● ● ● ● ● ● ●
SETTIA ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
882 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

SF ● ● ● ● ● ● ● ●
SIN ● ● ● ● ● ● ● ●
SIRELAY - - - - - - - -
SIRELIN - - - - - - - -
SIRELOUT - - - - - - - -
SIRELTIME - - - - - - - -
SLOT1 ● ● ● ● ● ● ● ●
SLOT2 ● ● ● ● ● ● ● ●
SOFT ● ● ● ● ● ● ● ●
SOFTA ● ● ● ● ● ● ● ●
SON - - - - - - - -
SONS - - - - - - - -
SPATH ● ● ● ● ● ● ● ●
SPCOF ● ● ● ● ● ● ● ●
SPCON ● ● ● ● ● ● ● ●
SPI ● ● ● ● ● ● ● ●
SPIF1 - - - - - - - -
SPIF2 - - - - - - - -
SPLINEPATH ○ ○ ○ ○ ○ ○ ○ ○
SPN - - - - - - - -
SPOF - - - - - - - -
SPOS ● ● ● ● ● ● ● ●
SPOSA ● ● ● ● ● ● ● ●
SPP - - - - - - - -
SPRINT ● ● ● ● ● ● ● ●
SQRT ● ● ● ● ● ● ● ●
SR ● ● ● ● ● ● ● ●
SRA ● ● ● ● ● ● ● ●
ST ● ● ● ● ● ● ● ●
STA ● ● ● ● ● ● ● ●
START - - - - - ○ - ●
STARTFIFO ● ● ● ● ● ● ● ●
STAT ● ● ● ● ● ● ● ●
STOLF ● ● ● ● ● ● ● ●
STOPFIFO ● ● ● ● ● ● ● ●
STOPRE ● ● ● ● ● ● ● ●
STOPREOF ● ● ● ● ● ● ● ●
STRING ● ● ● ● ● ● ● ●
STRINGFELD ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 883

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

STRINGIS ● ● ● ● ● ● ● ●
STRLEN ● ● ● ● ● ● ● ●
SUBSTR ● ● ● ● ● ● ● ●
SUPA ● ● ● ● ● ● ● ●
SVC ● ● ● ● ● ● ● ●
SYNFCT ● ● ● ● ● ● ● ●
SYNR ● ● ● ● ● ● ● ●
SYNRW ● ● ● ● ● ● ● ●
SYNW ● ● ● ● ● ● ● ●
T ● ● ● ● ● ● ● ●
TAN ● ● ● ● ● ● ● ●
TANG - - - - - - - -
TANGDEL - - - - - - - -
TANGOF - - - - - - - -
TANGON - - - - - - - -
TCA
(828D: _TCA) ● ● ● ● ● ● ● ●
TCARR ● - ● - ● ● - -
TCI ● ● ● ● ● ● ● ●
TCOABS ● - ● - ● ● - -
TCOFR ● - ● - ● ● - -
TCOFRX ● - ● - ● ● - -
TCOFRY ● - ● - ● ● - -
TCOFRZ ● - ● - ● ● - -
THETA - - - - - - - -
TILT - - - - - - - -
TLIFT - - - - - - - -
TML ● ● ● ● ● ● ● ●
TMOF ● ● ● ● ● ● ● ●
TMON ● ● ● ● ● ● ● ●
TO ● ● ● ● ● ● ● ●
TOFF ● ● ● ● ● ● ● ●
TOFFL ● ● ● ● ● ● ● ●
TOFFOF ● ● ● ● ● ● ● ●
TOFFON ● ● ● ● ● ● ● ●
TOFFR ● ● ● ● ● ● ● ●
TOFRAME ● ● ● ● ● ● ● ●
TOFRAMEX ● ● ● ● ● ● ● ●
TOFRAMEY ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
884 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

TOFRAMEZ ● ● ● ● ● ● ● ●
TOLOWER ● ● ● ● ● ● ● ●
TOOLENV ● ● ● ● ● ● ● ●
TOOLGNT ● ● ● ● ● ● ● ●
TOOLGT ● ● ● ● ● ● ● ●
TOROT ● ● ● ● ● ● ● ●
TOROTOF ● ● ● ● ● ● ● ●
TOROTX ● ● ● ● ● ● ● ●
TOROTY ● ● ● ● ● ● ● ●
TOROTZ ● ● ● ● ● ● ● ●
TOUPPER ● ● ● ● ● ● ● ●
TOWBCS ● - ● - ● ● - -
TOWKCS ● - ● - ● ● - -
TOWMCS ● - ● - ● ● - -
TOWSTD ● - ● - ● ● - -
TOWTCS ● - ● - ● ● - -
TOWWCS ● - ● - ● ● - -
TR ● ● ● ● ● ● ● ●
TRAANG - - - - - - ○ ○
TRACON - - - - - - ○ ○
TRACYL ○ ○ ○ ○ ○ ○ ○ ○
TRAFOOF ● ● ● ● ● ● ● ●
TRAFOON - - - - - - - -
TRAILOF ● ● ● ● ● ● ● ●
TRAILON ● ● ● ● ● ● ● ●
TRANS ● ● ● ● ● ● ● ●
TRANSMIT ○ ○ ○ ○ ○ ○ ○ ○
TRAORI - - - - - - - -
TRUE ● ● ● ● ● ● ● ●
TRUNC ● ● ● ● ● ● ● ●
TU ● ● ● ● ● ● ● ●
TURN ● ● ● ● ● ● ● ●
ULI ● ● ● ● ● ● ● ●
UNLOCK ● ● ● ● ● ● ● ●
UNTIL ● ● ● ● ● ● ● ●
UPATH ● ● ● ● ● ● ● ●
VAR ● ● ● ● ● ● ● ●
VELOLIM ● ● ● ● ● ● ● ●
VELOLIMA ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 885

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW

Milling
Export
(me42)

SW24x(5)
CNC-SW
Turning
Export
(te42)

SW26x(3)
CNC-SW

Milling
Export
(me62)

SW26x(3)
CNC-SW
Turning
Export
(te62)

SW28x(2)
CNC-SW

Milling
Export

(me821)

SW28x(1)
CNC-SW

Milling
Adv. Export

(me822)

SW28x(2)
CNC-SW
Turning
Export
(te821)

SW28x(1)
CNC-SW
Turning

Adv. Export
(te822)

WAITC ● ● ● ● ● ● ● ●
WAITE - - - - - ○ - ●
WAITENC ● ● ● ● ● ● ● ●
WAITM - - - - - ○ - ●
WAITMC - - - - - ○ - ●
WAITP ● ● ● ● ● ● ● ●
WAITS ● ● ● ● ● ● ● ●
WALCS0 ● ● ● ● ● ● ● ●
WALCS1 ● ● ● ● ● ● ● ●
WALCS2 ● ● ● ● ● ● ● ●
WALCS3 ● ● ● ● ● ● ● ●
WALCS4 ● ● ● ● ● ● ● ●
WALCS5 ● ● ● ● ● ● ● ●
WALCS6 ● ● ● ● ● ● ● ●
WALCS7 ● ● ● ● ● ● ● ●
WALCS8 ● ● ● ● ● ● ● ●
WALCS9 ● ● ● ● ● ● ● ●
WALCS10 ● ● ● ● ● ● ● ●
WALIMOF ● ● ● ● ● ● ● ●
WALIMON ● ● ● ● ● ● ● ●
WHEN ● ● ● ● ● ● ● ●
WHENEVER ● ● ● ● ● ● ● ●
WHILE ● ● ● ● ● ● ● ●
WORKPIECE ● ● ● ● ● ● ● ●
WRITE ● ● ● ● ● ● ● ●
WRTPR ● ● ● ● ● ● ● ●
X ● ● ● ● ● ● ● ●
XOR ● ● ● ● ● ● ● ●
Y ● ● ● ● ● ● ● ●
Z ● ● ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
886 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

21.2.2 Control versions grinding

Operations A ... C

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

: ● ● ● ● ● ●
* ● ● ● ● ● ●
+ ● ● ● ● ● ●
- ● ● ● ● ● ●
< ● ● ● ● ● ●
<< ● ● ● ● ● ●
<= ● ● ● ● ● ●
= ● ● ● ● ● ●
>= ● ● ● ● ● ●
/ ● ● ● ● ● ●
/0 … /7 ● ● ● ● ● ●
A ● ● ● ● ● ●
A2 - - - - - -
A3 - - - - - -
A4 - - - - - -
A5 - - - - - -
A6 - - - - - -
A7 - - - - - -
ABS ● ● ● ● ● ●
AC ● ● ● ● ● ●
ACC ● ● ● ● ● ●
ACCLIMA ● ● ● ● ● ●
ACN ● ● ● ● ● ●
ACOS ● ● ● ● ● ●
ACP ● ● ● ● ● ●
ACTBLOCNO ● ● ● ● ● ●
ADDFRAME ● ● ● ● ● ●
ADIS ● ● ● ● ● ●
ADISPOS ● ● ● ● ● ●
ADISPOSA ● ● ● ● ● ●
ALF ● ● ● ● ● ●
AMIRROR ● ● ● ● ● ●
AND ● ● ● ● ● ●
ANG ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 887

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

AP ● ● ● ● ● ●
APR ● ● ● ● ● ●
APRB ● ● ● ● ● ●
APRP ● ● ● ● ● ●
APW ● ● ● ● ● ●
APWB ● ● ● ● ● ●
APWP ● ● ● ● ● ●
APX ● ● ● ● ● ●
AR ● ● ● ● ● ●
AROT ● ● ● ● ● ●
AROTS ● ● ● ● ● ●
AS ● ● ● ● ● ●
ASCALE ● ● ● ● ● ●
ASIN ● ● ● ● ● ●
ASPLINE ○ ○ ○ ○ ○ ○
ATAN2 ● ● ● ● ● ●
ATOL ● ● ● ● ● ●
ATRANS ● ● ● ● ● ●
AUXFUDEL ● ● ● ● ● ●
AUXFUDELG ● ● ● ● ● ●
AUXFUMSEQ ● ● ● ● ● ●
AUXFUSYNC ● ● ● ● ● ●
AX ● ● ● ● ● ●
AXCTSWE - - - - - -
AXCTSWEC - - - - - -
AXCTSWED - - - - - -
AXIS ● ● ● ● ● ●
AXNAME ● ● ● ● ● ●
AXSTRING ● ● ● ● ● ●
AXTOCHAN ● ● ● ● ● ●
AXTOSPI ● ● ● ● ● ●
B ● ● ● ● ● ●
B2 - - - - - -
B3 - - - - - -
B4 - - - - - -
B5 - - - - - -
B6 - - - - - -
B7 - - - - - -
B_AND ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
888 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

B_OR ● ● ● ● ● ●
B_NOT ● ● ● ● ● ●
B_XOR ● ● ● ● ● ●
BAUTO ○ ○ ○ ○ ○ ○
BLOCK ● ● ● ● ● ●
BLSYNC ● ● ● ● ● ●
BNAT ○ ○ ○ ○ ○ ○
BOOL ● ● ● ● ● ●
BOUND ● ● ● ● ● ●
BRISK ● ● ● ● ● ●
BRISKA ● ● ● ● ● ●
BSPLINE ○ ○ ○ ○ ○ ○
BTAN ○ ○ ○ ○ ○ ○
C ● ● ● ● ● ●
C2 - - Channel axis

name
- - -

C3 - - - - - -
C4 - - - - - -
C5 - - - - - -
C6 - - - - - -
C7 - - - - - -
CAC ● ● ● ● ● ●
CACN ● ● ● ● ● ●
CACP ● ● ● ● ● ●
CALCDAT ● ● ● ● ● ●
CALCPOSI ● ● ● ● ● ●
CALL ● ● ● ● ● ●
CALLPATH ● ● ● ● ● ●
CANCEL ● ● ● ● ● ●
CASE ● ● ● ● ● ●
CDC ● ● ● ● ● ●
CDOF - - - - - -
CDOF2 - - - - - -
CDON - - - - - -
CFC ● ● ● ● ● ●
CFIN ● ● ● ● ● ●
CFINE ● ● ● ● ● ●
CFTCP ● ● ● ● ● ●
CHAN ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 889

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

CHANDATA ● ● ● ● ● ●
CHAR ● ● ● ● ● ●
CHF ● ● ● ● ● ●
CHKDM ● ● ● ● ● ●
CHKDNO ● ● ● ● ● ●
CHR ● ● ● ● ● ●
CIC ● ● ● ● ● ●
CIP ● ● ● ● ● ●
CLEARM - - ● - - ●
CLRINT ● ● ● ● ● ●
CMIRROR ● ● ● ● ● ●
COARSEA ● ● ● ● ● ●
COLLPAIR - - - - - -
COMPCAD ● ● ● ● ● ●
COMPCURV ● ● ● ● ● ●
COMPLETE ● ● ● ● ● ●
COMPOF ● ● ● ● ● ●
COMPON ● ● ● ● ● ●
COMPSURF - - - - - -
CONTDCON ● ● ● ● ● ●
CONTPRON ● ● ● ● ● ●
CORROF ● ● ● ● ● ●
CORRTRAFO - - - - - -
COS ● ● ● ● ● ●
COUPDEF ○ ○ ○ ○ ○ ○
COUPDEL ○ ○ ○ ○ ○ ○
COUPOF ○ ○ ○ ○ ○ ○
COUPOFS ○ ○ ○ ○ ○ ○
COUPON ○ ○ ○ ○ ○ ○
COUPONC ○ ○ ○ ○ ○ ○
COUPRES ○ ○ ○ ○ ○ ○
CP ● ● ● ● ● ●
CPBC ○ ○ ○ ○ ○ ○
CPDEF ○ ○ ○ ○ ○ ○
CPDEL ○ ○ ○ ○ ○ ○
CPFMOF ○ ○ ○ ○ ○ ○
CPFMON ○ ○ ○ ○ ○ ○
CPFMSON ○ ○ ○ ○ ○ ○
CPFPOS ○ ○ ○ ○ ○ ○

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
890 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

CPFRS ○ ○ ○ ○ ○ ○
CPLA ○ ○ ○ ○ ○ ○
CPLCTID ○ ○ ○ ○ ○ ○
CPLDEF ○ ○ ○ ○ ○ ○
CPLDEL ○ ○ ○ ○ ○ ○
CPLDEN ○ ○ ○ ○ ○ ○
CPLINSC ○ ○ ○ ○ ○ ○
CPLINTR ○ ○ ○ ○ ○ ○
CPLNUM ○ ○ ○ ○ ○ ○
CPLOF ○ ○ ○ ○ ○ ○
CPLON ○ ○ ○ ○ ○ ○
CPLOUTSC ○ ○ ○ ○ ○ ○
CPLOUTTR ○ ○ ○ ○ ○ ○
CPLPOS ○ ○ ○ ○ ○ ○
CPLSETVAL ○ ○ ○ ○ ○ ○
CPMALARM ○ ○ ○ ○ ○ ○
CPMBRAKE ○ ○ ○ ○ ○ ○
CPMPRT ○ ○ ○ ○ ○ ○
CPMRESET ○ ○ ○ ○ ○ ○
CPMSTART ○ ○ ○ ○ ○ ○
CPMVDI ○ ○ ○ ○ ○ ○
CPOF ○ ○ ○ ○ ○ ○
CPON ○ ○ ○ ○ ○ ○
CPRECOF ● ● ● ● ● ●
CPRECON ● ● ● ● ● ●
CPRES ○ ○ ○ ○ ○ ○
CPROT ● ● ● ● ● ●
CPROTDEF ● ● ● ● ● ●
CPSETTYPE ○ ○ ○ ○ ○ ○
CPSYNCOP ○ ○ ○ ○ ○ ○
CPSYNCOP2 ○ ○ ○ ○ ○ ○
CPSYNCOV ○ ○ ○ ○ ○ ○
CPSYNFIP ○ ○ ○ ○ ○ ○
CPSYNFIP2 ○ ○ ○ ○ ○ ○
CPSYNFIV ○ ○ ○ ○ ○ ○
CR ● ● ● ● ● ●
CROT ● ● ● ● ● ●
CROTS ● ● ● ● ● ●
CRPL ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 891

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

CSCALE ● ● ● ● ● ●
CSPLINE ○ ○ ○ ○ ○ ○
CT ● ● ● ● ● ●
CTAB - - - - - -
CTABDEF - - - - - -
CTABDEL - - - - - -
CTABEND - - - - - -
CTABEXISTS - - - - - -
CTABFNO - - - - - -
CTABFPOL - - - - - -
CTABFSEG - - - - - -
CTABID - - - - - -
CTABINV - - - - - -
CTABISLOCK - - - - - -
CTABLOCK - - - - - -
CTABMEMTYP - - - - - -
CTABMPOL - - - - - -
CTABMSEG - - - - - -
CTABNO - - - - - -
CTABNOMEM - - - - - -
CTABPERIOD - - - - - -
CTABPOL - - - - - -
CTABPOLID - - - - - -
CTABSEG - - - - - -
CTABSEGID - - - - - -
CTABSEV - - - - - -
CTABSSV - - - - - -
CTABTEP - - - - - -
CTABTEV - - - - - -
CTABTMAX - - - - - -
CTABTMIN - - - - - -
CTABTSP - - - - - -
CTABTSV - - - - - -
CTABUNLOCK - - - - - -
CTOL ● ● ● ● ● ●
CTRANS ● ● ● ● ● ●
CUT2D ● ● ● ● ● ●
CUT2DD ● ● ● ● ● ●
CUT2DF ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
892 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

CUT2DFD ● ● ● ● ● ●
CUT3DC - - - - - -
CUT3DCC - - - - - -
CUT3DCCD - - - - - -
CUT3DCD - - - - - -
CUT3DF - - - - - -
CUT3DFD - - - - - -
CUT3DFF - - - - - -
CUT3DFS - - - - - -
CUTCONOF ● ● ● ● ● ●
CUTCONON ● ● ● ● ● ●
CUTMOD ● ● ● ● ● ●
CUTMODK - - - - - -
CYCLE60 - - - - - -
CYCLE61 - - - - - -
CYCLE62 ● ● ● ● ● ●
CYCLE63 - - - - - -
CYCLE64 - - - - - -
CYCLE70 - - - - - -
CYCLE72 - - - - - -
CYCLE76 - - - - - -
CYCLE77 - - - - - -
CYCLE78 - - - - - -
CYCLE79 - - - - - -
CYCLE81 - - - - - -
CYCLE82 - - - - - -
CYCLE83 - - - - - -
CYCLE84 - - - - - -
CYCLE85 - - - - - -
CYCLE86 - - - - - -
CYCLE92 - - - - - -
CYCLE95 - - - - - -
CYCLE98 - - - - - -
CYCLE99 - - - - - -
CYCLE150 - - - - - -
CYCLE435 ○ ○ ○ ○ ○ ○
CYCLE495 ○ ○ ○ ○ ○ ○
CYCLE750 ● ● ● ● ● ●
CYCLE751 ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 893

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

CYCLE752 ● ● ● ● ● ●
CYCLE753 ● ● ● ● ● ●
CYCLE754 ● ● ● ● ● ●
CYCLE755 ● ● ● ● ● ●
CYCLE756 ● ● ● ● ● ●
CYCLE757 ● ● ● ● ● ●
CYCLE758 ● ● ● ● ● ●
CYCLE759 ● ● ● ● ● ●
CYCLE800 ○ ○ ○ ○ ○ ○
CYCLE801 - - - - - -
CYCLE802 - - - - - -
CYCLE830 - - - - - -
CYCLE832 ● ● ● ● ● ●
CYCLE840 - - - - - -
CYCLE899 - - - - - -
CYCLE930 - - - - - -
CYCLE940 - - - - - -
CYCLE951 - - - - - -
CYCLE952 - - - - - -
CYCLE961 - - - - - -
CYCLE971 - - - - - -
CYCLE973 - - - - - -
CYCLE974 - - - - - -
CYCLE976 - - - - - -
CYCLE977 - - - - - -
CYCLE978 - - - - - -
CYCLE979 - - - - - -
CYCLE982 - - - - - -
CYCLE994 - - - - - -
CYCLE995 - - - - - -
CYCLE996 - - - - - -
CYCLE997 - - - - - -
CYCLE998 - - - - - -
CYCLE4071 ● ● ● ● ● ●
CYCLE4072 ● ● ● ● ● ●
CYCLE4073 ● ● ● ● ● ●
CYCLE4074 ● ● ● ● ● ●
CYCLE4075 ● ● ● ● ● ●
CYCLE4077 ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
894 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

CYCLE4078 ● ● ● ● ● ●
CYCLE4079 ● ● ● ● ● ●

Operations D ... F

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

D ● ● ● ● ● ●
D0 ● ● ● ● ● ●
DAC ● ● ● ● ● ●
DC ● ● ● ● ● ●
DCI ● ● ● ● ● ●
DCM ● ● ● ● ● ●
DCU ● ● ● ● ● ●
DEF ● ● ● ● ● ●
DEFINE ● ● ● ● ● ●
DEFAULT ● ● ● ● ● ●
DELAYFSTON ● ● ● ● ● ●
DELAYFSTOF ● ● ● ● ● ●
DELDL ● ● ● ● ● ●
DELDTG ● ● ● ● ● ●
DELETE ● ● ● ● ● ●
DELMLOWNER ● ● ● ● ● ●
DELMLRES ● ● ● ● ● ●
DELMT - - - - - -
DELOBJ - - - - - -
DELT ● ● ● ● ● ●
DELTC ● ● ● ● ● ●
DELTOOLENV ● ● ● ● ● ●
DIACYCOFA ● ● ● ● ● ●
DIAM90 ● ● ● ● ● ●
DIAM90A ● ● ● ● ● ●
DIAMCHAN ● ● ● ● ● ●
DIAMCHANA ● ● ● ● ● ●
DIAMCYCOF ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 895

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

DIAMOF ● ● ● ● ● ●
DIAMOFA ● ● ● ● ● ●
DIAMON ● ● ● ● ● ●
DIAMONA ● ● ● ● ● ●
DIC ● ● ● ● ● ●
DILF ● ● ● ● ● ●
DISABLE ● ● ● ● ● ●
DISC ● ● ● ● ● ●
DISCL ● ● ● ● ● ●
DISPLOF ● ● ● ● ● ●
DISPLON ● ● ● ● ● ●
DISPR ● ● ● ● ● ●
DISR ● ● ● ● ● ●
DISRP ● ● ● ● ● ●
DITE ● ● ● ● ● ●
DITS ● ● ● ● ● ●
DIV ● ● ● ● ● ●
DL - - - - - -
DO ● ● ● ● ● ●
DRFOF ● ● ● ● ● ●
DRIVE ● ● ● ● ● ●
DRIVEA ● ● ● ● ● ●
DYNFINISH ● ● ● ● ● ●
DYNNORM ● ● ● ● ● ●
DYNPOS ● ● ● ● ● ●
DYNROUGH ● ● ● ● ● ●
DYNSEMIFIN ● ● ● ● ● ●
DZERO ● ● ● ● ● ●
EAUTO ○ ○ ○ ○ ○ ○
EGDEF ○ ○ ○ ○ ○ ○
EGDEL ○ ○ ○ ○ ○ ○
EGOFC ○ ○ ○ ○ ○ ○
EGOFS ○ ○ ○ ○ ○ ○
EGON ○ ○ ○ ○ ○ ○
EGONSYN ○ ○ ○ ○ ○ ○
EGONSYNE ○ ○ ○ ○ ○ ○
ELSE ● ● ● ● ● ●
ENABLE ● ● ● ● ● ●
ENAT ○ ○ ○ ○ ○ ○

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
896 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

ENDFOR ● ● ● ● ● ●
ENDIF ● ● ● ● ● ●
ENDLABEL ● ● ● ● ● ●
ENDLOOP ● ● ● ● ● ●
ENDPROC ● ● ● ● ● ●
ENDWHILE ● ● ● ● ● ●
ESRR ○ ○ ○ ○ ○ ○
ESRS ○ ○ ○ ○ ○ ○
ETAN ○ ○ ○ ○ ○ ○
EVERY ● ● ● ● ● ●
EX ● ● ● ● ● ●
EXECSTRING ● ● ● ● ● ●
EXECTAB ● ● ● ● ● ●
EXECUTE ● ● ● ● ● ●
EXP ● ● ● ● ● ●
EXTCALL ● ● ● ● ● ●
EXTCLOSE ● ● ● ● ● ●
EXTERN ● ● ● ● ● ●
EXTOPEN ● ● ● ● ● ●
F ● ● ● ● ● ●
FA ● ● ● ● ● ●
FAD ● ● ● ● ● ●
FALSE ● ● ● ● ● ●
FB ● ● ● ● ● ●
FCTDEF ● ● ● ● ● ●
FCUB ● ● ● ● ● ●
FD ● ● ● ● ● ●
FDA ● ● ● ● ● ●
FENDNORM ● ● ● ● ● ●
FFWOF ● ● ● ● ● ●
FFWON ● ● ● ● ● ●
FGREF ● ● ● ● ● ●
FGROUP ● ● ● ● ● ●
FI ● ● ● ● ● ●
FIFOCTRL ● ● ● ● ● ●
FILEDATE ● ● ● ● ● ●
FILEINFO ● ● ● ● ● ●
FILESIZE ● ● ● ● ● ●
FILESTAT ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 897

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

FILETIME ● ● ● ● ● ●
FINEA ● ● ● ● ● ●
FL ● ● ● ● ● ●
FLIN ● ● ● ● ● ●
FMA ● ● ● ● ● ●
FNORM ● ● ● ● ● ●
FOCOF ○ ○ ○ ○ ○ ○
FOCON ○ ○ ○ ○ ○ ○
FOR ● ● ● ● ● ●
FP ● ● ● ● ● ●
FPO - - - - - -
FPR ● ● ● ● ● ●
FPRAOF ● ● ● ● ● ●
FPRAON ● ● ● ● ● ●
FRAME ● ● ● ● ● ●
FRC ● ● ● ● ● ●
FRCM ● ● ● ● ● ●
FROM ● ● ● ● ● ●
FTOC ● ● ● ● ● ●
FTOCOF ● ● ● ● ● ●
FTOCON ● ● ● ● ● ●
FXS ● ● ● ● ● ●
FXST ● ● ● ● ● ●
FXSW ● ● ● ● ● ●
FZ ● ● ● ● ● ●

Operations G ... L

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

G0 ● ● ● ● ● ●
G1 ● ● ● ● ● ●
G2 ● ● ● ● ● ●
G3 ● ● ● ● ● ●
G4 ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
898 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

G5 ● ● ● ● ● ●
G7 ● ● ● ● ● ●
G9 ● ● ● ● ● ●
G17 ● ● ● ● ● ●
G18 ● ● ● ● ● ●
G19 ● ● ● ● ● ●
G25 ● ● ● ● ● ●
G26 ● ● ● ● ● ●
G33 ● ● ● ● ● ●
G34 ● ● ● ● ● ●
G35 ● ● ● ● ● ●
G40 ● ● ● ● ● ●
G41 ● ● ● ● ● ●
G42 ● ● ● ● ● ●
G53 ● ● ● ● ● ●
G54 ● ● ● ● ● ●
G55 ● ● ● ● ● ●
G56 ● ● ● ● ● ●
G57 ● ● ● ● ● ●
G58 → G505
G59 → G506
G60 ● ● ● ● ● ●
G62 ● ● ● ● ● ●
G63 ● ● ● ● ● ●
G64 ● ● ● ● ● ●
G70 ● ● ● ● ● ●
G71 ● ● ● ● ● ●
G74 ● ● ● ● ● ●
G75 ● ● ● ● ● ●
G90 ● ● ● ● ● ●
G91 ● ● ● ● ● ●
G93 ● ● ● ● ● ●
G94 ● ● ● ● ● ●
G95 ● ● ● ● ● ●
G96 ● ● ● ● ● ●
G97 ● ● ● ● ● ●
G110 ● ● ● ● ● ●
G111 ● ● ● ● ● ●
G112 ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 899

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

G140 ● ● ● ● ● ●
G141 ● ● ● ● ● ●
G142 ● ● ● ● ● ●
G143 ● ● ● ● ● ●
G147 ● ● ● ● ● ●
G148 ● ● ● ● ● ●
G153 ● ● ● ● ● ●
G247 ● ● ● ● ● ●
G248 ● ● ● ● ● ●
G290 ● ● ● ● ● ●
G291 - - - - - -
G331 ● ● ● ● ● ●
G332 ● ● ● ● ● ●
G335 ● ● ● ● ● ●
G336 ● ● ● ● ● ●
G340 ● ● ● ● ● ●
G341 ● ● ● ● ● ●
G347 ● ● ● ● ● ●
G348 ● ● ● ● ● ●
G450 ● ● ● ● ● ●
G451 ● ● ● ● ● ●
G460 ● ● ● ● ● ●
G461 ● ● ● ● ● ●
G462 ● ● ● ● ● ●
G500 ● ● ● ● ● ●
G505 ... G599 ● ● ● ● ● ●
G601 ● ● ● ● ● ●
G602 ● ● ● ● ● ●
G603 ● ● ● ● ● ●
G621 ● ● ● ● ● ●
G641 ● ● ● ● ● ●
G642 ● ● ● ● ● ●
G643 ● ● ● ● ● ●
G644 ● ● ● ● ● ●
G645 ● ● ● ● ● ●
G700 ● ● ● ● ● ●
G710 ● ● ● ● ● ●
G810 ... G819 - - - - - -
G820 ... G829 - - - - - -

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
900 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

G931 ● ● ● ● ● ●
G942 ● ● ● ● ● ●
G952 ● ● ● ● ● ●
G961 ● ● ● ● ● ●
G962 ● ● ● ● ● ●
G971 ● ● ● ● ● ●
G972 ● ● ● ● ● ●
G973 ● ● ● ● ● ●
GEOAX ● ● ● ● ● ●
GET ● ● ● ● ● ●
GETACTT ● ● ● ● ● ●
GETACTTD ● ● ● ● ● ●
GETD - - ● - - ●
GETDNO ● ● ● ● ● ●
GETEXET ● ● ● ● ● ●
GETFREELOC ● ● ● ● ● ●
GETSELT ● ● ● ● ● ●
GETT ● ● ● ● ● ●
GETTCOR ● ● ● ● ● ●
GETTENV ● ● ● ● ● ●
GETVARAP ● ● ● ● ● ●
GETVARDFT ● ● ● ● ● ●
GETVARLIM ● ● ● ● ● ●
GETVARPHU ● ● ● ● ● ●
GETVARTYP ● ● ● ● ● ●
GFRAME0 ...
GFRAME100

< 50 < 100 < 100 < 50 < 100 < 100

GOTO ● ● ● ● ● ●
GOTOB ● ● ● ● ● ●
GOTOC ● ● ● ● ● ●
GOTOF ● ● ● ● ● ●
GOTOS ● ● ● ● ● ●
GP ● ● ● ● ● ●
GWPSOF ● ● ● ● ● ●
GROUP_ADDEND ● ● ● ● ● ●
GROUP_BEGIN ● ● ● ● ● ●
GROUP_END ● ● ● ● ● ●
GWPSON ● ● ● ● ● ●
H... ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 901

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

HOLES1 - - - - - -
HOLES2 - - - - - -
I ● ● ● ● ● ●
I1 ● ● ● ● ● ●
IC ● ● ● ● ● ●
ICYCOF ● ● ● ● ● ●
ICYCON ● ● ● ● ● ●
ID ● ● ● ● ● ●
IDS ● ● ● ● ● ●
IF ● ● ● ● ● ●
INDEX ● ● ● ● ● ●
INIPO ● ● ● ● ● ●
INIRE ● ● ● ● ● ●
INICF ● ● ● ● ● ●
INIT - - ● - - ●
INITIAL
INT ● ● ● ● ● ●
INTERSEC ● ● ● ● ● ●
INVCCW - - - - - -
INVCW - - - - - -
INVFRAME ● ● ● ● ● ●
IP ● ● ● ● ● ●
IPOBRKA ● ● ● ● ● ●
IPOENDA ● ● ● ● ● ●
IPTRLOCK ● ● ● ● ● ●
IPTRUNLOCK ● ● ● ● ● ●
IR ● ● ● ● ● ●
ISAXIS ● ● ● ● ● ●
ISD - - - - - -
ISFILE ● ● ● ● ● ●
ISNUMBER ● ● ● ● ● ●
ISOCALL - - - - - -
ISVAR ● ● ● ● ● ●
J ● ● ● ● ● ●
J1 ● ● ● ● ● ●
JERKA ● ● ● ● ● ●
JERKLIM ● ● ● ● ● ●
JERKLIMA ● ● ● ● ● ●
JR ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
902 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

K ● ● ● ● ● ●
K1 ● ● ● ● ● ●
KONT ● ● ● ● ● ●
KONTC ● ● ● ● ● ●
KONTT ● ● ● ● ● ●
KR ● ● ● ● ● ●
L ● ● ● ● ● ●
LEAD
Tool orientation
Orientation polynomial

-
-

-
-

-
-

-
-

-
-

-
-

LEADOF - - - - - -
LEADON - - - - - -
LENTOAX ● ● ● ● ● ●
LFOF ● ● ● ● ● ●
LFON ● ● ● ● ● ●
LFPOS ● ● ● ● ● ●
LFTXT ● ● ● ● ● ●
LFWP ● ● ● ● ● ●
LIFTFAST ● ● ● ● ● ●
LIMS ● ● ● ● ● ●
LLI ● ● ● ● ● ●
LN ● ● ● ● ● ●
LOCK ● ● ● ● ● ●
LONGHOLE - - - - - -
LOOP ● ● ● ● ● ●

Operations M ... R

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

M0 ● ● ● ● ● ●
M1 ● ● ● ● ● ●
M2 ● ● ● ● ● ●
M3 ● ● ● ● ● ●
M4 ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 903

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

M5 ● ● ● ● ● ●
M6 ● ● ● ● ● ●
M17 ● ● ● ● ● ●
M19 ● ● ● ● ● ●
M30 ● ● ● ● ● ●
M40 ● ● ● ● ● ●
M41 ... M45 ● ● ● ● ● ●
M70 ● ● ● ● ● ●
MASLDEF - - - - - -
MASLDEL - - - - - -
MASLOF - - - - - -
MASLOFS - - - - - -
MASLON - - - - - -
MATCH ● ● ● ● ● ●
MAXVAL ● ● ● ● ● ●
MCALL ● ● ● ● ● ●
MEAC - ○ ○ - ○ ○
MEAFRAME ● ● ● ● ● ●
MEAS ● ● ● ● ● ●
MEASA - ○ ○ - ○ ○
MEASURE ● ● ● ● ● ●
MEAW ● ● ● ● ● ●
MEAWA - ○ ○ - ○ ○
MI ● ● ● ● ● ●
MINDEX ● ● ● ● ● ●
MINVAL ● ● ● ● ● ●
MIRROR ● ● ● ● ● ●
MMC ● ● ● ● ● ●
MOD ● ● ● ● ● ●
MODAXVAL ● ● ● ● ● ●
MOV ● ● ● ● ● ●
MOVT ● ● ● ● ● ●
MSG ● ● ● ● ● ●
MVTOOL ● ● ● ● ● ●
N ● ● ● ● ● ●
NAMETOINT ● ● ● ● ● ●
NCK ● ● ● ● ● ●
NEWCONF ● ● ● ● ● ●
NEWMT ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
904 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

NEWT - - - - - -
NORM ● ● ● ● ● ●
NOT ● ● ● ● ● ●
NPROT ● ● ● ● ● ●
NPROTDEF ● ● ● ● ● ●
NUMBER ● ● ● ● ● ●
OEMIPO1 - - - - - -
OEMIPO2 - - - - - -
OF ● ● ● ● ● ●
OFFN ● ● ● ● ● ●
OMA1 - - - - - -
OMA2 - - - - - -
OMA3 - - - - - -
OMA4 - - - - - -
OMA5 - - - - - -
OR ● ● ● ● ● ●
ORIAXES - - - - - -
ORIAXPOS - - - - - -
ORIC - - - - - -
ORICONCCW - - - - - -
ORICONCW - - - - - -
ORICONIO - - - - - -
ORICONTO - - - - - -
ORICURVE - - - - - -
ORID - - - - - -
ORIEULER - - - - - -
ORIMKS - - - - - -
ORIPATH - - - - - -
ORIPATHS - - - - - -
ORIPLANE - - - - - -
ORIRESET - - - - - -
ORIROTA - - - - - -
ORIROTC - - - - - -
ORIROTR - - - - - -
ORIROTT - - - - - -
ORIRPY - - - - - -
ORIRPY2 - - - - - -
ORIS - - - - - -
ORISOF - - - - - -

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 905

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

ORISOLH - - - - - -
ORISON - - - - - -
ORIVECT - - - - - -
ORIVIRT1 - - - - - -
ORIVIRT2 - - - - - -
ORIWKS - - - - - -
OS ○ ○ ○ ○ ○ ○
OSB ○ ○ ○ ○ ○ ○
OSC - - - - - -
OSCILL ○ ○ ○ ○ ○ ○
OSCTRL ○ ○ ○ ○ ○ ○
OSD - - - - - -
OSE ○ ○ ○ ○ ○ ○
OSNSC ● ● ● ● ● ●
OSOF - - - - - -
OSP1 ● ● ● ● ● ●
OSP2 ● ● ● ● ● ●
OSS - - - - - -
OSSE - - - - - -
OST - - - - - -
OST1 ● ● ● ● ● ●
OST2 ● ● ● ● ● ●
OTOL ● ● ● ● ● ●
OVR ● ● ● ● ● ●
OVRA ● ● ● ● ● ●
OVRRAP ● ● ● ● ● ●
P ● ● ● ● ● ●
PAROT ● ● ● ● ● ●
PAROTOF ● ● ● ● ● ●
PCALL ● ● ● ● ● ●
PDELAYOF - - - - - -
PDELAYON - - - - - -
PHI - - - - - -
PHU ● ● ● ● ● ●
PL - - - - - -
PM ● ● ● ● ● ●
PO - - - - - -
POCKET3 - - - - - -
POCKET4 - - - - - -

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
906 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

POLF ● ● ● ● ● ●
POLFA ● ● ● ● ● ●
POLFMASK ● ● ● ● ● ●
POLFMLIN ● ● ● ● ● ●
POLY - - - - - -
POLYPATH - - - - - -
PON - - - - - -
PONS - - - - - -
POS ● ● ● ● ● ●
POSA ● ● ● ● ● ●
POSM ● ● ● ● ● ●
POSMT - - - - - -
POSP ● ● ● ● ● ●
POSRANGE ● ● ● ● ● ●
POT ● ● ● ● ● ●
PR ● ● ● ● ● ●
PREPRO ● ● ● ● ● ●
PRESETON ● ● ● ● ● ●
PRESETONS ● ● ● ● ● ●
PRIO ● ● ● ● ● ●
PRLOC ● ● ● ● ● ●
PROC ● ● ● ● ● ●
PROTA ● ● ● ● ● ●
PROTD ● ● ● ● ● ●
PROTS ● ● ● ● ● ●
PSI - - - - - -
PTP ● ● ● ● ● ●
PTPG0 ● ● ● ● ● ●
PTPWOC ● ● ● ● ● ●
PUNCHACC - - - - - -
PUTFTOC ● ● ● ● ● ●
PUTFTOCF ● ● ● ● ● ●
PW ○ ○ ○ ○ ○ ○
QU ● ● ● ● ● ●
R... ● ● ● ● ● ●
RAC ● ● ● ● ● ●
RDISABLE ● ● ● ● ● ●
READ ● ● ● ● ● ●
REAL ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 907

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

RELEASE ● ● ● ● ● ●
REP ● ● ● ● ● ●
REPEAT ● ● ● ● ● ●
REPEATB ● ● ● ● ● ●
REPOSA ● ● ● ● ● ●
REPOSH ● ● ● ● ● ●
REPOSHA ● ● ● ● ● ●
REPOSL ● ● ● ● ● ●
REPOSQ ● ● ● ● ● ●
REPOSQA ● ● ● ● ● ●
RESETMON ● ● ● ● ● ●
RET ● ● ● ● ● ●
RETB ● ● ● ● ● ●
RIC ● ● ● ● ● ●
RINDEX ● ● ● ● ● ●
RMB ● ● ● ● ● ●
RME ● ● ● ● ● ●
RMI ● ● ● ● ● ●
RMN ● ● ● ● ● ●
RND ● ● ● ● ● ●
RNDM ● ● ● ● ● ●
ROT ● ● ● ● ● ●
ROTS ● ● ● ● ● ●
ROUND ● ● ● ● ● ●
ROUNDUP ● ● ● ● ● ●
RP ● ● ● ● ● ●
RPL ● ● ● ● ● ●
RT ● ● ● ● ● ●
RTLIOF ● ● ● ● ● ●
RTLION ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
908 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operations S ... Z

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

S ● ● ● ● ● ●
SAVE ● ● ● ● ● ●
SBLOF ● ● ● ● ● ●
SBLON ● ● ● ● ● ●
SC ● ● ● ● ● ●
SCALE ● ● ● ● ● ●
SCC ● ● ● ● ● ●
SCPARA ● ● ● ● ● ●
SD ○ ○ ○ ○ ○ ○
SET ● ● ● ● ● ●
SETAL ● ● ● ● ● ●
SETDNO ● ● ● ● ● ●
SETINT ● ● ● ● ● ●
SETM - - ● - - ●
SETMS ● ● ● ● ● ●
SETMS(n) ● ● ● ● ● ●
SETMTH ● ● ● ● ● ●
SETPIECE ● ● ● ● ● ●
SETTA ● ● ● ● ● ●
SETTCOR ● ● ● ● ● ●
SETTIA ● ● ● ● ● ●
SF ● ● ● ● ● ●
SIN ● ● ● ● ● ●
SIRELAY - - - - - -
SIRELIN - - - - - -
SIRELOUT - - - - - -
SIRELTIME - - - - - -
SLOT1 - - - - - -
SLOT2 - - - - - -
SOFT ● ● ● ● ● ●
SOFTA ● ● ● ● ● ●
SON - - - - - -
SONS - - - - - -
SPATH ● ● ● ● ● ●
SPCOF ● ● ● ● ● ●
SPCON ● ● ● ● ● ●
SPI ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 909

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

SPIF1 - - - - - -
SPIF2 - - - - - -
SPLINEPATH ○ ○ ○ ○ ○ ○
SPN - - - - - -
SPOF - - - - - -
SPOS ● ● ● ● ● ●
SPOSA ● ● ● ● ● ●
SPP - - - - - -
SPRINT ● ● ● ● ● ●
SQRT ● ● ● ● ● ●
SR ● ● ● ● ● ●
SRA ● ● ● ● ● ●
ST ● ● ● ● ● ●
STA ● ● ● ● ● ●
START - - ● - - ●
STARTFIFO ● ● ● ● ● ●
STAT ● ● ● ● ● ●
STOLF ● ● ● ● ● ●
STOPFIFO ● ● ● ● ● ●
STOPRE ● ● ● ● ● ●
STOPREOF ● ● ● ● ● ●
STRING ● ● ● ● ● ●
STRINGFELD ● ● ● ● ● ●
STRINGIS ● ● ● ● ● ●
STRLEN ● ● ● ● ● ●
SUBSTR ● ● ● ● ● ●
SUPA ● ● ● ● ● ●
SVC ● ● ● ● ● ●
SYNFCT ● ● ● ● ● ●
SYNR ● ● ● ● ● ●
SYNRW ● ● ● ● ● ●
SYNW ● ● ● ● ● ●
T ● ● ● ● ● ●
TAN ● ● ● ● ● ●
TANG ○ ○ ○ ○ ○ ○
TANGDEL ○ ○ ○ ○ ○ ○
TANGOF ○ ○ ○ ○ ○ ○
TANGON ○ ○ ○ ○ ○ ○

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
910 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

TCA
(828D: _TCA) ● ● ● ● ● ●
TCARR ● ● ● ● ● ●
TCI ● ● ● ● ● ●
TCOABS ● ● ● ● ● ●
TCOFR ● ● ● ● ● ●
TCOFRX ● ● ● ● ● ●
TCOFRY ● ● ● ● ● ●
TCOFRZ ● ● ● ● ● ●
THETA - - - - - -
TILT - - - - - -
TLIFT ○ ○ ○ ○ ○ ○
TML ● ● ● ● ● ●
TMOF ● ● ● ● ● ●
TMON ● ● ● ● ● ●
TO ● ● ● ● ● ●
TOFF ● ● ● ● ● ●
TOFFL ● ● ● ● ● ●
TOFFOF ● ● ● ● ● ●
TOFFON ● ● ● ● ● ●
TOFFR ● ● ● ● ● ●
TOFRAME ● ● ● ● ● ●
TOFRAMEX ● ● ● ● ● ●
TOFRAMEY ● ● ● ● ● ●
TOFRAMEZ ● ● ● ● ● ●
TOLOWER ● ● ● ● ● ●
TOOLENV ● ● ● ● ● ●
TOOLGNT ● ● ● ● ● ●
TOOLGT ● ● ● ● ● ●
TOROT ● ● ● ● ● ●
TOROTOF ● ● ● ● ● ●
TOROTX ● ● ● ● ● ●
TOROTY ● ● ● ● ● ●
TOROTZ ● ● ● ● ● ●
TOUPPER ● ● ● ● ● ●
TOWBCS ● ● ● ● ● ●
TOWKCS ● ● ● ● ● ●
TOWMCS ● ● ● ● ● ●
TOWSTD ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 911

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

TOWTCS ● ● ● ● ● ●
TOWWCS ● ● ● ● ● ●
TR ● ● ● ● ● ●
TRAANG ○ ○ ○ - - -
TRACON ○ ○ ○ - - -
TRACYL ○ ○ ○ ○ ○ ○
TRAFOOF ● ● ● ● ● ●
TRAFOON - - - - - -
TRAILOF ● ● ● ● ● ●
TRAILON ● ● ● ● ● ●
TRANS ● ● ● ● ● ●
TRANSMIT ○ ○ ○ ○ ○ ○
TRAORI - - - - - -
TRUE ● ● ● ● ● ●
TRUNC ● ● ● ● ● ●
TU ● ● ● ● ● ●
TURN ● ● ● ● ● ●
ULI ● ● ● ● ● ●
UNLOCK ● ● ● ● ● ●
UNTIL ● ● ● ● ● ●
UPATH ● ● ● ● ● ●
VAR ● ● ● ● ● ●
VELOLIM ● ● ● ● ● ●
VELOLIMA ● ● ● ● ● ●
WAITC ● ● ● ● ● ●
WAITE - - ● - - ●
WAITENC ● ● ● ● ● ●
WAITM - - ● - - ●
WAITMC - - ● - - ●
WAITP ● ● ● ● ● ●
WAITS ● ● ● ● ● ●
WALCS0 ● ● ● ● ● ●
WALCS1 ● ● ● ● ● ●
WALCS2 ● ● ● ● ● ●
WALCS3 ● ● ● ● ● ●
WALCS4 ● ● ● ● ● ●
WALCS5 ● ● ● ● ● ●
WALCS6 ● ● ● ● ● ●
WALCS7 ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
912 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Operation SINUMERIK 828D
● Standard
○ Option
- not available

SW24x(5)
CNC-SW
G-Tech
Export
(gce42)

SW26x(3)
CNC-SW
G-Tech
Export
(gce62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gce82)

SW24x(5)
CNC-SW
G-Tech
Export
(gse42)

SW26x(3)
CNC-SW
G-Tech
Export
(gse62)

SW28x(1)
CNC-SW
G-Tech

Adv. Export
(gse82)

WALCS8 ● ● ● ● ● ●
WALCS9 ● ● ● ● ● ●
WALCS10 ● ● ● ● ● ●
WALIMOF ● ● ● ● ● ●
WALIMON ● ● ● ● ● ●
WHEN ● ● ● ● ● ●
WHENEVER ● ● ● ● ● ●
WHILE ● ● ● ● ● ●
WORKPIECE ● ● ● ● ● ●
WRITE ● ● ● ● ● ●
WRTPR ● ● ● ● ● ●
X ● ● ● ● ● ●
XOR ● ● ● ● ● ●
Y ● ● ● ● ● ●
Z ● ● ● ● ● ●

Tables
21.2 Operations: Availability for SINUMERIK 828D

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 913

21.3 Currently set language in the HMI
The table below lists all of the languages available at the user interface.

The currently set language can be queried in the part program and in the synchronized actions
using the following system variable:

$AN_LANGUAGE_ON_HMI = <value>

<value> Language Language code
1 German (Germany) GER
2 French FRA
3 English (Great Britain) ENG
4 Spanish ESP
6 Italian ITA
7 Dutch NLD
8 Simplified Chinese CHS
9 Swedish SVE
18 Hungarian HUN
19 Finnish FIN
28 Czech CSY
50 Portuguese (Brazil) PTB
53 Polish PLK
55 Danish DAN
57 Russian RUS
68 Slovakian SKY
72 Rumanian ROM
80 Traditional Chinese CHT
85 Korean KOR
87 Japanese JPN
89 Turkish TRK

Note

$AN_LANGUAGE_ON_HMI is updated:
● after the system boots.
● after NC and/or PLC reset.
● after switching over to another NC within the scope of M2N.
● after changing over the language on the HMI.

Tables
21.3 Currently set language in the HMI

Job Planning
914 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Appendix A
A.1 List of abbreviations

A
O Output
ADI4 (Analog drive interface for 4 axes)
AC Adaptive Control
ALM Active Line Module
ARM Rotating induction motor
AS Automation system
ASCII American Standard Code for Information Interchange: American coding standard for

the exchange of information
ASIC Application-Specific Integrated Circuit: User switching circuit
ASUB Asynchronous subprogram
AUXFU Auxiliary function: Auxiliary function
STL Statement List
UP User Program

B
OP Operating Mode
BAG Mode group
BCD Binary Coded Decimals: Decimal numbers encoded in binary code
BERO Contact-less proximity switch
BI Binector Input
BICO Binector Connector
BIN BINary files: Binary files
BIOS Basic Input Output System
BCS Basic Coordinate System
BO Binector Output
OPI Operator Panel Interface

C
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CC Compile Cycle: Compile cycles
CEC Cross Error Compensation
CI Connector Input
CF Card Compact Flash Card

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 915

C
CNC Computerized Numerical Control: Computer-Supported Numerical Control
CO Connector Output
CoL Certificate of License
COM Communication
CPA Compiler Projecting Data: Configuring data of the compiler
CRT Cathode Ray Tube: picture tube
CSB Central Service Board: PLC module
CU Control Unit
CP Communication Processor
CPU Central Processing Unit: Central processing unit
CR Carriage Return
CTS Clear To Send: Ready to send signal for serial data interfaces
CUTCOM Cutter radius Compensation: Tool radius compensation

D
DAC Digital-to-Analog Converter
DB Data Block (PLC)
DBB Data Block Byte (PLC)
DBD Data Block Double word (PLC)
DBW Data Block Word (PLC)
DBX Data block bit (PLC)
DDE Dynamic Data Exchange
DDS Drive Data Set: Drive data set
DIN Deutsche Industrie Norm
DIO Data Input/Output: Data transfer display
DIR Directory: Directory
DLL Dynamic Link Library
DO Drive Object
DPM Dual Port Memory
DPR Dual Port RAM
DRAM Dynamic memory (non-buffered)
DRF Differential Resolver Function: Differential revolver function (handwheel)
DRIVE-CLiQ Drive Component Link with IQ
DRY Dry Run: Dry run feedrate
DSB Decoding Single Block: Decoding single block
DSC Dynamic Servo Control / Dynamic Stiffness Control
DW Data Word
DWORD Double Word (currently 32 bits)

Appendix
A.1 List of abbreviations

Job Planning
916 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

E
I Input
EES Execution from External Storage
I/O Input/Output
ENC Encoder: Actual value encoder
EFP Compact I/O module (PLC I/O module)
ESD Electrostatic Sensitive Devices
EMC ElectroMagnetic Compatibility
EN European standard
ENC Encoder: Actual value encoder
EnDat Encoder interface
EPROM Erasable Programmable Read Only Memory: Erasable, electrically programmable

read-only memory
ePS Network Services Services for Internet-based remote machine maintenance
EQN Designation for an absolute encoder with 2048 sine signals per revolution
ES Engineering System
ESR Extended Stop and Retract
ETC ETC key ">"; softkey bar extension in the same menu

F
FB Function Block (PLC)
FC Function Call: Function Block (PLC)
FEPROM Flash EPROM: Read and write memory
FIFO First In First Out: Memory that works without address specification and whose data is

read in the same order in which they was stored
FIPO Fine interpolator
FPU Floating Point Unit: Floating Point Unit
CRC Cutter Radius Compensation
FST Feed Stop: Feedrate stop
FBD Function Block Diagram (PLC programming method)
FW Firmware

G
GC Global Control (PROFIBUS: Broadcast telegram)
GDIR Global part program memory
GEO Geometry, e.g. geometry axis
GIA Gear Interpolation dAta: Gear interpolation data
GND Signal Ground
GP Basic program (PLC)
GS Gear Stage
GSD Device master file for describing a PROFIBUS slave

Appendix
A.1 List of abbreviations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 917

G
GSDML Generic Station Description Markup Language: XML-based description language for

creating a GSD file
GUD Global User Data: Global user data

H
HEX Abbreviation for hexadecimal number
AuxF Auxiliary function
HLA Hydraulic linear drive
HMI Human Machine Interface: SINUMERIK user interface
MSD Main Spindle Drive
HW Hardware

I
IBN Commissioning
ICA Interpolatory compensation
IM Interface Module: Interconnection module
IMR Interface Module Receive: Interface module for receiving data
IMS Interface Module Send: Interface module for sending data
INC Increment: Increment
INI Initializing Data: Initializing data
IPO Interpolator
ISA Industry Standard Architecture
ISO International Standardization Organization

J
JOG Jogging: Setup mode

K
KV Gain factor of control loop
Kp Proportional gain
KÜ Transformation ratio
LAD Ladder Diagram (PLC programming method)

L
LAI Logic Machine Axis Image: Logical machine axes image
LAN Local Area Network
LCD Liquid Crystal Display: Liquid crystal display
LED Light Emitting Diode: Light-emitting diode
LF Line Feed

Appendix
A.1 List of abbreviations

Job Planning
918 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

L
PMS Position Measuring System
LR Position controller
LSB Least Significant Bit: Least significant bit
LUD Local User Data: User data (local)

M
MAC Media Access Control
MAIN Main program: Main program (OB1, PLC)
MB Megabyte
MCI Motion Control Interface
MCIS Motion Control Information System
MCP Machine Control Panel: Machine control panel
MD Machine Data
MDA Manual Data Automatic: Manual input
MDS Motor Data Set: Motor data set
MSGW Message Word
MCS Machine Coordinate System
MM Motor Module
MPF Main Program File: Main program (NC)
MCP Machine control panel

N
NC Numerical Control: Numerical control with block preparation, traversing range, etc.
NCU Numerical Control Unit: NC hardware unit
NRK Name for the operating system of the NC
IS Interface Signal
NURBS Non-Uniform Rational B-Spline
WO Work Offset
NX Numerical Extension: Axis expansion board

O
OB Organization block in the PLC
OEM Original Equipment Manufacturer
OP Operator Panel: Operating equipment
OPI Operator Panel Interface: Interface for connection to the operator panel
OPT Options: Options
OLP Optical Link Plug: Fiber optic bus connector
OSI Open Systems Interconnection: Standard for computer communications

Appendix
A.1 List of abbreviations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 919

P
PIQ Process Image Output
PII Process Image Input
PC Personal Computer
PCIN Name of the SW for data exchange with the control
PCMCIA Personal Computer Memory Card International Association:

Plug-in memory card standardization
PCU PC Unit: PC box (computer unit)
PG Programming device
PKE Parameter identification: Part of a PIV
PIV Parameter identification: Value (parameterizing part of a PPO)
PLC Programmable Logic Control: Adaptation control
PN PROFINET
PNO PROFIBUS user organization
PO POWER ON
POU Program Organization Unit
POS Position/positioning
POSMO A Positioning Motor Actuator: Positioning motor
POSMO CA Positioning Motor Compact AC: Complete drive unit with integrated power and control

module as well as positioning unit and program memory; AC infeed
POSMO CD Positioning Motor Compact DC: Like CA but with DC infeed
POSMO SI Positioning Motor Servo Integrated: Positioning motor, DC infeed
PPO Parameter Process data Object: Cyclic data telegram for PROFIBUS DP transmission

and "Variable speed drives" profile
PPU Panel Processing Unit (central hardware for a panel-based CNC, e.g SINUMERIK

828D)
PROFIBUS Process Field Bus: Serial data bus
PRT Program Test
PSW Program control word
PTP Point-To-Point: Point-To-Point
PUD Program global User Data: Program-global user variables
PZD Process data: Process data part of a PPO

Q
QEC Quadrant Error Compensation

R
RAM Random Access Memory: Read/write memory
REF REFerence point approach function
REPOS REPOSition function
RISC Reduced Instruction Set Computer: Type of processor with small instruction set and

ability to process instructions at high speed
ROV Rapid Override: Input correction

Appendix
A.1 List of abbreviations

Job Planning
920 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

R
RP R Parameter, arithmetic parameter, predefined user variable
RPA R Parameter Active: Memory area in the NC for R parameter numbers
RPY Roll Pitch Yaw: Rotation type of a coordinate system
RTLI Rapid Traverse Linear Interpolation: Linear interpolation during rapid traverse motion
RTS Request To Send: Control signal of serial data interfaces
RTCP Real Time Control Protocol

S
SA Synchronized Action
SBC Safe Brake Control: Safe Brake Control
SBL Single Block: Single block
SBR Subroutine: Subprogram (PLC)
SD Setting Data
SDB System Data Block
SEA Setting Data Active: Identifier (file type) for setting data
SERUPRO SEarch RUn by PROgram test: Block search, program test
SFB System Function Block
SFC System Function Call
SGE Safety-related input
SGA Safety-related output
SH Safe standstill
SIM Single in Line Module
SK Softkey
SKP Skip: Function for skipping a part program block
SLM Synchronous Linear Motor
SM Stepper Motor
SMC Sensor Module Cabinet Mounted
SME Sensor Module Externally Mounted
SMI Sensor Module Integrated
SPF Sub Routine File: Subprogram (NC)
PLC Programmable Logic Controller
SRAM Static RAM (non-volatile)
TNRC Tool Nose Radius Compensation
SRM Synchronous Rotary Motor
LEC Leadscrew Error Compensation
SSI Serial Synchronous Interface: Synchronous serial interface
SSL Block search
STW Control word
GWPS Grinding Wheel Peripheral Speed
SW Software
SYF System Files: System files
SYNACT SYNchronized ACTion: Synchronized Action

Appendix
A.1 List of abbreviations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 921

T
TB Terminal Board (SINAMICS)
TCP Tool Center Point: Tool tip
TCP/IP Transport Control Protocol / Internet Protocol
TCU Thin Client Unit
TEA Testing Data Active: Identifier for machine data
TIA Totally Integrated Automation
TM Terminal Module (SINAMICS)
TO Tool Offset: Tool offset
TOA Tool Offset Active: Identifier (file type) for tool offsets
TRANSMIT Transform Milling Into Turning: Coordination transformation for milling operations on

a lathe
TTL Transistor-Transistor Logic (interface type)
TZ Technology cycle

U
UFR User Frame: Work offset
SR Subprogram
USB Universal Serial Bus
UPS Uninterruptible Power Supply

V
VDI Internal communication interface between NC and PLC
VDI Verein Deutscher Ingenieure [Association of German Engineers]
VDE Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]
VI Voltage Input
VO Voltage Output
FDD Feed Drive

W
SAR Smooth Approach and Retraction
WCS Workpiece Coordinate System
T Tool
TLC Tool Length Compensation
WOP Workshop-Oriented Programming
WPD Workpiece Directory: Workpiece directory
TRC Tool Radius Compensation
T Tool
TO Tool Offset
TM Tool Management
TC Tool change

Appendix
A.1 List of abbreviations

Job Planning
922 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

X
XML Extensible Markup Language

Z
WOA Work Offset Active: Identifier for work offsets
ZSW Status word (of drive)

Appendix
A.1 List of abbreviations

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 923

A.2 Documentation overview

Appendix
A.2 Documentation overview

Job Planning
924 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Glossary

Absolute dimensions
A destination for an axis motion is defined by a dimension that refers to the origin of the currently
valid coordinate system. See → Incremental dimension

Acceleration with jerk limitation
In order to optimize the acceleration response of the machine whilst simultaneously protecting
the mechanical components, it is possible to switch over in the machining program between
abrupt acceleration and continuous (jerk-free) acceleration.

Address
An address is the identifier for a certain operand or operand range, e.g. input, output, etc.

Alarms
All → messages and alarms are displayed on the operator panel in plain text with date and time
and the corresponding symbol for the deletion criterion. Alarms and messages are displayed
separately.

1. Alarms and messages in the part program:
Alarms and messages can be displayed in plain text directly from the part program.

2. Alarms and messages from the PLC:
Alarms and messages for the machine can be displayed in plain text from the PLC program.
No additional function block packages are required for this purpose.

Archiving
Reading out of files and/or directories on an external memory device.

Asynchronous subprogram
Part program that can be started asynchronously to (independently of) the current program
status using an interrupt signal (e.g. "Rapid NC input" signal).

Automatic
Operating mode of the controller (block sequence operation according to DIN): Operating
mode for NC systems in which a → subprogram is selected and executed continuously.

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 925

Auxiliary functions
Auxiliary functions enable → part programs to transfer → parameters to the → PLC, which then
trigger reactions defined by the machine manufacturer.

Axes
In accordance with their functional scope, the CNC axes are subdivided into:

● Axes: Interpolating path axes

● Auxiliary axes: Non-interpolating feed and positioning axes with an axis-specific feedrate.
Auxiliary axes are not involved in actual machining, e.g. tool feeder, tool magazine.

Axis address
See → Axis name

Axis name
To ensure clear identification, all channel and → machine axes of the control system must be
designated with unique names in the channel and control system. The → geometry axes are
called X, Y, Z. The rotary axes rotating around the geometry axes → are called A, B, C.

Backlash compensation
Compensation for a mechanical machine backlash, e.g. backlash on reversal for ball screws.
Backlash compensation can be entered separately for each axis.

Backup battery
The backup battery ensures that the → user program in the → CPU is stored so that it is safe
from power failure and so that specified data areas and bit memory, timers and counters are
stored retentively.

Basic axis
Axis whose setpoint or actual value position forms the basis of the calculation of a
compensation value.

Basic Coordinate System
Cartesian coordinate system which is mapped by transformation onto the machine coordinate
system.

The programmer uses axis names of the basic coordinate system in the → part program. The
basic coordinate system exists parallel to the → machine coordinate system if no
→ transformation is active. The difference lies in the → axis names.

Glossary

Job Planning
926 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Baud rate
Rate of data transfer (bits/s).

Blank
Workpiece as it is before it is machined.

Block
"Block" is the term given to any files required for creating and processing programs.

Block search
For debugging purposes or following a program abort, the "Block search" function can be used
to select any location in the part program at which the program is to be started or resumed.

Booting
Loading the system program after power ON.

C axis
Axis around which the tool spindle describes a controlled rotational and positioning motion.

C spline
The C spline is the most well-known and widely used spline. The transitions at the interpolation
points are continuous, both tangentially and in terms of curvature. 3rd order polynomials are
used.

Channel
A channel is characterized by the fact that it can process a → part program independently of
other channels. A channel exclusively controls the axes and spindles assigned to it. Part
program runs of different channels can be coordinated through → synchronization.

Circular interpolation
The → tool moves on a circle between specified points on the contour at a given feedrate, and
the workpiece is thereby machined.

CNC
See → NC

Computerized Numerical Control: includes the components → NC, → PLC, HMI, → COM.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 927

CNC
See → NC

Computerized Numerical Control: includes the components → NC, → PLC, HMI, → COM.

COM
Component of the NC for the implementation and coordination of communication.

Compensation axis
Axis with a setpoint or actual value modified by the compensation value

Compensation table
Table containing interpolation points. It provides the compensation values of the compensation
axis for selected positions on the basic axis.

Compensation value
Difference between the axis position measured by the encoder and the desired, programmed
axis position.

Continuous-path mode
The objective of continuous-path mode is to avoid substantial deceleration of the → path axes
at the part program block boundaries and to change to the next block at as close to the same
path velocity as possible.

Contour
Contour of the → workpiece

Contour monitoring
The following error is monitored within a definable tolerance band as a measure of contour
accuracy. An unacceptably high following error can cause the drive to become overloaded, for
example. In such cases, an alarm is output and the axes are stopped.

Coordinate system
See → Machine coordinate system, → Workpiece coordinate system

CPU
Central processing unit, see → PLC

Glossary

Job Planning
928 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

CU
Transformation ratio

Curvature
The curvature k of a contour is the inverse of radius r of the nestling circle in a contour point
(k = 1/r).

Cycles
Protected subprograms for execution of repetitive machining operations on the → workpiece.

Data block
1. Data unit of the → PLC that → HIGHSTEP programs can access.

2. Data unit of the → NC: Data blocks contain data definitions for global user data. This data
can be initialized directly when it is defined.

Data word
Two-byte data unit within a → data block.

Diagnostics
1. Operating area of the control.

2. The control has a self-diagnostics program as well as test functions for servicing purposes:
status, alarm, and service displays

Dimensions specification, metric and inches
Position and pitch values can be programmed in inches in the machining program. Irrespective
of the programmable dimensions (G70/G71), the control is set to a basic system.

DRF
Differential Resolver Function: NC function which generates an incremental work offset in
Automatic mode in conjunction with an electronic handwheel.

Drive
The drive is the unit of the CNC that performs the speed and torque control based on the
settings of the NC.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 929

Dynamic feedforward control
Inaccuracies in the → contour due to following errors can be practically eliminated using
dynamic, acceleration-dependent feedforward control. This results in excellent machining
accuracy even at high → path velocities. Feedforward control can be selected and deselected
on an axis-specific basis via the → part program.

Editor
The editor makes it possible to create, edit, extend, join, and import programs / texts / program
blocks.

Exact stop
When an exact stop statement is programmed, the position specified in a block is approached
exactly and, if necessary, very slowly. To reduce the approach time, → exact stop limits are
defined for rapid traverse and feed.

Exact stop limit
When all path axes reach their exact stop limits, the control responds as if it had reached its
precise destination point. A block advance of the → part program occurs.

External work offset
Work offset specified by the → PLC.

Fast retraction from the contour
When an interrupt occurs, a motion can be initiated via the CNC machining program, enabling
the tool to be quickly retracted from the workpiece contour that is currently being machined.
The retraction angle and the distance retracted can also be parameterized. An interrupt routine
can also be executed following the fast retraction.

Feed override
The programmed velocity is overriden by the current velocity setting made via the → machine
control panel or from the → PLC (0 to 200%). The feedrate can also be corrected by a
programmable percentage factor (1 to 200%) in the machining program.

Finished-part contour
Contour of the finished workpiece. See → Raw part.

Fixed machine point
Point that is uniquely defined by the machine tool, e.g. machine reference point.

Glossary

Job Planning
930 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Fixed-point approach
Machine tools can approach fixed points such as a tool change point, loading point, pallet
change point, etc. in a defined way. The coordinates of these points are stored in the control.
The control moves the relevant axes in → rapid traverse, whenever possible.

Frame
A frame is an arithmetic rule that transforms one Cartesian coordinate system into another
Cartesian coordinate system. A frame contains the following components: → work offset,
→ rotation, → scaling, → mirroring.

Geometry
Description of a → workpiece in the → workpiece coordinate system.

Geometry axis
The geometry axes form the 2 or 3-dimensional → workpiece coordinate system in which, in
→ part programs, the geometry of the workpiece is programmed.

Ground
Ground is taken as the total of all linked inactive parts of a device which will not become live
with a dangerous contact voltage even in the event of a malfunction.

Helical interpolation
The helical interpolation function is ideal for machining internal and external threads using form
milling cutters and for milling lubrication grooves.

The helix comprises two motions:

● Circular motion in one plane

● A linear motion perpendicular to this plane

High-level CNC language
The high-level language is used to write NC programs, → synchronized actions, and → cycles.
It provides: control structures → user-defined variables, → system variables, → macro
programming.

High-speed digital inputs/outputs
The digital inputs can be used for example to start fast CNC program routines (interrupt
routines). High-speed, program-driven switching functions can be initiated via the digital CNC
outputs

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 931

HIGHSTEP
Summary of programming options for → PLCs of the AS300/AS400 system.

HW Config
SIMATIC S7 tool for the configuration and parameterization of hardware components within
an S7 project

Identifier
In accordance with DIN 66025, words are supplemented using identifiers (names) for variables
(arithmetic variables, system variables, user variables), subprograms, key words, and words
with multiple address letters. These supplements have the same meaning as the words with
respect to block format. Identifiers must be unique. It is not permissible to use the same
identifier for different objects.

Inch measuring system
Measuring system which defines distances in inches and fractions of inches.

Inclined surface machining
Drilling and milling operations on workpiece surfaces that do not lie in the coordinate planes
of the machine can be performed easily using the function "inclined-surface machining".

Increment
Travel path length specification based on number of increments. The number of increments
can be stored as → setting data or be selected by means of a suitably labeled key (i.e. 10, 100,
1000, 10000).

Incremental dimension
Incremental dimension: A destination for axis traversal is defined by a distance to be covered
and a direction referenced to a point already reached. See → Absolute dimension.

Intermediate blocks
Motions with selected → tool offset (G41/G42) may be interrupted by a limited number of
intermediate blocks (blocks without axis motions in the offset plane), whereby the tool offset
can still be correctly compensated for. The permissible number of intermediate blocks which
the controller reads ahead can be set in system parameters.

Interpolator
Logic unit of the → NC that defines intermediate values for the motion to be carried out in
individual axes based on information on the end positions specified in the part program.

Glossary

Job Planning
932 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Interpolatory compensation
Mechanical deviations of the machine are compensated for by means of interpolatory
compensation functions, such as → leadscrew error, sag, angularity, and temperature
compensation.

Interrupt routine
Interrupt routines are special → subprograms that can be started by events (external signals)
in the machining process. A part program block which is currently being worked through is
interrupted and the position of the axes at the point of interruption is automatically saved.

Inverse-time feedrate
The time required for the path of a block to be traversed can also be programmed for the axis
motion instead of the feed velocity (G93).

JOG
Operating mode of the control (setup mode): The machine can be set up in JOG mode.
Individual axes and spindles can be traversed in JOG mode by means of the direction keys.
Additional functions in JOG mode include: → Reference point approach, → Repos, and → Preset
(set actual value).

Key switch
The key switch on the → machine control panel has four positions that are assigned functions
by the operating system of the controller. The key switch has three different colored keys that
can be removed in the specified positions.

Keywords
Words with specified notation that have a defined meaning in the programming language for
→ part programs.

KV
Servo gain factor, a control variable in a control loop.

Leading axis
The leading axis is the → gantry axis that exists from the point of view of the operator and
programmer and, thus, can be influenced like a standard NC axis.

Leadscrew error compensation
Compensation for the mechanical inaccuracies of a leadscrew participating in the feed. The
controller uses stored deviation values for the compensation.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 933

Limit speed
Maximum/minimum (spindle) speed: The maximum speed of a spindle can be limited by
specifying machine data, the → PLC or → setting data.

Linear axis
In contrast to a rotary axis, a linear axis describes a straight line.

Linear interpolation
The tool travels along a straight line to the destination point while machining the workpiece.

Load memory
The load memory is the same as the → working memory for the CPU 314 of the → PLC.

Look Ahead
The Look Ahead function is used to achieve an optimal machining speed by looking ahead
over an assignable number of traversing blocks.

Machine axes
Physically existent axes on the machine tool.

Machine control panel
An operator panel on a machine tool with operating elements such as keys, rotary switches,
etc., and simple indicators such as LEDs. It is used to directly influence the machine tool via
the PLC.

Machine coordinate system
A coordinate system, which is related to the axes of the machine tool.

Machine zero
Fixed point of the machine tool to which all (derived) measuring systems can be traced back.

Machining channel
A channel structure can be used to shorten idle times by means of parallel motion sequences,
e.g. moving a loading gantry simultaneously with machining. Here, a CNC channel must be
regarded as a separate CNC control system with decoding, block preparation and interpolation.

Glossary

Job Planning
934 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Macro techniques
Grouping of a set of statements under a single identifier. The identifier represents the set of
consolidated statements in the program.

Main block
A block preceded with ":" that contains all information to start the operating sequence in a
→ part program.

Main program
The term "main program" has its origins during the time when part programs were split strictly
into main and → subprograms. This strict division no longer exists with today's SINUMERIK
NC language. In principle, any part program in the channel can be selected and started. It then
runs through in → program level 0 (main program level). Further part programs or → cycles as
subprograms can be called up in the main program.

MDI
Operating mode of the control: Manual Data Input. In the MDI mode, individual program blocks
or block sequences with no reference to a main program or subprogram can be input and
executed immediately afterwards through actuation of the NC start key.

Messages
All messages programmed in the part program and → alarms detected by the system are
displayed on the operator panel in plain text with date and time and the corresponding symbol
for the deletion criterion. Alarms and messages are displayed separately.

Metric measuring system
Standardized system of units: For length, e.g. mm (millimeters), m (meters).

Mirroring
Mirroring reverses the signs of the coordinate values of a contour, with respect to an axis. It
is possible to mirror with respect to more than one axis at a time.

Mode
An operating concept on a SINUMERIK control The following modes are defined: → Jog, → MDI,
→ Automatic.

Mode group
Axes and spindles that are technologically related can be combined into one mode group.
Axes/spindles of a mode group can be controlled by one or more → channels. The same
→ mode type is always assigned to the channels of the mode group.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 935

NC
Numerical Control component of the → CNC that executes the → part programs and coordinates
the movements of the machine tool.

Network
A network is the connection of multiple S7-300 and other end devices, e.g. a programming
device via a → connecting cable. A data exchange takes place over the network between the
connected devices.

NRK
Numeric robotic kernel (operating system of → NC)

NURBS
The motion control and path interpolation that occurs within the control is performed based on
NURBS (Non Uniform Rational B-Splines). This provides a uniform procedure for all internal
interpolations.

OEM
The scope for implementing individual solutions (OEM applications) has been provided for
machine manufacturers, who wish to create their own user interface or integrate technology-
specific functions in the control.

Offset memory
Data range in the control, in which the tool offset data is stored.

Oriented spindle stop
Stops the workpiece spindle in a specified angular position, e.g. in order to perform additional
machining at a particular location.

Overall reset
In the event of an overall reset, the following memories of the → CPU are deleted:

● → Working memory

● Read/write area of → load memory

● → System memory

● → Backup memory

Glossary

Job Planning
936 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Override
Manual or programmable possibility of intervention that enables the user to override
programmed feedrates or speeds in order to adapt them to a specific workpiece or material.

Part program
Series of statements to the NC that act in concert to produce a particular → workpiece. Likewise,
this term applies to execution of a particular machining operation on a given → raw part.

Part program block
Part of a → part program that is demarcated by a line feed. There are two types: → main blocks
and → subblocks.

Part program management
Part program management can be organized by → workpieces. The size of the user memory
determines the number of programs and the amount of data that can be managed. Each file
(programs and data) can be given a name consisting of a maximum of 24 alphanumeric
characters.

Path axis
Path axes include all machining axes of the → channel that are controlled by the → interpolator
in such a way that they start, accelerate, stop, and reach their end point simultaneously.

Path feedrate
Path feedrate affects → path axes. It represents the geometric sum of the feedrates of the
→ geometry axes involved.

Path velocity
The maximum programmable path velocity depends on the input resolution. For example, with
a resolution of 0.1 mm the maximum programmable path velocity is 1000 m/min.

PCIN data transfer program
PCIN is a utility program for sending and receiving CNC user data (e.g. part programs, tool
offsets) via the serial interface. The PCIN program can run under MS-DOS on standard
industrial PCs.

Peripheral module
I/O modules represent the link between the CPU and the process.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 937

I/O modules are:

● → Digital input/output modules

● → Analog input/output modules

● → Simulator modules

PLC
Programmable Logic Controller: → Programmable logic controller. Component of → NC:
Programmable control for processing the control logic of the machine tool.

PLC program memory
SINUMERIK 840D sl: The PLC user program, the user data and the basic PLC program are
stored together in the PLC user memory.

PLC programming
The PLC is programmed using the STEP 7 software. The STEP 7 programming software is
based on the WINDOWS standard operating system and contains the STEP 5 programming
functions with innovative enhancements.

Polar coordinates
A coordinate system which defines the position of a point on a plane in terms of its distance
from the origin and the angle formed by the radius vector with a defined axis.

Polynomial interpolation
Polynomial interpolation enables a wide variety of curve characteristics to be generated, such
as straight line, parabolic, exponential functions (SINUMERIK 840D sl).

Positioning axis
Axis that performs an auxiliary motion on a machine tool (e.g. tool magazine, pallet transport).
Positioning axes are axes that do not interpolate with → path axes.

Pre-coincidence
Block change occurs already when the path distance approaches an amount equal to a
specifiable delta of the end position.

Program block
Program blocks contain the main program and subprograms of → part programs.

Glossary

Job Planning
938 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program level
A part program started in the channel runs as a → main program on program level 0 (main
program level). Any part program called up in the main program runs as a → subprogram on
a program level 1 ... n of its own.

Programmable frames
Programmable → frames enable dynamic definition of new coordinate system output points
while the part program is being executed. A distinction is made between absolute definition
using a new frame and additive definition with reference to an existing starting point.

Programmable logic controller
Programmable logic controllers (PLCs) are electronic controllers, the function of which is stored
as a program in the control unit. This means that the layout and wiring of the device do not
depend on the function of the controller. The programmable logic control has the same
structure as a computer; it consists of a CPU (central module) with memory, input/output
modules and an internal bus system. The peripherals and the programming language are
matched to the requirements of the control technology.

Programmable working area limitation
Limitation of the motion space of the tool to a space defined by programmed limitations.

Programming key
Characters and character strings that have a defined meaning in the programming language
for → part programs.

Protection zone
Three-dimensional zone within the → working area into which the tool tip must not pass.

Quadrant error compensation
Contour errors at quadrant transitions, which arise as a result of changing friction conditions
on the guideways, can be virtually entirely eliminated with the quadrant error compensation.
Parameterization of the quadrant error compensation is performed by means of a circuit test.

R parameters
Arithmetic parameter that can be set or queried by the programmer of the → part program for
any purpose in the program.

Rapid traverse
The highest traverse velocity of an axis. It is used, for example, when the tool approaches the
→ workpiece contour from a resting position or when the tool is retracted from the workpiece

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 939

contour. The rapid traverse velocity is set on a machine-specific basis using a machine data
item.

Reference point
Machine tool position that the measuring system of the → machine axes references.

Rotary axis
Rotary axes apply a workpiece or tool rotation to a defined angular position.

Rotation
Component of a → frame that defines a rotation of the coordinate system around a particular
angle.

Rounding axis
Rounding axes rotate a workpiece or tool to an angular position corresponding to an indexing
grid. When a grid index is reached, the rounding axis is "in position".

RS-232-C
Serial interface for data input/output. Machining programs as well as manufacturer and user
data can be loaded and saved via this interface.

Safety functions
The controller is equipped with permanently active monitoring functions that detect faults in
the → CNC, the → PLC, and the machine in a timely manner so that damage to the workpiece,
tool, or machine is largely prevented. In the event of a fault, the machining operation is
interrupted and the drives stopped. The cause of the malfunction is logged and output as an
alarm. At the same time, the PLC is notified that a CNC alarm has been triggered.

Scaling
Component of a → frame that implements axis-specific scale modifications.

Setting data
Data which communicates the properties of the machine tool to the NC as defined by the
system software.

Softkey
A key, whose name appears on an area of the screen. The choice of softkeys displayed is
dynamically adapted to the operating situation. The freely assignable function keys (softkeys)
are assigned defined functions in the software.

Glossary

Job Planning
940 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Software limit switch
Software limit switches limit the traversing range of an axis and prevent an abrupt stop of the
slide at the hardware limit switch. Two value pairs can be specified for each axis and activated
separately by means of the → PLC.

Spline interpolation
With spline interpolation, the controller can generate a smooth curve characteristic from only
a few specified interpolation points of a set contour.

Standard cycles
Standard cycles are provided for machining operations which are frequently repeated:

● For the drilling/milling technology

● For turning technology

The available cycles are listed in the "Cycle support" menu in the "Program" operating area.
Once the desired machining cycle has been selected, the parameters required for assigning
values are displayed in plain text.

Subblock
Block preceded by "N" containing information for a sequence, e.g. positional data.

Subprogram
The term "subprogram" has its origins during the time when part programs were split strictly
into →main and subprograms. This strict division no longer exists with today's SINUMERIK NC
language. In principle, any part program or any → cycle can be called up as a subprogram
within another part program. It then runs through in the next → program level (x+1) (subprogram
level (x+1)).

Synchronization
Statements in → part programs for coordination of sequences in different → channels at certain
machining points.

Synchronized actions
1. Auxiliary function output

During workpiece machining, technological functions (→ auxiliary functions) can be output
from the CNC program to the PLC. For example, these auxiliary functions are used to
control additional equipment for the machine tool, such as quills, grabbers, clamping
chucks, etc.

2. Fast auxiliary function output
For time-critical switching functions, the acknowledgement times for the → auxiliary
functions can be minimized and unnecessary hold points in the machining process can be
avoided.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 941

Synchronized axes
Synchronized axes take the same time to traverse their path as the geometry axes take for
their path.

Synchronized axis
A synchronized axis is the → gantry axis whose set position is continuously derived from the
motion of the → leading axis and is, thus, moved synchronously with the leading axis. From
the point of view of the programmer and operator, the synchronized axis "does not exist".

System memory
The system memory is a memory in the CPU in which the following data is stored:

● Data required by the operating system

● The operands timers, counters, markers

System variable
A variable that exists without any input from the programmer of a → part program. It is defined
by a data type and the variable name preceded by the character $. See → User-defined variable.

Tapping without compensating chuck
This function allows threads to be tapped without a compensating chuck. By using the
interpolating method of the spindle as a rotary axis and the drilling axis, threads can be cut to
a precise final drilling depth, e.g. for blind hole threads (requirement: spindles in axis operation).

Text editor
See → Editor

TOA area
The TOA area includes all tool and magazine data. By default, this area coincides with the
→ channel area with regard to the access of the data. However, machine data can be used to
specify that multiple channels share one → TOA unit so that common tool management data
is then available to these channels.

TOA unit
Each → TOA area can have more than one TOA unit. The number of possible TOA units is
limited by the maximum number of active → channels. A TOA unit includes exactly one tool
data block and one magazine data block. In addition, a TOA unit can also contain a toolholder
data block (optional).

Glossary

Job Planning
942 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Tool
Active part on the machine tool that implements machining (e.g. turning tool, milling tool, drill,
LASER beam, etc.).

Tool nose radius compensation
Contour programming assumes that the tool is pointed. Because this is not actually the case
in practice, the curvature radius of the tool used must be communicated to the controller which
then takes it into account. The curvature center is maintained equidistantly around the contour,
offset by the curvature radius.

Tool offset
Consideration of the tool dimensions in calculating the path.

Tool radius compensation
To directly program a desired → workpiece contour, the control must traverse an equistant path
to the programmed contour taking into account the radius of the tool that is being used (G41/
G42).

Transformation
Additive or absolute zero offset of an axis.

Travel range
The maximum permissible travel range for linear axes is ± 9 decades. The absolute value
depends on the selected input and position control resolution and the unit of measurement
(inch or metric).

User interface
The user interface (UI) is the display medium for a CNC in the form of a screen. It features
horizontal and vertical softkeys.

User memory
All programs and data, such as part programs, subprograms, comments, tool offsets, and work
offsets / frames, as well as channel and program user data, can be stored in the shared CNC
user memory.

User program
User programs for the S7-300 automation systems are created using the programming
language STEP 7. The user program has a modular layout and consists of individual blocks.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 943

The basic block types are:

● Code blocks
These blocks contain the STEP 7 commands.

● Data blocks
These blocks contain constants and variables for the STEP 7 program.

User-defined variable
Users can declare their own variables for any purpose in the → part program or data block
(global user data). A definition contains a data type specification and the variable name. See
→ System variable.

Variable definition
A variable definition includes the specification of a data type and a variable name. The variable
names can be used to access the value of the variables.

Velocity control
In order to achieve an acceptable traverse rate in the case of very slight motions per block, an
anticipatory evaluation over several blocks (→ Look Ahead) can be specified.

WinSCP
WinSCP is a freely available open source program for Windows for the transfer of files.

Work offset
Specifies a new reference point for a coordinate system through reference to an existing zero
point and a → frame.

1. Settable
A configurable number of settable work offsets are available for each CNC axis. The offsets
- which are selected by means of G commands - take effect alternatively.

2. External
In addition to all the offsets which define the position of the workpiece zero, an external
work offset can be overridden by means of the handwheel (DRF offset) or from the PLC.

3. Programmable
Work offsets can be programmed for all path and positioning axes using the TRANS
statement.

Working area
Three-dimensional zone into which the tool tip can be moved on account of the physical design
of the machine tool. See → Protection zone.

Glossary

Job Planning
944 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Working area limitation
With the aid of the working area limitation, the traversing range of the axes can be further
restricted in addition to the limit switches. One value pair per axis may be used to describe the
protected working area.

Working memory
The working memory is a RAM in the → CPU that the processor accesses when processing
the application program.

Workpiece
Part to be made/machined by the machine tool.

Workpiece contour
Set contour of the → workpiece to be created or machined.

Workpiece coordinate system
The workpiece coordinate system has its starting point in the → workpiece zero-point. In
machining operations programmed in the workpiece coordinate system, the dimensions and
directions refer to this system.

Workpiece zero
The workpiece zero is the starting point for the → workpiece coordinate system. It is defined
in terms of distances to the → machine zero.

Glossary

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 945

Glossary

Job Planning
946 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Index

-
- End of trial cut addition - GROUP_ADDEND

External programming, 820

$
$AA_ATOL, 544
$AA_COUP_ACT

during coupled motion, 550
for axial master value coupling, 573

$AA_ESR_ENABLE, 666
$AA_LEAD_SP, 573
$AA_LEAD_SV, 573
$AC_ACT_PROG_NET_TIME, 655
$AC_ACTUAL_PARTS, 658
$AC_AXCTSWA, 640
$AC_AXCTSWE, 640
$AC_CTOL, 544
$AC_CUT_INV, 469
$AC_CUTMOD, 469
$AC_CUTMOD_ANG, 469
$AC_CUTMODK, 469
$AC_CUTTING_TIME, 654
$AC_CYCLE_TIME, 654
$AC_DELAYFST, 526
$AC_ESR_TRIGGER, 666
$AC_OLD_PROG_NET_TIME, 655
$AC_OLD_PROG_NET_TIME_COUNT, 655
$AC_OPERATING_TIME, 654
$AC_OTOL, 544
$AC_PROG_NET_TIME_TRIGGER, 655
$AC_REPOS_PATH_MODE, 535
$AC_REQUIRED_PARTS, 658
$AC_SMAXVELO, 540
$AC_SMAXVELO_INFO, 540
$AC_SPECIAL_PARTS, 658
$AC_TOTAL_PARTS, 658
$AC_TRAFO_CORR_ELEM_P, 403
$AC_TRAFO_CORR_ELEM_T, 403
$AC_TRAFO_ORIAX_LOC, 403
$AN_AXCTAS, 640
$AN_AXCTSWA, 640
$AN_ESR_TRIGGER, 666
$AN_LANGUAGE_ON_HMI, 914
$AN_POWERON_TIME, 654
$AN_SETUP_TIME, 654

$NT_CLOSE_CHAIN_T, 403
$NT_CNTRL, 403
$NT_CORR_ELEM_P, 402
$NT_CORR_ELEM_T, 402
$NT_NAME, 395
$NT_ROT_AX_NAME, 466
$NT_TRAFO_INDEX, 395
$P_ACTBFRAME, 313
$P_AD, 468
$P_BFRAME, 313
$P_CHBFRAME, 313
$P_CHBFRMASK, 314
$P_CTOL, 545
$P_CUT_INV, 469
$P_CUTMOD, 469
$P_CUTMOD_ANG, 469
$P_CUTMOD_ERR, 470
$P_CUTMODK, 469
$P_DELAYFST, 526
$P_IFRAME, 314
$P_IS_EES_PATH, 223
$P_NCBFRAME, 313
$P_NCBFRMASK, 314
$P_ORI_DIFF, 462
$P_ORI_POS, 462
$P_ORI_SOL, 463
$P_ORI_STAT, 465
$P_OTOL, 545
$P_PATH, 222
$P_PFRAME, 315
$P_PROG, 222
$P_PROGPATH, 223
$P_SIM, 282
$P_STACK, 222
$P_SUBPAR, 161
$P_TOOLENV, 478
$P_TOOLENVN, 478
$PA_ATOL, 545
$SA_LEAD_TYPE, 573
$SC_CONTPREC, 519
$SC_MINFEED, 519
$SC_PA_ACTIV_IMMED, 233
$SN_PA_ACTIV_IMMED, 233
$TC_CARR1...14, 447
$TC_CARR18...23, 447
$TC_CARR18[m], 451
$TC_DP1 ... 25, 405
$TC_ECPxy, 409
$TC_SCPxy, 409

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 947

*
* (arithmetic function), 74

/
/ (arithmetic function), 74

+
+ (arithmetic function), 74

<
< (comparison operator), 76
<< (concatenation operator), 86
<= (relational operator), 76
<> (comparison operator), 76

=
== (comparison operator), 76

>
> (comparison operator), 76
>= (relational operator), 76

0
0 character, 84

A
A spline, 252
ABS, 74
Acceleration mode, 512
ACCLIMA, 514
ACOS, 74
Acquiring and finding untraceable sections, 528
ACTBLOCNO, 173
ACTFRAME, 289
Actual value coupling, 584
Addressing, 217
ADISPOSA, 284
Alarms

set in the NC program, 664

ALF
for fast retraction from contour, 132

AND, 76
APR, 45
APRB, 45
APRP, 45
APW, 45
APWB, 45
APWP, 45
Arbitrary positions - CYCLE802

External programming, 769
Arithmetic parameters

Channel-specific, 24
Global, 25

Array, 52
definition, 52
element, 52

Array index, 54
AS, 209
ASIN, 74
ASPLINE, 246
Asynchronous oscillation, 605
ATAN2, 74
ATOL, 542
Automatic interrupt pointer, 528
Automatic path segmentation, 622
AV, 581
Availability

System-dependent, 5
AX, 631
AXCTSWE, 639
AXCTSWEC, 639
AXCTSWED, 639
Axes

Coupled-motion, 549
Axial master value coupling, 569
AXIS, 29

replacement,
AXNAME, 85
AXSTRING, 631
AXTOCHAN, 142
AXTOSPI, 631

B
B spline, 253
B_AND, 76
B_NOT, 76
B_OR, 76
B_XOR, 76
BAUTO, 246
Beginning of program block - GROUP_BEGIN, 819

Index

Job Planning
948 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

BFRAME, 289
Blank definition, 673
BLOCK, 197
Block display

suppress, 173
BLSYNC, 127
BNAT, 246
BOOL, 29
Boring - CYCLE86

External programming, 748
BOUND, 80
BRISK, 512
BRISKA, 512
BSPLINE, 246
BTAN, 246

C
C spline, 254
CAC, 245
CACN, 245
CACP, 245
CALL, 196
CALLPATH, 200
Cartesian PTP travel, 372
CASE, 105
Case-insensitive, 216
CDC, 245
Centering - CYCLE81

External programming, 737
CFINE, 299
CHAN, 29
CHANDATA, 224
CHAR, 29
Check

structures, 113
CHKDNO, 444
CIC, 245
Circle data

calculating, 693
Circular pocket - POCKET4

External programming, 705
Circular position pattern - HOLES2

External programming, 700
Circular spigot - CYCLE77

External programming, 731
Circumferential slot - SLOT2

External programming, 710
CLEARM, 120
CLRINT, 129
COARSE, 581
COARSEA, 284

COLLPAIR, 390
Comparison operators, 76
COMPCAD, 259
COMPCURV, 259
COMPLETE, 224
COMPOF, 259
COMPON, 259
COMPSURF, 259
Concatenation

of strings, 86
Constraints for transformations, 383
CONTDCON, 686
Contour

-coding, 686
-preparation, 680
reposition, 529
table, 680

Contour accuracy
Programmable, 519

Contour call - CYCLE62
External programming, 719

Contour cutting - CYCLE95
External programming, 751

Contour element
travel, 692

Contour grooving - CYCLE952
External programming, 794

Contour preparation
Error feedback signal, 695

CONTPRON, 680
Corner deceleration at all corners, 283
Corner deceleration at inside corners, 283
CORRTRAFO, 396
COS, 74
Count loop, 116
COUPDEF, 581
COUPDEL, 581
Coupled motion, 547
Coupled-axis combinations, 547
Coupled-motion axes, 549
coupling

Generic, 592
Coupling factor, 547
Coupling status

during coupled motion, 550
for axial master value coupling, 573

COUPOF, 581
COUPOFS, 581
COUPON, 581
COUPONC, 581
COUPRES, 581
CP, 372

Index

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 949

CPBC, 593
CPDEF, 592
CPDEL, 592
CPFMOF, 595
CPFMON, 595
CPFMSON, 594
CPFPOS + CPOF, 595
CPFPOS + CPON, 593
CPFRS, 593
CPLA, 592
CPLCTID, 593
CPLDEF, 592
CPLDEL, 592
CPLDEN, 593
CPLINSC, 597
CPLINTR, 597
CPLNUM, 593
CPLOF, 593
CPLON, 592
CPLOUTSC, 597
CPLOUTTR, 597
CPLPOS, 593
CPLSETVAL, 593
CPMALARM, 598
CPMBRAKE, 598
CPMPRT, 597
CPMRESET, 596
CPMSTART, 597
CPMVDI, 598
CPOF, 592
CPON, 592
CPRECOF, 519
CPRECON, 519
CPROT, 231
CPROTDEF, 227
CPSETTYPE, 598
CPSYNCOP, 597
CPSYNCOP2, 597
CPSYNCOV, 597
CPSYNFIP, 597
CPSYNFIP2, 597
CPSYNFIV, 597
CSPLINE, 246
CTAB, 562
CTABDEF, 552
CTABDEL, 559
CTABEND, 552
CTABEXISTS, 558
CTABFNO, 567
CTABFPOL, 567
CTABFSEG, 567
CTABID, 561

CTABINV, 562
CTABISLOCK, 561
CTABLOCK, 560
CTABMEMTYP, 561
CTABMPOL, 567
CTABMSEG, 567
CTABNO, 567
CTABNOMEM, 567
CTABPERIOD, 561
CTABPOL, 567
CTABPOLID, 567
CTABSEG, 567
CTABSEGID, 567
CTABSEV, 562
CTABSSV, 562
CTABTEP, 562
CTABTEV, 562
CTABTMAX, 562
CTABTMIN, 562
CTABTSP, 562
CTABTSV, 562
CTABUNLOCK, 560
CTOL, 542
CTRANS, 299
CUT3DC, 423
CUT3DCC, 433
CUT3DCCD, 433
CUT3DCD, 423
CUT3DF, 427
CUT3DFD, 427
CUT3DFF, 427
CUT3DFS, 427
CUTMOD, 466
CUTMODK, 466
Cut-off - CYCLE92

External programming, 749
Cutting edge number, 444
Cycle alarms, 664
CYCLE4071

External programming, 800
CYCLE4072

External programming, 801
CYCLE4073

External programming, 805
CYCLE4074

External programming, 806
CYCLE4075

External programming, 809
CYCLE4077

External programming, 812
CYCLE4078

External programming, 815

Index

Job Planning
950 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

CYCLE4079
External programming, 817

CYCLE435 - Set dresser coordinate system
External programming, 762

CYCLE495 - form-truing
External programming, 762

CYCLE60 - Engraving
External programming, 714

CYCLE61 - Face milling
External programming, 717

CYCLE62- contour call
External programming, 719

CYCLE63 - Milling contour pocket
External programming, 720

CYCLE64 - Predrilling contour pocket
External programming, 722

CYCLE70 - thread milling
External programming, 723

CYCLE72 - Path milling
External programming, 725

CYCLE76 - rectangular spigot
External programming, 729

CYCLE77 - circular spigot
External programming, 731

CYCLE78 - Drill thread milling
External programming, 733

CYCLE79 - multi-edge
External programming, 735

CYCLE800 - swiveling
External programming, 764

CYCLE801 - grid/frame position pattern
External programming, 767

CYCLE802 - arbitrary positions
External programming, 769

CYCLE81 - centering
External programming, 737

CYCLE82 - drilling
External programming, 738

CYCLE83 - deep-hole drilling
External programming, 741

CYCLE830 - deep-hole drilling 2
External programming, 771

CYCLE832 - High-Speed Settings
External programming, 777

CYCLE84 - tapping without compensating chuck
External programming, 744

CYCLE840 - tapping with compensating chuck
External programming, 780

CYCLE85 - reaming
External programming, 747

CYCLE86 - boring
External programming, 748

CYCLE899 - Milling open slot
External programming, 783

CYCLE92 - cut-off
External programming, 749

CYCLE930 - groove
External programming, 786

CYCLE940 - Undercut
External programming, 789

CYCLE95 - contour cutting
External programming, 751

CYCLE951 - stock removal
External programming, 791

CYCLE952 - contour grooving
External programming, 794

CYCLE98 - thread chain
External programming, 753

CYCLE99 - thread turning
External programming, 757

Cylinder surface transformation, 321

D
D number

Freely assigned, 444
D numbers

Check, 444
Renaming, 445

Data class, 49
DCI, 49
DCM, 49
DCU, 49
Deep-hole drilling - CYCLE83

External programming, 741
Deep-hole drilling 2 - CYCLE830

External programming, 771
DEF, 29
DEFAULT, 105
DEFINE ... AS, 209
DELAYFSTOF, 524
DELAYFSTON, 524
DELDL, 410
DELETE, 149
Delete distance-to-go, 277
DELOBJ, 385
DELTOOLENV, 476
Denominator polynomial, 264
DIN subprogram name, 221
Direction vector, 334
Directory path, 219
DISABLE, 129
DISPLOF, 173
DISPLON, 173

Index

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 951

DISPR, 529
DIV, 74
DL, 408
DO, 603
Drill thread milling - CYCLE78

External programming, 733
Drilling - CYCLE82

External programming, 738
DRIVE, 512
Drive name, 218
DRIVEA, 512
DV, 581
DYNFINISH, 516
DYNNORM, 516
DYNPOS, 516
DYNROUGH, 516
DYNSEMIFIN, 516

E
Easy XML, 649
EAUTO, 246
EES, 215
EES notation, 217
EG

Electronic gear, 575
EGDEF, 575
EGDEL, 580
EGOFC, 579
EGOFS, 579
EGON, 576
EGONSYN, 576
EGONSYNE, 576
Electronic gear, 575
Elongated hole - LONGHOLE

External programming, 712
ELSE, 114
ENABLE, 129
ENAT, 246
End of program block - GROUP_END

External programming, 820
ENDFOR, 116
ENDIF, 114
ENDLABEL, 107
Endless loop, 116
ENDLOOP, 116
End-of-motion criterion

Programmable, 284
ENDWHILE, 118
Engraving - CYCLE60

External programming, 714
ESR, 665

ESRR, 671
ESRS, 670
ETAN, 246
Euler angles, 333
EVERY, 603
EXECSTRING, 72
EXECTAB, 692
EXECUTE, 695
EXP, 74
EXTCALL

for SINUMERIK 828D, 204
for SINUMERIK 840D sl, 201

EXTCLOSE, 659
EXTERN, 191
External programming, 819
External zero offset, 301
EXTOPEN, 659

F
Face milling, 337
Face milling - CYCLE61

External programming, 717
FALSE, 29
Fast retraction from the contour, 130
FCTDEF, 419
FCUB, 507
FENDNORM, 283
FFWOF, 518
FFWON, 518
FIFOCTRL, 521
File

-information, 153
File name, 220
FILEDATE, 153
FILEINFO, 153
FILESIZE, 153
FILESTAT, 153
FILETIME, 153
FINE, 581
FINEA, 284
FLIN, 507
FNORM, 507
Following axis

for axial master value coupling, 569
FOR, 116
Form-truing - CYCLE495

External programming, 762
FPO, 507
FRAME, 29

Call,
-chaining,

Index

Job Planning
952 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Frame component
FI, 295
MI, 295
RT, 295
SC, 295
TR, 295

Frame variable
Assigning values, 293
Calling coordinate transformations, 287
Predefined frame variable, 289

Frames
Assign, 297
Channel-specific, 312
Frame chains, 297
NCU global, 311
System, 312

FROM, 603
FTOCOF, 422
FTOCON, 422

G
G code

Indirect programming, 68
G group

Technology, 516
G290, 677
G291, 677
G5, 368
G62, 283
G621, 283
G7, 368
G810 ... G819, 282
G820 ... G829, 282
GEOAX, 634
Geometry axis

Switching, 634
GET, 137
GETACTTD, 446
GETD, 137
GETDNO, 445
GETTCOR, 478
GETTENV, 477
GETVARAP, 61
GETVARDFT, 63
GETVARDIM, 63
GETVARLIM, 62
GETVARPHU, 60
GETVARTYP, 65
Global part program memory (GDIR), 215
GOTO, 102
GOTOB, 102

GOTOC, 102
GOTOF, 102
GOTOS, 101
GP, 69
Grid/frame position pattern - CYCLE801

External programming, 767
Groove - CYCLE930

External programming, 786
GROUP_ADDEND - End of trial cut addition

External programming, 820
GROUP_BEGIN - beginning of program block

External programming, 819
GROUP_END - end of program block

External programming, 820
GUD, 30

H
High Speed Settings - CYCLE832

External programming, 777
Hold block, 528
HOLES1 - line position pattern

External programming, 700
HOLES2 - circle position pattern

External programming, 700

I
ID, 603
IDS, 603
IF, 114
IFRAME, 289
INDEX, 89
Indirect programming

of addresses, 66
of G codes, 68
of part program lines, 72
of position attributes, 69

INICF, 29
INIPO, 29
INIRE, 29
INIT, 120
INITIAL, 224
Initial tool orientation setting ORIRESET, 330
INITIAL_INI, 224
Initialization

of arrays, 52
Initialization program, 224
Insertion depth, 425
INT, 29
Interpolation of the rotation vector, 350

Index

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 953

Interrupt routine
Deactivating/activating, 129
Delete, 129
Fast retraction from the contour, 130
Newly assign, 128
Programmable traverse direction, 132
Retraction movement, 132

INTERSEC, 690
IPOBRKA, 284
IPOENDA, 284
IPOSTOP, 581
IPTRLOCK, 527
IPTRUNLOCK, 527
ISAXIS, 631
ISFILE, 152
ISNUMBER, 85
ISOCALL, 198
ISVAR, 59

J
Jerk

Limitation, 512
offset, 538

JERKLIM, 538
JERKLIMA, 514
Jump

to beginning of program, 101
to jump labels, 102

Jump label
for program jumps, 102

Jump marker
For program section repetitions, 107

K
Kinematic type, 451
Kinematics

Resolved, 451

L
L..., 189
Label, 107
Language mode, 677
LEAD, 331
Leading axis

for axial master value coupling, 569
LEADOF, 569
LEADON, 569
LENTOAX, 497

LIFTFAST, 130
Line position pattern - HOLES1

External programming, 700
Link

variables, 27
LLI, 41
LN, 74
Logic operators, 76
LONGHOLE - elongated hole

External programming, 712
Longitudinal slot - SLOT1

External programming, 707
LOOP, 116
LUD, 30

M
M17, 176
M30, 176
Macro, 209
MASLDEF, 599
MASLDEL, 599
MASLOF, 599
MASLOFS, 599
MASLON, 599
Master value coupling

Actual value and setpoint coupling, 572
Synchronization of leading and following
axis, 571

Master value simulation, 573
MATCH, 89
MAXVAL, 80
MCALL, 194
MD10010, 120
MD10280, 120
MD15800, 26
MD18104, 475
MD18116, 476
MD18156, 26
MD20360, 482
MD24558, 483
MD24658, 483
MEAC, 271
MEAFRAME, 307
MEAS, 268
MEASA, 271
Measuring task status, 280
MEAW, 268
MEAWA, 271
Memory

Preprocessing, 521

Index

Job Planning
954 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program, 213
Working, 224

Milling contour pocket – CYCLE63
External programming, 720

Milling open slot - CYCLE899
External programming, 783

Milling tool machining point, 426
Milling tool reference point, 426
Milling tool tip, 426
MINDEX, 89
MINVAL, 80
MMC, 649
MOD, 74
MODAXVAL, 631
MPF, 214
Multi-edge - CYCLE79

External programming, 735

N
NAMETOINT, 388
NCK, 29
NCK notation, 217
Nesting depth

of check structures, 113
NEWCONF, 144
Nibbling, 617
NOC, 581
NOT, 76
NPROT, 231
NPROTDEF, 227
NUMBER, 85
NUT, 342

O
Oblique angle transformation (TRAANG)

with programmable angle, 367
Oblique plunge-cut grinding, 368
OEM addresses, 282
OEM functions, 282
OEMIPO1/2, 282
Offset memory, 405
OMA1 ... OMA5, 282
Online tool length offset, 455
Operating mode

During measurement, 277
OR, 76
ORIAXES, 340
ORIC, 438
ORICONCCW, 342

ORICONCW, 342
ORICONIO, 342
ORICONTO, 342
ORICURVE, 345
ORID, 438
Orientation axes, 340
Orientation programming, 340
Orientation transformation TRAORI

Generic 5/6-axis transformation, 320
Machine kinematics, 320
Orientation movements, 319
Orientation programming,
Variants of orientation programming,

Orientation vector THETA, 350
ORIEULER, 340
ORIMKS, 338
ORIPATH, 354
ORIPATHS, 354
ORIPLANE, 342
ORIRESET(A, B, C), 329
ORIROTA, 350
ORIROTC

during interpolation the tool rotation, 356
for rotation of the tool orientation, 350

ORIROTR, 350
ORIROTT, 350
ORIRPY, 340
ORIRPY2, 340
ORIS, 438
ORISOF, 362
ORISOLH, 458
ORISON, 362
ORIVECT, 340
ORIVIRT1, 340
ORIVIRT2, 340
ORIWKS, 338
OS, 605
OSB, 605
OSC, 438
OSCILL, 610
Oscillating motion

Infeed at reversal point, 614
Reversal point, 612
Reversal range, 612

Oscillation
Asynchronous, 605
Asynchronous oscillation, 605
Control via synchronized action, 610
Partial infeed, 612
Synchronous oscillation, 610

OSCTRL, 605
OSD, 438

Index

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 955

OSE, 605
OSNSC, 605
OSOF, 438
OSP1, 605
OSP2, 605
OSS, 438
OSSE, 438
OST, 438
OST1, 605
OST2, 605
OTOL, 542
Output

to external device/file, 659

P
P..., 193
P_ACTFRAME, 315
Parameter

Actual, 160
Formal, 159
transfer for subprogram call, 191
Transfer on subprogram call, 160

Parameters
Machine, 405

Path milling - CYCLE72
External programming, 725

Path specification, 218
PCALL, 199
PDELAYOF, 617
PDELAYON, 617
PFRAME, 289
PHI

For orientation along the peripheral surface of a
taper, 342
Orientation polynomials, 348

PHU, 43
PL

for polynomial interpolation, 260
for spline interpolation, 246

PO, 260
PO[PHI]

For orientation along the peripheral surface of a
taper, 342
for rotation of the tool orientation, 354
Orientation polynomials, 348

PO[PSI]
For orientation along the peripheral surface of a
taper, 342
for rotation of the tool orientation, 354
Orientation polynomials, 348

PO[THT]
for rotation of the tool orientation, 354
Orientation polynomials, 348

PO[XH]
for orientation specification of two contact
points, 345
Orientation polynomials, 349

PO[YH]
for orientation specification of two contact
points, 345
Orientation polynomials, 349

PO[ZH]
for orientation specification of two contact
points, 345
Orientation polynomials, 349

POCKET3 - rectangular pocket
External programming, 702

POCKET4 - circular pocket
External programming, 705

Point-to-point travel, 372
Polar transformation, 321
POLF

for NC-controlled retraction, 666
POLFA, 666
POLFMASK

for NC-controlled retraction, 666
POLFMLIN

for NC-controlled retraction, 666
POLY, 260
Polynomial coefficient, 261
Polynomial interpolation, 260
POLYPATH, 260
PON, 625
PONS, 617
POSFS, 581
Position attributes

Indirect programming, 69
Position synchronism, 581
Position synchronism with angular offset, 581
POT, 74
Predrilling a contour pocket – CYCLE64

External programming, 722
PREPRO, 176
Preprocessing

-memory, 521
PRESETON, 303
PRESETONS, 305
PRIO, 127
PRLOC, 29
Process DataShare, 659
Processing time, 654

Index

Job Planning
956 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

Program
addressing, 217
Branch, 105
Initialization, 224
Jumps, 102
memory, 214
repetition, 193
Runtimes, 654

Program loop
Count loop, 116
End of loop, 116
IF loop, 114
REPEAT loop, 118
WHILE loop, 118

Program memory
File types, 214
Standard directories, 214

Program section
-repetition, 107

Program section repetition
with indirect programming CALL, 197

PROTA, 391
PROTD, 393
Protection zones, 227
PROTS, 392
PSI

For orientation along the peripheral surface of a
taper, 342
Orientation polynomials, 348

PTP, 372
PTPG0, 372
PTPWOC, 372
PUD, 30
PUNCHACC, 617
Punching, 617
PUTFTOC, 421
PUTFTOCF, 420
PW, 246

R
READ, 150
REAL, 29
Reaming - CYCLE85

External programming, 747
Rectangular pocket - POCKET3

External programming, 702
Rectangular spigot - CYCLE76

External programming, 729
REDEF, 35
RELEASE, 137
REP, 52

REPEAT, 107
REPEATB, 107
REPOSA, 529
REPOSH, 529
REPOSHA, 529
REPOSL, 529
REPOSQ, 529
REPOSQA, 529
Residual time

for a workpiece, 656
RET, 177
RET (parameterizable), 178
RETB (parameterizable), 185
Retraction

drive-autonomous, 671
NC-controlled, 666

RG, 25
RINDEX, 89
RMBBL, 529
RMEBL, 529
RMIBL, 529
RMNBL, 529
Rotary axes

Angle of rotation, 447
Direction vectors, 447
Distance vectors, 447

Rotation
of the orientation vector, 350

ROUND, 74
Round up, 155
ROUNDUP, 155
RPY, 334
Run MyScreens, 649
Runtime

Response of check structures, 113

S
SAVE, 166
SBLOF, 168
SBLON, 168
SCPARA, 643
SD, 246
SD41610, 403
SD41611, 403
SD42475, 360
SD42476, 360
SD42477, 360
SD42900, 413
SD42910, 413
SD42920, 414
SD42930, 415

Index

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 957

SD42935, 416
SD42940, 417
SD42984, 468
Search path

for subprogram call, 221
Programmable search path, 200

SET, 52
Set dresser coordinate system - CYCLE435

External programming, 762
SETAL, 664
SETDNO, 445
SETINT, 127
SETM, 120
Setpoint value coupling, 584
SETTCOR, 484
Setup value, 409
SIN, 74
Single-block

suppression, 168
Singular positions, 339
SLOT1 - longitudinal slot

External programming, 707
SLOT2 - circumferential slot

External programming, 710
Smoothing

of the orientation characteristic, 362
SOFT, 512
SOFTA, 512
SON, 617
SONS, 617
Speed coupling, 584
Speed synchronism, 581
SPF, 214
SPI, 631
SPIF1, 617
SPIF2, 617
Spindle

replacement, 137
Spline

interpolation, 246
types, 252

Spline group, 257
SPLINEPATH, 257
SPN, 622
SPOF, 617
SPP, 622
SPRINT, 92
SQRT, 74
START, 120
STARTFIFO, 521
STAT, 373

Stock removal
supporting functions, 679

Stock removal - CYCLE951
External programming, 791

STOPFIFO, 521
Stopping

drive-autonomous, 670
NC-controlled, 669

STOPRE, 521
String,

concatenation, 86
formatting, 92
length, 88
-operations, 84

STRINGIS, 645
STRLEN, 88
Subprogram

Application, 156
call with parameter transfer, 191
call without parameter transfer, 189
call, indirect, 196
call, modal, 194
Name, 157
Programmable search path, 200
repetition, 193
return, parameterizable (RET ...), 178
return, parameterizable (RETB...), 185

Subprogram with path specification and
parameters, 199
SUBSTR, 90
Switchable geometry axes, 634
Swiveling - CYCLE800

External programming, 764
Synchronism

coarse, 584
Fine, 584

Synchronous oscillation
Assignment of oscillating and infeed axes, 613
Define infeeds, 613
Evaluation, IPO cycle, 615
Infeed in reversal point range, 614
Infeed movement, 614
Next partial infeed, 616
Synchronized actions, 613

Synchronous spindle
Coupling, 581
pair definition, 587

SYNR, 29
SYNRW, 29
SYNW, 29
System

-dependent availability, 5

Index

Job Planning
958 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

System frames, 312
System variables

Probe limitation, 279
Probe status, 279

T
TAN, 74
TANG, 501
TANGDEL, 505
TANGOF, 505
TANGON, 503
Tapping with compensating chuck - CYCLE840

External programming, 780
Tapping without compensating chuck - CYCLE84

External programming, 744
TCARR, 452
TCOABS, 452
TCOFR, 452
TCOFRX, 452
TCOFRY, 452
TCOFRZ, 452
THETA

during interpolation the tool rotation, 356
for rotation of the tool orientation, 350

Thread chain - CYCLE98
External programming, 753

Thread milling - CYCLE70
External programming, 723

Thread turning - CYCLE99
External programming, 757

TILT, 331
TLIFT, 502
TMOF, 629
TMON, 629
TOFFOF, 455
TOFFON, 455
TOLOWER, 87
Tool

-orientation, 438
-orientation for frame change, 454
-parameters, 405

Tool chain, 401
Tool offset

Coordinate system for wear values, 415
Offset memory, 405

Tool offsets
additive, 408

Tool orientation
relative to the path, 353

Tool orientation relative to the path, 353

Tool radius compensation
Corner deceleration, 283

TOOLENV, 473
Toolholder

kinematics, 447
-orientable, 452

Toolholder with orientation capability, 447
TOUPPER, 87
TOWBCS, 415
TOWKCS, 415
TOWMCS, 415
TOWSTD, 415
TOWTCS, 415
TOWWCS, 415
TRAANG

with programmable angle, 367
TRACON, 370
TRACYL, 364
TRAFOOF, 384
TRAFOON, 395
TRAILOF, 547
TRAILON, 547
Transformation types

General function, 317
Transformation with a swiveling linear axis, 327
Transformations

Chained transformations, 319
Concatenated, 370
Initial tool orientation setting regardless of
kinematics, 318
Kinematic transformations, 318
Orientation transformation, 317
Three-, four- and five-axis transformation, 328

TRANSMIT, 364
TRAORI, 328
Trigger event

During measurement, 275
TRUE, 29
TRUNC, 74
TU, 377
Type of coupling, 584

U
ULI, 41
Undercut - CYCLE940

External programming, 789
UNTIL, 118
User XML, 649

Index

Job Planning
Programming Manual, 08/2018, 6FC5398-2BP40-6BA2 959

V
Variable

Type conversion, 83
Variables

Type conversion, 84
User-defined, 29

VELOLIM, 539
VELOLIMA, 514

W
WAITC, 581
WAITE, 120
WAITENC, 641
WAITM, 120
WAITMC, 120
Wear value, 409
WHEN, 603
WHEN-DO, 613
WHENEVER, 603
WHENEVER-DO, 613
WHILE, 118
Working memory, 224
Workpiece,

counter, 657
directories, 214
main directory, 214

Workpiece chain, 401
WRITE, 145

X
XOR, 76

Z
Zero offset

External, 301

Index

Job Planning
960 Programming Manual, 08/2018, 6FC5398-2BP40-6BA2

	Job Planning
	Legal information - Warning notice system
	Preface
	Table of contents
	1 Fundamental safety instructions
	1.1 General safety instructions
	1.2 Warranty and liability for application examples
	1.3 Industrial security

	2 Flexible NC programming
	2.1 Variables
	2.1.1 System data
	2.1.2 Predefined user variables: Arithmetic parameters
	2.1.2.1 Channel-specific arithmetic parameters (R)
	2.1.2.2 Global arithmetic parameters (RG)

	2.1.3 Predefined user variables: Link variables
	2.1.4 Definition of user variables (DEF)
	2.1.5 Redefinition of system data, user data, and NC commands (REDEF)
	2.1.6 Attribute: Initialization value
	2.1.7 Attribute: Limit values (LLI, ULI)
	2.1.8 Attribute: Physical unit (PHU)
	2.1.9 Attribute: Access rights (APR, APW, APRP, APWP, APRB, APWB)
	2.1.10 Attribute: Data class (DCM, DCI, DCU) - only SINUMERIK 828D
	2.1.11 Overview of definable and redefinable attributes
	2.1.12 Definition and initialization of array variables (DEF, SET, REP)
	2.1.13 Definition and initialization of array variables (DEF, SET, REP): Further Information
	2.1.14 Data types
	2.1.15 Check availability of a variable (ISVAR)
	2.1.16 Reading attribute values / data type (GETVARPHU, GETVARAP, GETVARLIM, GETVARDIM, GETVARDFT, GETVARTYP)

	2.2 Indirect programming
	2.2.1 Indirectly programming addresses
	2.2.2 Indirectly programming G commands
	2.2.3 Indirectly programming position attributes (GP)
	2.2.4 Indirectly programming part program lines (EXECSTRING)

	2.3 Arithmetic functions
	2.4 Comparison and logic operations
	2.5 Precision correction on comparison errors (TRUNC)
	2.6 Variable minimum, maximum and range (MINVAL, MAXVAL and BOUND)
	2.7 Priority of the operations
	2.8 Possible type conversions
	2.9 String operations
	2.9.1 Type conversion to STRING (AXSTRING)
	2.9.2 Type conversion from STRING (NUMBER, ISNUMBER, AXNAME)
	2.9.3 Concatenation of strings (<<)
	2.9.4 Conversion to lower/upper case letters (TOLOWER, TOUPPER)
	2.9.5 Determine length of string (STRLEN)
	2.9.6 Search for character/string in the string (INDEX, RINDEX, MINDEX, MATCH)
	2.9.7 Selection of a substring (SUBSTR)
	2.9.8 Reading and writing of individual characters
	2.9.9 Formatting a string (SPRINT)

	2.10 Program jumps and branches
	2.10.1 Return jump to the start of the program (GOTOS)
	2.10.2 Program jumps to jump markers (GOTOB, GOTOF, GOTO, GOTOC)
	2.10.3 Program branch (CASE ... OF ... DEFAULT ...)

	2.11 Repeat program section (REPEAT, REPEATB, ENDLABEL, P)
	2.12 Check structures
	2.12.1 Conditional statement and branch (IF, ELSE, ENDIF)
	2.12.2 Continuous program loop (LOOP, ENDLOOP)
	2.12.3 Count loop (FOR ... TO ..., ENDFOR)
	2.12.4 Program loop with condition at start of loop (WHILE, ENDWHILE)
	2.12.5 Program loop with condition at the end of the loop (REPEAT, UNTIL)
	2.12.6 Program example with nested check structures

	2.13 Coordination commands (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)
	2.14 Interrupt routine (ASUB)
	2.14.1 Function of an interrupt routine
	2.14.2 Creating an interrupt routine
	2.14.3 Assign and start interrupt routine (SETINT, PRIO, BLSYNC)
	2.14.4 Deactivating/reactivating the assignment of an interrupt routine (DISABLE, ENABLE)
	2.14.5 Delete assignment of interrupt routine (CLRINT)
	2.14.6 Fast retraction from the contour (SETINT LIFTFAST, ALF)
	2.14.7 Traversing direction for fast retraction from the contour
	2.14.8 Motion sequence for interrupt routines

	2.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)
	2.16 Transfer axis to another channel (AXTOCHAN)
	2.17 Activate machine data (NEWCONF)
	2.18 Write file (WRITE)
	2.19 Delete file (DELETE)
	2.20 Read lines in the file (READ)
	2.21 Check for presence of file (ISFILE)
	2.22 Read out file information (FILEDATE, FILETIME, FILESIZE, FILESTAT, FILEINFO)
	2.23 Roundup (ROUNDUP)
	2.24 Subprogram technique
	2.24.1 General information
	2.24.1.1 Subprogram
	2.24.1.2 Subprogram names
	2.24.1.3 Nesting of subprograms
	2.24.1.4 Search path
	2.24.1.5 Formal and actual parameters
	2.24.1.6 Parameter transfer

	2.24.2 Definition of a subprogram
	2.24.2.1 Subprogram without parameter transfer
	2.24.2.2 Subprogram with call-by-value parameter transfer (PROC)
	2.24.2.3 Subprogram with call-by-reference parameter transfer (PROC, VAR)
	2.24.2.4 Save modal G functions (SAVE)
	2.24.2.5 Suppress single block execution (SBLOF, SBLON)
	2.24.2.6 Suppress current block display (DISPLOF, DISPLON, ACTBLOCNO)
	2.24.2.7 Identifying subprograms with preparation (PREPRO)
	2.24.2.8 Subprogram return M17
	2.24.2.9 RET subprogram return
	2.24.2.10 Parameterizable subprogram return jump (RET ...)
	2.24.2.11 Parameterizable subprogram return jump (RETB ...)

	2.24.3 Subprogram call
	2.24.3.1 Subprogram call without parameter transfer
	2.24.3.2 Subprogram call with parameter transfer (EXTERN)
	2.24.3.3 Number of program repetitions (P)
	2.24.3.4 Modal subprogram call (MCALL)
	2.24.3.5 Indirect subprogram call (CALL)
	2.24.3.6 Indirect subprogram call with specification of the calling program part (CALL BLOCK ... TO ...)
	2.24.3.7 Indirect call of a program programmed in ISO language (ISOCALL)
	2.24.3.8 Call subprogram with path specification and parameters (PCALL)
	2.24.3.9 Extend search path for subprogram calls (CALLPATH)
	2.24.3.10 Execute external subprogram (840D sl) (EXTCALL)
	2.24.3.11 Execute external subprogram (828D) (EXTCALL)

	2.25 Macro technique (DEFINE ... AS)

	3 File and Program Management
	3.1 Program memory
	3.1.1 NC program memory
	3.1.2 External program memory
	3.1.3 Addressing program memory files
	3.1.4 Search path for subprogram call
	3.1.5 Interrogating the path and file name

	3.2 Working memory (CHANDATA, COMPLETE, INITIAL)

	4 Protection zones
	4.1 Defining protection zones (CPROTDEF, NPROTDEF)
	4.2 Activating/deactivating protection zones (CPROT, NPROT)
	4.3 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

	5 Special motion commands
	5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)
	5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN, EAUTO, ENAT, ETAN, PW, SD, PL)
	5.3 Spline group (SPLINEPATH)
	5.4 Activating/deactivating NC block compression (COMPON, COMPCURV, COMPCAD, COMPSURF, COMPOF)
	5.5 Polynomial interpolation (POLY, POLYPATH, PO, PL)
	5.6 Settable path reference (SPATH, UPATH)
	5.7 Measuring with touch-trigger probe (MEAS, MEAW)
	5.8 Axis-specific measurement (MEASA, MEAWA, MEAC) (option)
	5.9 Special functions for OEM users (OMA1 ... OMA5, OEMIPO1, OEMIPO2, G810 ... G829)
	5.10 Feedrate reduction with corner deceleration (FENDNORM, G62, G621)
	5.11 Programmable end of motion criteria (FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

	6 Coordinate transformations (frames)
	6.1 Coordinate transformation via frame variables
	6.1.1 Predefined frame variable ($P_CHBFRAME, $P_IFRAME, $P_PFRAME, $P_ACTFRAME)

	6.2 Value assignments to frames
	6.2.1 Assigning direct values (axis value, angle, scale)
	6.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)
	6.2.3 Calculating with frames
	6.2.4 Definition of frame variables (DEF FRAME)

	6.3 Coarse and fine offsets (CTRANS, CFINE)
	6.4 External zero offset ($AA_ETRANS)
	6.5 Set actual value with loss of the referencing status (PRESETON)
	6.6 Set actual value without loss of the referencing status (PRESETONS)
	6.7 Frame calculation from three measuring points in space (MEAFRAME)
	6.8 NCU global frames
	6.8.1 Channel-specific frames ($P_CHBFR, $P_UBFR)
	6.8.2 Frames active in the channel

	7 Transformations
	7.1 General programming of transformation types
	7.1.1 Orientation movements for transformations
	7.1.2 Overview of orientation transformation TRAORI

	7.2 Three, four and five axis transformation (TRAORI)
	7.2.1 General relationships of universal tool head
	7.2.2 Three, four and five axis transformation (TRAORI)
	7.2.3 Variants of orientation programming and initial setting (ORIRESET)
	7.2.4 Programming the tool orientation (A..., B..., C..., LEAD, TILT)
	7.2.5 Face milling (A4, B4, C4, A5, B5, C5)
	7.2.6 Reference of the orientation axes (ORIWKS, ORIMKS):
	7.2.7 Programming orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY, ORIRPY2, ORIVIRT1, ORIVIRT2)
	7.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE, ORICONCW, ORICONCCW, ORICONTO, ORICONIO)
	7.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=, PO[YH]=, PO[ZH]=)

	7.3 Orientation polynomials (PO[angle], PO[coordinate])
	7.4 Rotations of the tool orientation (ORIROTA, ORIROTR, ORIROTT, ORIROTC, THETA)
	7.5 Orientations relative to the path
	7.5.1 Orientation types relative to the path
	7.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle of rotation)
	7.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)
	7.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)

	7.6 Compression of the orientation (COMPON, COMPCURV, COMPCAD, COMPSURF)
	7.7 Activating/deactivating the orientation characteristic (ORISON, ORISOF)
	7.8 Kinematic transformation
	7.8.1 Activate face end transformation (TRANSMIT)
	7.8.2 Activate cylinder surface transformation (TRACYL)
	7.8.3 Activating an oblique angle transformation with programmable angle (TRAANG)
	7.8.4 Oblique plunge-cutting on grinding machines (G5, G7)

	7.9 Activate concatenated transformation (TRACON)
	7.10 Cartesian PTP travel
	7.10.1 Activating/deactivating Cartesian PTP travel (PTP, PTPG0, PTPWOC, CP)
	7.10.2 Specify the position of the joints (STAT)
	7.10.3 Specify the sign of the axis angle (TU)
	7.10.4 Example 1: PTP travel of a 6-axis robot with ROBX transformation
	7.10.5 Example 2: PTP travel for generic 5-axis transformation
	7.10.6 Example 3: PTPG0 and TRANSMIT

	7.11 Constraints when selecting a transformation
	7.12 Deselecting a transformation (TRAFOOF)

	8 Kinematic chains
	8.1 Deletion of components (DELOBJ)
	8.2 Index determination by means of names (NAMETOINT)

	9 Collision avoidance with kinematic chains
	9.1 Check for collision pair (COLLPAIR)
	9.2 Request recalculation of the machine model of the collision avoidance (PROTA)
	9.3 Setting the protection zone status (PROTS)
	9.4 Determining the clearance of two protection zones (PROTD)

	10 Transformation with kinematic chains
	10.1 Activating a transformation (TRAFOON)
	10.2 Modifying the orientation transformation after the machine measurement (CORRTRAFO)

	11 Tool offsets
	11.1 Offset memory
	11.2 Additive offsets
	11.2.1 Selecting additive offsets (DL)
	11.2.2 Specify wear and setup values ($TC_SCPxy[t,d], $TC_ECPxy[t,d])
	11.2.3 Delete additive offsets (DELDL)

	11.3 Special handling of tool offsets
	11.3.1 Mirroring of tool lengths
	11.3.2 Wear sign evaluation
	11.3.3 Coordinate system of the active machining operation (TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, TOWKCS)
	11.3.4 Tool length and plane change

	11.4 Online tool offset
	11.4.1 Defining a polynomial function (FCTDEF)
	11.4.2 Write online tool offset continuously (PUTFTOCF)
	11.4.3 Write online tool offset, discrete (PUTFTOC)
	11.4.4 Activate/deactivate online tool offset (FTOCON/FTOCOF)

	11.5 3D tool radius compensation
	11.5.1 Selecting 3D tool radius compensation for 3D circumferential milling (CUT3DC, CUT3DCD, ISD)
	11.5.2 Selecting 3D tool radius compensation for the 3D face milling (CUT3DF, CUT3DFS, CUT3DFF, CUT3DFD)
	11.5.3 3D circumferential milling taking into account a limitation surface (CUT3DCC, CUT3DCCD)

	11.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, ORIS, OSD, OST)
	11.7 Free assignment of D numbers, cutting edge numbers
	11.7.1 Free assignment of D numbers, cutting edge numbers (CE address)
	11.7.2 Free assignment of D numbers: Checking D numbers (CHKDNO)
	11.7.3 Free assignment of D numbers: Rename D numbers (GETDNO, SETDNO)
	11.7.4 Free assignment of D numbers: Determine T number to the specified D number (GETACTTD)
	11.7.5 Free assignment of D numbers: Invalidate D numbers (DZERO)

	11.8 Toolholder kinematics
	11.9 Tool length compensation for orientable toolholders (TCARR, TCOABS, TCOFR, TCOFRX, TCOFRY, TCOFRZ)
	11.10 Online tool length compensation (TOFFON, TOFFOF)
	11.11 Modification of the offset data for rotatable tools
	11.11.1 Calculating orientations (ORISOLH)
	11.11.2 Activating the modification of the offset data for rotatable tools (CUTMOD, CUTMODK)

	11.12 Working with tool environments
	11.12.1 Save tool environment (TOOLENV)
	11.12.2 Delete tool environment (DELTOOLENV)
	11.12.3 Read T, D and DL number (GETTENV)
	11.12.4 Read information about the saved tool environments ($P_TOOLENVN, ($P_TOOLENV)
	11.12.5 Read tool lengths and/or tool length components (GETTCOR)
	11.12.6 Change tool components (SETTCOR)

	11.13 Read the assignment of the tool lengths L1, L2, L3 to the coordinate axes (LENTOAX)

	12 Path traversing behavior
	12.1 Tangential control
	12.1.1 Defining coupling (TANG)
	12.1.2 Activating intermediate block generation (TLIFT)
	12.1.3 Activating the coupling (TANGON)
	12.1.4 Deactivating the coupling (TANGOF)
	12.1.5 Deleting a coupling (TANGDEL)

	12.2 Feedrate characteristic (FNORM, FLIN, FCUB, FPO)
	12.3 Acceleration behavior
	12.3.1 Acceleration mode (BRISK, BRISKA, SOFT, SOFTA, DRIVE, DRIVEA)
	12.3.2 Influence of acceleration on following axes (VELOLIMA, ACCLIMA, JERKLIMA)
	12.3.3 Activation of technology-specific dynamic values (DYNNORM, DYNPOS, DYNROUGH, DYNSEMIFIN, DYNFINISH)

	12.4 Traversing with feedforward control (FFWON, FFWOF)
	12.5 Programmable contour accuracy (CPRECON, CPRECOF)
	12.6 Program sequence with preprocessing memory (STOPFIFO, STARTFIFO, FIFOCTRL, STOPRE)
	12.7 Defining a stop delay range (DELAYFSTON, DELAYFSTOF)
	12.8 Prevent program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)
	12.9 Repositioning to the contour (REPOSA, REPOSL, REPOSQ, REPOSQA, REPOSH, REPOSHA, DISR, DISPR, RMIBL, RMBBL, RMEBL, RMNBL)
	12.10 Influencing the motion control
	12.10.1 Percentage jerk correction (JERKLIM)
	12.10.2 Percentage velocity correction (VELOLIM)
	12.10.3 Program example for JERKLIM and VELOLIM

	12.11 Programming contour/orientation tolerance (CTOL, OTOL, ATOL)
	12.12 Block change behavior with active coupling (CPBC)

	13 Axis couplings
	13.1 Coupled motion (TRAILON, TRAILOF)
	13.2 Curve tables (CTAB)
	13.2.1 Define curve tables (CTABDEF, CATBEND)
	13.2.2 Check for presence of curve table (CTABEXISTS)
	13.2.3 Delete curve tables (CTABDEL)
	13.2.4 Locking curve tables to prevent deletion and overwriting (CTABLOCK, CTABUNLOCK)
	13.2.5 Curve tables: Determine table properties (CTABID, CTABISLOCK, CTABMEMTYP, CTABPERIOD)
	13.2.6 Read curve table values (CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABSSV, CTABSEV, CTAB, CTABINV, CTABTMIN, CTABTMAX)
	13.2.7 Curve tables: Check use of resources (CTABNO, CTABNOMEM, CTABFNO, CTABSEGID, CTABSEG, CTABFSEG, CTABMSEG, CTABPOLID, CTABPOL, CTABFPOL, CTABMPOL)

	13.3 Axial master value coupling (LEADON, LEADOF)
	13.4 Electronic gear (EG)
	13.4.1 Defining an electronic gear (EGDEF)
	13.4.2 Switch-in the electronic gearbox (EGON, EGONSYN, EGONSYNE)
	13.4.3 Switching-in the electronic gearbox (EGOFS, EGOFC)
	13.4.4 Deleting the definition of an electronic gear (EGDEL)
	13.4.5 Rotational feedrate (G95) / electronic gear (FPR)

	13.5 Synchronous spindle
	13.5.1 Synchronous spindle: Programming (COUPDEF, COUPDEL, COUPON, COUPONC, COUPOF, COUPOFS, COUPRES, WAITC)

	13.6 Generic coupling (CP...)
	13.7 Master/slave coupling (MASLDEF, MASLDEL, MASLON, MASLOF, MASLOFS)

	14 Synchronized actions
	14.1 Definition of a synchronized action

	15 Oscillation
	15.1 Asynchronous oscillation (OS, OSP1, OSP2, OST1, OST2, OSCTRL, OSNSC, OSE, OSB)
	15.2 Oscillation controlled by synchronized actions (OSCILL)

	16 Punching and nibbling
	16.1 Activation/deactivation
	16.1.1 Activate/deactivate punching and nibbling (SPOF, SON, PON, SONS, PONS, PDELAYON, PDELAYOF, PUNCHACC)

	16.2 Automatic path segmentation
	16.2.1 Path segmentation for path axes
	16.2.2 Path segmentation for single axes

	17 Grinding
	17.1 Activate/deactivate grinding-specific tool monitoring (TMON, TMOF)

	18 Additional functions
	18.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING, MODAXVAL)
	18.2 Replaceable geometry axes (GEOAX)
	18.3 Axis container (AXCTSWE, AXCTSWED, AXCTSWEC)
	18.4 Wait for valid axis position (WAITENC)
	18.5 Programmable parameter set changeover (SCPARA)
	18.6 Check scope of NC language present (STRINGIS)
	18.7 Interactively call the window from the part program (MMC)
	18.8 Program runtime/part counter
	18.8.1 Program runtime
	18.8.2 Workpiece counter

	18.9 Process DataShare - Output to an external device/file (EXTOPEN, WRITE, EXTCLOSE):
	18.10 Alarms (SETAL)
	18.11 Extended stop and retract (ESR)
	18.11.1 NC-controlled ESR
	18.11.1.1 NC-controlled retraction (POLF, POLFA, POLFMASK, POLFMLIN)
	18.11.1.2 NC-controlled stopping

	18.11.2 Drive-integrated ESR
	18.11.2.1 Configuring drive-integrated stopping (ESRS)
	18.11.2.2 Configuring drive-integrated retraction (ESRS)

	18.12 Define blank (WORKPIECE)
	18.13 Switch language mode (G290, G291)

	19 User stock removal programs
	19.1 Supporting functions for stock removal
	19.2 Generate contour table (CONTPRON)
	19.3 Generate coded contour table (CONTDCON)
	19.4 Determine point of intersection between two contour elements (INTERSEC)
	19.5 Execute the contour elements of a table block-by-block (EXECTAB)
	19.6 Calculate circle data (CALCDAT)
	19.7 Deactivate contour preparation (EXECUTE)

	20 Programming cycles externally
	20.1 Technology cycles
	20.1.1 Introduction
	20.1.2 Technology-specific overview
	20.1.3 HOLES1 - row of holes
	20.1.4 HOLES2 - hole circle
	20.1.5 POCKET3 - milling a rectangular pocket
	20.1.6 POCKET4 - milling a circular pocket
	20.1.7 SLOT1 - longitudinal slot
	20.1.8 SLOT2 - circumferential slot
	20.1.9 LONGHOLE - elongated hole
	20.1.10 CYCLE60 - engraving cycle
	20.1.11 CYCLE61 - Face milling
	20.1.12 CYCLE62 - contour call
	20.1.13 CYCLE63 - Milling contour pocket
	20.1.14 CYCLE64 - Predrilling contour pocket
	20.1.15 CYCLE70 - thread milling
	20.1.16 CYCLE72 - Path milling
	20.1.17 CYCLE76 - rectangular spigot milling
	20.1.18 CYCLE77 - circular spigot milling
	20.1.19 CYCLE78 - Drill thread milling
	20.1.20 CYCLE79 - multi-edge
	20.1.21 CYCLE81 - drilling, centering
	20.1.22 CYCLE82 - drilling, counterboring
	20.1.23 CYCLE83 - deep-hole drilling
	20.1.24 CYCLE84 - tapping without compensating chuck
	20.1.25 CYCLE85 - reaming
	20.1.26 CYCLE86 - boring
	20.1.27 CYCLE92 - cut-off
	20.1.28 CYCLE95 - contour cutting
	20.1.29 CYCLE98 - thread chain
	20.1.30 CYCLE99 - thread turning
	20.1.31 CYCLE435 - Set dresser coordinate system
	20.1.32 CYCLE495 - form-truing
	20.1.33 CYCLE800 - swiveling
	20.1.34 CYCLE801 - grid or frame
	20.1.35 CYCLE802 - arbitrary positions
	20.1.36 CYCLE830 - deep-hole drilling 2
	20.1.37 CYCLE832 - High-Speed Settings
	20.1.38 CYCLE840 - tapping with compensating chuck
	20.1.39 CYCLE899 - Milling open slot
	20.1.40 CYCLE930 - groove
	20.1.41 CYCLE940 - undercut forms
	20.1.42 CYCLE951 - stock removal
	20.1.43 CYCLE952 - contour grooving
	20.1.44 CYCLE4071 - longitudinal grinding with infeed at the reversal point
	20.1.45 CYCLE4072 - longitudinal grinding with infeed at the reversal point and cancel signal
	20.1.46 CYCLE4073 - longitudinal grinding with continuous infeed
	20.1.47 CYCLE4074 - longitudinal grinding with continuous infeed and cancel signal
	20.1.48 CYCLE4075 - surface grinding with infeed at the reversal point
	20.1.49 CYCLE4077 - surface grinding with infeed at the reversal point and cancel signal
	20.1.50 CYCLE4078 - surface grinding with continuous infeed
	20.1.51 CYCLE4079 - surface grinding with intermittent infeed
	20.1.52 GROUP_BEGIN - beginning of program block
	20.1.53 GROUP_END - end of program block
	20.1.54 GROUP_ADDEND - End of trial cut addition
	20.1.55 Supplementary conditions
	20.1.55.1 Technology scaling in cycle screen forms

	20.2 Measuring cycles

	21 Tables
	21.1 Operations
	21.2 Operations: Availability for SINUMERIK 828D
	21.2.1 Control version milling / turning
	21.2.2 Control versions grinding

	21.3 Currently set language in the HMI

	A Appendix
	A.1 List of abbreviations
	A.2 Documentation overview

	Glossary
	Index

